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Bone Marrow-Derived Mesenchymal
Stem Cells Restored High-Fat-Fed
Induced Hyperinsulinemia in Rats at Early
Stage of Type 2 Diabetes Mellitus

Gongchi Li1, Han Peng2, Shen Qian3, Xinhua Zou4, Ye Du4,
Zhi Wang4, Lijun Zou4, Zibo Feng4, Jing Zhang4, Youpeng Zhu4,
Huamin Liang5,6, and Binghui Li4

Abstract
Numerous studies have proposed the transplantation of mesenchymal stem cells (MSCs) in the treatment of typical type 2
diabetes mellitus (T2DM). We aimed to find a new strategy with MSC therapy at an early stage of T2DM to efficiently prevent
the progressive deterioration of organic dysfunction. Using the high-fat-fed hyperinsulinemia rat model, we found that before
the onset of typical T2DM, bone marrow-derived MSCs (BM-MSCs) significantly attenuated rising insulin with decline in
glucose as well as restored lipometabolic disorder and liver dysfunction. BM-MSCs also favored the histological structure
recovery and proliferative capacity of pancreatic islet cells. More importantly, BM-MSC administration successfully reversed
the abnormal expression of insulin resistance-related proteins including GLUT4, phosphorylated insulin receptor substrate 1,
and protein kinase Akt and proinflammatory cytokines IL-6 and TNFa in liver. These findings suggested that MSCs trans-
plantation during hyperinsulinemia could prevent most potential risks of T2DM for patients.
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Introduction

Diabetes mellitus (DM) is a major risk factor for many

diseases such as ischemic heart disease and stroke, chronic

kidney disease, and blindness among adults1–3. Long-term

high-fat food is one of the causes leading to insulin resistance

(IR) followed bya compensatoryhyperinsulinemia4–6. Because

of the high secretary activity, b cells are constantly exposed to

various kinds of stresses, such as glucolipotoxicity and oxida-

tive stress7,8. Eventually, this results in b-cell death, which is

characterized as typical type 2 diabetes mellitus (T2DM) char-

acterized by hyperinsulinemia and hyperglycemia9,10.

IR might last for 10 years before the onset of b-cell dys-

function and diabetes11; therefore, alleviation of IR at the early

stage could be the most efficient approach to prevent progres-

sive and inexorable b-cell dysfunction. Clinical treatment of

T2DM including oral antidiabetic drugs and exogenous supply

of insulin could reverse neither IR nor b-cell dysfunction12,13.

Mesenchymal stem cells (MSCs) can differentiate into

different types of connective tissue cells, which have the
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capability to produce bone, adipose, and cartilage, modulate

the local environment, activate endogenous progenitor cells,

and secrete various factors14,15. Through clinical trials and

mouse models, they have successfully restored insulin and sti-

mulated glucose uptake in typical T2DM16–20. However, most

effects are based on regenerating injured pancreatic tissues

and anti-inflammatory or paracrine effects16–20.

New therapeutic strategies to ameliorate IR have been

tried with modulating intestinal microbiota21, autophagy22,

and cell therapy with MSCs23–25. These reports present

remarkable alleviation of IR by MSCs in a typical T2DM

rats which has proceeded to a late state of disease. However,

whether MSCs could prevent the deterioration of hyperinsu-

linemia at early stage of T2DM is not clear.

Therefore, we aimed to investigate the effect of bone

marrow-derived MSCs (BM-MSCs) on hyperinsulinemia at

the early stage of T2DM. The results suggested that early

transplantation of MSCs holds a promising role in control-

ling the progress of T2DM at early stage.

Materials and Methods

Animals and Sample Collection

Male Sprague-Dawley rats (approximately 200 g, HFK

bioscience, Beijing, China) were used for all studies. All

experimental procedures were approved by Tongji Medical

College, Huazhong University of Science and Technology

Institutional Animal Care and Use Committee (2016IACUC

number, 644). All efforts were made to reduce the number

of animals tested and their suffering. Animals were fed

either a normal chow diet or a high-fat diet (Animal Center,

Huazhong University of Science and Technology)26 for

4 wk. On experimental days, food was removed at 8 AM

and blood was sampled 4 h later for analysis for insulin

(Rat INS (Insulin) ELISA Kit, Elabscience, Wuhan, China),

proinsulin (Rat PI (Proinsulin) ELISA Kit, Elabscience),

triglyceride (TG) (glycerine phosphate oxidase peroxidase

method, JCBio, Wuhan, China), low-density lipoprotein

(LDL kit, JCBio), T-CHO (glucose oxidase-phenol amino

phenazone method, JCBio), alanine aminotransferase

(ALT) (microplate method, JCBio), and aspartate amino-

transferase (AST) (microplate method, JCBio). Tail blood

was directly subjected to glucose meter (ACCU-CHEK,

Roche, Basel, Switzerland) for glucose concentration, or

collected.

Oral glucose tolerance test (OGTT) was assessed when

animals were fasted overnight to determine their glucose

response to the oral administration (by gavage) of a solution

of 20% glucose (2 g/kg) before (time 0) and 30, 60, and

120 min after administration of glucose26.

BM-MSC Preparation and Administration

BM-MSCs were isolated following a previously described

method27. Briefly, rats were sacrificed and their hind

limbs were harvested, bone marrow was flushed out and

collected in Dulbecco’s Modified Eagle’s Medium (DMEM)

(Gibco, Grand Island, NY, USA) supplied with 10% fetal

bovine serum (Gibco). Thereafter cells were cultured in a

25-cm2 flask in 5% CO2 incubator at 37 �C. Nonadherent cells

were removed after 24 h and adherent cells were passaged

every week using 0.05% trypsin. About 5 � 105 (for high

concentration) or 105 (for low concentration) cells between

passages 3 to 6 were intravenously injected via tail vein.

Histological and Immunohistochemical Staining

Pancreases were freshly removed from the rats, 6-mm sec-

tions were cut immediately, and fixed with acetone for

hematoxylin-eosin (H&E) staining using standard tech-

niques. Some sections were subjected to immunohistochem-

ical staining (animals were previously intravenously injected

with BrdU for 3 days). After the process consisting of 10 min

of fixation with acetone, 2 h of permeabilization with 0.3%
Triton X-100 (Sigma, St. Louis, MO, USA), and 1 h of

blocking with 3% albumin from bovine serum (BSA)

(Gibco) at room temperature, the sections were incubated

with the primary antibody rabbit anti-rat BrdU (1:100, Pro-

teintech Group, Chicago, IL, USA) overnight at 4 �C, fol-

lowed by a further incubation with the secondary antibody

goat anti-rabbit IgG-TRITC (1:50, Proteintech Group) for 60

min at room temperature to detect the cycling cells in the

pancreas. 6-Diamidino-2-phenylindole (DAPI, Beyotime,

Shanghai, China) was used to stain the nuclei for 10 min. The

pictures were captured using Immuno Floure (Olympus,

Tokyo, Japan).

Western Blot

Protein extracts of liver were prepared in radio immunopre-

cipitation assay (RIPA) buffer (50 mM Tris (pH 7.4), 150

mM NaCl, 1% Triton X-100, 1% sodium deoxycholate,

0.1% SDS, and 1 mM phenylmethylsulfonyl fluoride)

according to the standard methods (Beyotime, Shanghai,

China). Protein concentration was determined using the

bicinchoninic acid (BCA) protein assay kit (Pierce Biotech-

nology, Rockland, ME, USA). About 30 mg of total protein

per lane was resolved by 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and trans-

ferred to polyvinylidene fluoride (PVDF) membrane.

Primary antibody rabbit anti-b-actin antibody (1:10,000,

TDY Biotech Co., Ltd, Beijing, China), rabbit anti-GLUT4

antibody (1:1000, Abcam, Cambridge, MA, USA), rabbit

anti-p-AKT (1:1000, Cell Signaling Technology, Inc., Dan-

vers, MA, USA), rabbit anti-p-AKT (1:1000, Cell Signaling

Technology, Inc.), rabbit anti-p-insulin receptor substrate

(IRS)-1 (1:500, Abcam), rabbit anti-IRS-1 (1:1000, Cell Sig-

naling Technology, Inc.), rabbit anti-IL-6 (1:1000, Affbio-

tech, Changzhou, China), and rabbit anti-TNFa (1:1000,

Abcam) were diluted and detected using HRP-goat anti-

rabbit IgG (ASPEN, Wuhan, China) and the enhanced che-

miluminescent reagent (ECL; Pierce Biotechnology).
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Immunoreactive bands were detected using Kodak BioMax

ML film (Kodak, Rochester, New York, USA). The results

were characteristic of at least three independent experiments.

Statistical Analysis

All results are presented as mean + SEM. Treatments were

compared using Student’s unpaired t test or one-way

ANOVA with least significant difference post hoc test. A

P < 0.05 was considered to be statistically significant.

Results

Characteristics of the High-Fat-Fed Induced
Hyperglycemia and Hyperinsulinemia Rat Models

Success of high-fat-fed hyperinsulinemia rat model was

confirmed by checking blood glucose, insulin, and proinsu-

lin, respectively (Fig. 1). Four weeks after high fat food,

animals were subjected to OGTT. We measured basal blood

glucose (normal diet: 4.80 + 0.58 mM vs high fat diet:

13.23 + 0.24 mM) as well as blood glucose levels 1 h after

Fig. 1. Characteristics of the high-fat-fed hyperinsulinemia rat model. Glucose (A), insulin (B), and proinsulin (C) concentration increased in
4-week high-fat-fed rats with obvious deterioration in lipometabolism (D) and abnormal ALT/AST concentration (E). **P < 0.01 vs control.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDL, low density lipoprotein; TG, triglyceride; TC, total cholesterol.
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oral administration of glucose (normal diet: 7.40 + 0.12

mM vs high-fat diet: 20.66 + 0.20 mM) and found that in

high-fat diet rats levels were increased by 150% more than

normal diet rats (Fig. 1A). Significant insulin (normal diet:

9.57 + 0.62 ng/ml vs high fat diet: 54.84 + 0.99 ng/ml) and

proinsulin (normal diet: 1.04 + 0.07 ng/ml vs high fat diet:

2.74 + 0.09 ng/ml) elevations were also detected (Fig. 1B,

C). These data validated that the high-fat diet rats were

clinically in early stage of T2DM. Moreover, in these

high-fat diet rats, significant deterioration in lipometabolic

disorders and abnormal ALT/AST concentration were

observed (Fig. 1D, E).

BM-MSCs Attenuated the Increased Insulin and
Glucose as Well as Restored Lipometabolic Disorder in
High-Fat-Fed Rats

Notably tail vein injection of MSCs induced a significant

decrease in both insulin and glucose levels in high-fat-fed

rats (Fig. 2A, B). Both 105 MSCs and 5 � 105 MSCs signif-

icantly attenuated fat-fed induced hyperinsulinemia and

hyperglycemia (Fig. 2B, C); 5� 105 MSCs exerted a greater

effect, while incompletely reversed the abnormal OGTT and

insulin concentration. Lipometabolic disorders and concen-

tration of AST/ALT were successfully restored to the normal

level by 5 � 105 MSCs.

BM-MSCs Favored the Histological Structure Recovery
in High-Fat-Fed Hyperinsulinemia Rat Model

Fat-fed diet rats had bigger islets (Fig. 3B) than normal diet

rats (Fig. 3A) but with irregular morphology and disruption of

basement membrane. Lipid accumulation was observed in

some islet cells (Fig. 3B). Treatments with 105 MSCs remark-

ably favored the recovery of the islets and the islet cells.

Although abnormal morphology of islets was only partially

rescued, lipid in the cells decreased significantly (Fig. 3C).

Treatment with 5 � 105 MSCs exhibited better therapeutic

Fig. 2. BM-MSCs attenuated changes in glucose/insulin/proinsulin concentration and restored lipometabolism disorder in high-fat-fed rats.
MSCs induced a significant decrease in both glucose (A) and insulin/proinsulin concentration (B). Lipometabolic disorders (C) and concen-
tration of AST/ALT (D) were successfully restored and almost to the normal level by 5 � 105 MSCs. **P < 0.01 vs control (I), #P < 0.05 and
##P < 0.01 vs fat-fed (II). ALT, XXX; AST, XXX; BM-MSCs, bone marrow-derived mesenchymal stem cells; LDL, XXX; MSCs, mesenchymal
stem cells; TG, XXX; TC, XXX.
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effects, where the islets had normal morphology and lipid was

almost undetectable in the islet cells (Fig. 3D). Further immu-

nohistochemical staining of BrdUþ cells in the pancreas

revealed that BM-MSCs countervailed high-fat-fed induced

damage to proliferation ability (Fig. 4).

BM-MSCs Reversed the Abnormal Insulin Signaling
Transduction and Inflammation in High-Fat-Fed
Rat Liver

Protein extracts of liver were used to investigate the influ-

ence of BM-MSCs on insulin signaling transduction. High

fat-fed rats had less GLUT4 and downregulation of phos-

phorylated insulin receptor substrate 1 (p-IRS-1) and protein

kinase Akt (p-AKT). Administration of BM-MSCs resulted

in an increase of GLUT4 expression and enhanced p-IRS-1

and Akt (Fig. 5A–D). Additionally, a high fat-fed induced

upregulation of proinflammatory cytokines TNFa and IL-6,

which was reversed by BM-MSCs (Fig. 5E–G). These data

suggest that BM-MSCs can effectively potentiate the trans-

duction of insulin signaling and inhibit the inflammation in

insulin target tissues.

Discussion

A high-caloric diet has been broadly characterized as the

trigger of T2DM28–30, and T2DM accounts for 90%–95% of

all DM cases, IR being the typical symptom and mechanism

at the early stage of dietary-induced T2DM4–6,31. High-

fat-induced IR could generally associate with alterations in

lipid cellular intake and accumulation, followed by disorders

of the metabolism of b-cells, stroke, and other diseases32,33.

Here in our model, the high fat diet for 4 wk successfully

induced hyperinsulinemia and elevation of blood glucose

concentration, which was associated with lipometabolic dis-

orders and rising ALT/AST. With this model, we showed that

the intervention of MSCs at early stage of T2DM could

significantly lead to decline of insulin/glucose as well as

rescue lipometabolic disorders and liver dysfunction. A

much lower cell dose (5 � 105; vs 2 � 106 cells in typical

T2DM model)22,24 induced remarkable effects, which

suggested an economic time window for application of MSCs

in T2DM.

MSCs harbor great potential to become a routine thera-

peutic measure for T2DM, partially due to reversing IR.

Fig. 3. BM-MSCs favored the histological structure recovery in high-fat-fed rat model. With comparison to control (A), normal diet rats
with hyperinsulinemia had irregular islets with lipid accumulation in some islet cells (B). Treatment with 105 MSCs remarkably favored the
recovery of the islet and the cells. Although islets remained partially irregular, lipid in the cells decreased significantly (C). Treatment with
5 � 105 MSCs exhibited better therapeutic effects. The islets had normal regular morphology and lipid was almost undetectable in the islet
cells (D). BM-MSCs, bone marrow-derived mesenchymal stem cells; MSCs, mesenchymal stem cells.
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Previous studies have shown that infusion of MSCs

ameliorates hyperglycemia by alleviating IR in T2DM

rats23–25. Consistently, we found that in vivo transplanta-

tion of BM-MSCs attenuated increase in insulin and glu-

cose resulting from a high-fat diet. It was notable that such

therapeutic potential was not observed in a typical T2DM

model induced by both high-fat diet and injection of strep-

tozotocin26, but in a high-fat diet triggered model. This

strongly suggests early transplantation of MSCs could

serve as a better strategy than have been proposed by pre-

vious studies to restore pancreatic or multiple organ dys-

function at later stage of T2DM33,34.

IR could produce hyperinsulinemia, this in turn induces

multiple organic dysfunction due to an abnormal intake of

lipid and lipid accumulation in cells28,32. We found that

MSCs restored lipometabolic disorders and liver dysfunc-

tion, as evidenced by the concentration of LDL/TG/TC and

AST/ALT. More importantly, high-fat diet caused lipid

accumulation in islet cells and disruption of the islet base-

ment membrane; BM-MSCs favored the histological struc-

ture recovery, and obviously improved the proliferation

potential of islet cells. These findings indicated that the

potential risk of T2DM for other organs as well as the pan-

creas could be prevented if MSC transplantation is exerted at

early stage of T2DM.

GLUT4 and phosphorylation of IRS-1 (p-IRS-1) and

AKT (p-AK) are crucial for conferring insulin-signaling

transduction, and glucose uptake therefore related inten-

sively to IR35,36. Here in our high fat-fed induced IR model,

BM-MSCs successfully enhanced GLUT4, p-IRS-1, and

p-AKT, which is similar to the findings in typical T2DM

model with MSC treatment24. A lot of evidence has shown

that chronic activation of proinflammatory pathways within

insulin target cells could lead to IR37. We found that

BM-MSC remarkably reversed the upregulation of IL-6 and

TNFa in the liver. These observations suggested that both

the insulin-signaling pathway and proinflammatory path-

ways are involved in the favorable function of BM-MSCs

in high fat-fed induced IR.

Due to the increase in associated risk factors, such as

being overweight or obese, the global prevalence of (age-

standardized) DM has been rising dramatically and it

might become reality that 1 adult in every 10 will have

diabetes in 204029,30. Our study proposed a new strategy

with MSC-based cell therapy for T2DM, i.e., MSC trans-

plantation during hyperinsulinemia before onset of dia-

betes could prevent most possible risks of T2DM for

patients.

It is the limitation of our study that we did not go further

to investigate the detailed mechanisms for MSCs to reverse

Fig. 4. BM-MSCs countervailed high-fat-fed-induced damage to proliferation ability in the pancreas. Immunohistochemical staining of
pancreatic sections of control (A), fat-fed (B), fat-fed rat with treatments of 105 MSCs (C) and 5 � 105 MSCs (D) was performed to
evaluate the cellular proliferation by detecting BrdUþ (red) cells; nuclei were labeled by DAPI (blue). Statistical data (E) showed that
treatments with MSCs significantly countervailed the high-fat-fed induced damage. **P < 0.01 vs control, #P < 0.05 and ##P < 0.01 vs fat-fed.
BM-MSCs, bone marrow-derived mesenchymal stem cells; DAPI, 4,6-diamino-2-phenyl indole; EDU, 5-ethynyl-2-deoxyuridine; MSCs,
mesenchymal stem cells.
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IR in the early stage of T2DM. The widely accepted idea is

that MSC infusion with host cells is one of the possibilities24.

This could also be the underlying phenomenon in our study.

Future work is necessary to validate it and to explore other

possible mechanisms.
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