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Abstract: We examined the effect of high fat oral nutritional supplement (HFS) on the nutritional
status, oral intake, and serum metabolites of postoperative pancreaticobiliary cancer patients.
Pancreaticobiliary cancer patients were voluntarily recruited. The HFS group received postoperative
oral high fat supplementation (80% of total calories from fat; n = 12) until discharge; the control group
(non-HFS; n = 9) received none. Dietary intake, anthropometry, blood chemistry, nutritional risk
index (NRI), and serum metabolites analyzed by liquid chromatography tandem mass spectrometry
were evaluated. Overall, cumulative caloric supply via parental and oral/enteral routes were not
different between groups. However, oral fat intake, caloric intake, and NRI scores of the HFS group
were higher than those of the non-HFS group with increased oral meal consumption. Oral caloric, fat,
and meal intakes correlated with NRI scores. Metabolomics analysis identified 195 serum metabolites
pre-discharge. Oral fat intake was correlated with 42 metabolites relevant to the glycerophospholipid
pathway. Oral high fat-specific upregulation of sphingomyelin (d18:1/24:1), a previously reported
pancreatic cancer-downregulated metabolite, and lysophosphatidylcholine (16:0) were associated
with NRI scores. Provision of HFS in postoperative pancreatic cancer patients may facilitate the
recovery of postoperative health status by increasing oral meal intake, improving nutritional status,
and modulating serum metabolites

Keywords: postoperative oral nutritional supplement; high fat supplement; pancreatic
cancer; metabolomics

1. Introduction

Postsurgical malnutrition is frequently observed in pancreatic cancer patients [1]. Pancreatic
resection-associated complications, such as pancreatic fistula, fluid collection within the abdomen, and
delayed gastric emptying, can reduce oral intake and increase the risk of malnutrition, subsequent
weight loss, and delayed hospital discharge [2—4]. Postoperative nutritional support reduces surgical
complications especially in malnourished gastrointestinal (colorectal, stomach, or pancreatic) cancer
patients [5]. Nutritional support using parenteral nutrition, enteral nutrition, and an oral diet reduced

Nutrients 2019, 11, 893; d0i:10.3390/nu11040893 www.mdpi.com/journal/nutrients


http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0001-9183-9925
https://orcid.org/0000-0003-3109-8867
https://orcid.org/0000-0002-3443-5286
http://www.mdpi.com/2072-6643/11/4/893?type=check_update&version=1
http://dx.doi.org/10.3390/nu11040893
http://www.mdpi.com/journal/nutrients

Nutrients 2019, 11, 893 2of 14

the levels of postoperative inflammatory indicators, including C-reactive protein (CRP) [6]. The
Enhanced Recovery After Surgery Society recommended that the provision of an oral diet immediately
after pancreaticoduodenectomy is a feasible and desirable form of nutritional support for pancreatic
cancer patients [7]. When oral intake cannot meet the necessary nutritional requirement, oral nutrition
supplement (ONS) can be used for stabilizing the body weight and body composition [8]. An ad
libitum ONS has been demonstrated to improve dietary intake, reduce weight loss, and decrease the
complication rate in patients who underwent gastrointestinal surgery [9]. An oral feeding protocol
utilizing ONS reduced the length of stay by 6 days in postoperative patients compared with routine
enteral tube feeding [10]. A significant reduction in body weight was also reported in severely
malnourished patients who received the ONS [11]. Thus, the use of ONS to aid an oral diet may
improve the recovery of pancreatic cancer patients after surgery.

Commercially available ONS has 20% to 30% of its total calories from fat [12] and energy densities
ranging from 1 to 2 kcal/mL [13]. Fat primarily serves as an energy source for cells apart from cellular
components and signaling molecules [14]. Fat supply in postoperative patients increases energy supply
and provides essential fatty acids to prevent essential fatty acid deficiency and high glucose infusion
rate, thus decreasing the risk of hyperglycemia [15]. Keim et al. recommended an increase in dietary fat
content with administration of pancreatic enzymes to increase caloric density in the diet and provide
lipid soluble vitamins for postoperative pancreatic cancer patients [16]. Increasing fat content in ONS
may increase caloric density in malnourished patients, including postoperative patients [17]. The
administration of supplements with an energy density higher than 1 kcal/mL could lower total intake
volume and lead to good compliance, especially in malnourished patients [13]. In addition, dietary fat
may stimulate oral intake due to high palatability and weak satiety effect [18].

Here, we hypothesized that the use of an easily digestible medium chain triglyceride
(MCT)-containing high fat oral nutrition supplement could improve the nutritional status in
postoperative pancreatic cancer patients. We aimed to investigate the effects of oral nutrition
supplement on the nutritional status using the nutritional risk index (NRI), oral food intake, blood
biochemical parameters, and serum metabolites in pre- and postoperative pancreatic cancer patients in
comparison to a general hospital diet.

2. Materials and Methods

2.1. Study Participants

A total of 25 pancreaticobiliary cancer patients (aged >19 years) at the Severance Hospital
pancreatic surgery clinic (Seoul, Korea) from September 2017 to January 2018 were recruited for this
study. All subjects agreed and were informed before participating in the study. Written informed
consent was obtained prior to their participation. Patients with pancreatic, duodenal, distal bile duct,
and ampullary cancers were included. Pregnant women; individuals who developed severe diabetes
with complications, hyperlipidemia with cardiovascular complications, or renal insufficiency; and
illiterate patients were excluded. After screening for eligibility and excluding dropouts, 12 patients
were assigned to the experimental group (HFS, high fat supplementary formula) and 9 to the control
group (non-HFS, no supplementary formula) for the study analysis. This study proceeded according
to the Declaration of Helsinki and was approved by the Severance Hospital institutional review board
(approval number: 4-2017-0625) (Seoul, Korea), and registered in ClinicalTrials.gov (NCT03294096).

2.2. Dietary Intervention

During the postoperative period, all patients received standard care. The non-HFS and HFS groups
received a 100% carbohydrate oral supplement (Daesang Wellife, Seoul, Korea) from postoperative day
(POD) 1, which was replaced by full liquid diet after 3 to 4 days and soon after by a soft diet. Then
non-HFS patients received a 1500 kcal general hospital diet without any supplement. On the other
hand, when the HFS group was allowed a full liquid diet, three packs of an oral supplement (HFS)
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were provided each day until discharge. The HFS was 125 mL in volume, providing 150 kcal in energy
(Carbohydrate: Protein: Fat = 4: 16: 80, % kcal). Fats comprised 22.3% of MCT and 57.3% of high oleic
acid sunflower oils in caloric content. The detailed composition of the macronutrients and fatty acids
are listed in Figure 1A and Supplementary Table S1. Parenteral nutrition of a lipid emulsion, 500 mL
of Smoflipid 20% (Fresenius Kabi, Linz, Austria), and if necessary, additional administration of 10%
dextrose water and/or Winuf® peri (JW, Seoul, Korea) 1450 mL (113 g glucose, 46 g protein, and 41 g
fat per 1450 mL) was administered only to the non-HFS group 1 to 4 days before discharge.
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Figure 1. Nutritional composition of high fat oral supplement (HFS) and cumulative intake
calories in postoperative pancreatic cancer patients. (A) Macronutrient composition of high fat
oral supplementation (%kcal); (B) proportion of total caloric supply during hospital stay; (C-F)
cumulative oral caloric intake, cumulative oral fat intake (kcal), cumulative meal caloric intake, and
proportion of oral macronutrient composition by postoperative days during the entire hospitalization
period. Total supply included parenteral nutrition and meal (non-HFS) or parenteral nutrition, meal,
and oral supplement (HFS). Oral intake included meal intake (non-HFS) or meal and supplement intake
(HFS). Meal intake considered only meal intake, excluding formula intake. All values were expressed
as mean + standard error. Statistical differences determined by independent student t-test * p < 0.01; **
p < 0.05. MCT, medium-chain triglycerides; LCT, long-chain triglycerides; non-HFS, non-supplemented
group; HFS, high fat supplement group; PN, parenteral nutrition; POD, postoperative day.

2.3. Dietary Assessment

On the day before surgery (baseline), the patient’s regular dietary intake was assessed by dietitians
via 24-h recall. During the hospital stay, daily dietary intake was self-recorded. Dietitians conducted
one-on-one interviews with the patients or their guardians on daily food intake until the day before
discharge (preDC). After discharge (postDC), food intake records written by patients for 5 to 15
days were used for dietary intake assessment. Energy, carbohydrate, protein, and lipid intakes were
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assessed using the computer software, Can-Pro 4.0 (Computer Aided Nutritional Analysis Program
for Professionals, the Korean Nutrition Society, Seoul, Korea).

2.4. Anthropometry, Blood Chemistry, and Nutritional Status Measurement

Data regarding body weight, height, serum carcinoembryonic antigen (CEA), Carbohydrate
antigen 19-9 (CA 19-9), prealbumin, albumin, creatinine, triglyceride, total cholesterol (Total-C),
high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), lipoprotein,
transferrin, and CRP levels were collected from medical records. Ideal body weight was calculated
using the Lorentz formula [19]. Estimated energy requirements were set for daily energy requirements
based on the defined activity level [20]. NRI was calculated as follows: NRI = [15.19 X serum albumin
(g/L)] + [41.7 x present weight (kg)/ideal body weight (kg)] [21]. Postoperative complications were
assessed based on the criteria previously described by Buzby et al. [22].

2.5. Blood Collection and Metabolite Extraction

Blood samples were collected after an overnight fast. The serum was separated and mixed with
8 times the volume of 70% methanol in acetone. Internal standard, a mixture of acetaminophen,
sulfadimethoxine, terfenadine, and reserpine (Sigma-Aldrich, Oakville, ON, Canada), was then added
to the serum mixture. After centrifugation at 10,000 rpm X 5 min at 4 °C, the supernatant was
lysophilized for about 18 h. The lysophilized sample was resuspended in 10% methanol. After
quick centrifugation, the resultant supernatant was collected in a glass vial and used for non-targeted
metabolomic analysis. In order to maintain sample quality, quality control samples were prepared by
pooling serum samples from all participants.

2.6. Ligquid Chromatography Orbitrap Tandem Mass Spectrometry Analysis

Ultimate 3000 UHPLC and Q-Exactive Orbitrap Plus (Thermo Fisher Scientific, Waltham, MA,
USA) equipped with a Fourier transform mass spectrometry (FTMS) analyzer was used for micro-liquid
chromatography (LC). Waters columns (2.1 x 150 mm) packed with C18 stationary 1.7 pm-sized resins
were used for chromatographic separations. MS data were acquired in full scan (80-1000 m/z) using
data-dependent MS? (dd-MS?) top 10 analysis in ESI-positive mode with a resolution of 70,000. To
ensure data quality and for a reliability check, quality control samples were injected into every
10th sample.

2.7. Data Processing and Analysis

The obtained LC-(ESI+)-MS/MS data in raw file format were initially processed with XCalibur 2.2
(Thermo Fisher Scientific, San Jose, CA, USA). Then, automatic detection and integration of peaks was
performed via the pairwise job on the XCMS online software (http://xcmsonline.scripps.edu/) using
the following parameters: Bandwidth (10 MHz), unpaired nonparametric method, database search
tolerance (5 ppm), and UPLC/Orbitrap default settings. The resulting data included retention time, m/z
ratio, and ion intensity. Data from XCMS were used to extract MS/MS peak intensities on XCalibur 2.2
according to query m/z and retention time. For metabolic identification, the online databases, HMDB
(Human Metabolome Database, www.hmdb.ca/) and MycompoundID (www.mycompoundid.org),
were used.

2.8. Statistical Analysis

Statistical analysis of general characteristic parameters between the groups was performed using
an independent t-test and Mann-Whitney U test (SPSS version 23.0 software, Chicago, IL, USA).
A paired t-test was used for within-group comparison analysis. The results were expressed as
mean + standard error (SE) with p < 0.05 representing statistical significance. For all metabolites,
univariate Mann-Whitney U-test and multivariate orthogonal partial least squares discriminant analysis
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(OPLS-DA) were performed (using SMICA version 14.1, Umetrics Inc., Umea, Sweden). Logarithmic
transformation and Pareto scaling were carried out before multivariate analysis. The goodness of
fit was indicated by R?X and R?Y, and the predictive ability was assessed by QY parameters. A 7
cross validation-analysis of variance and a permutation test (n = 500) were performed to validate the
models. The meaningful metabolites were listed according to the following parameters, including a
univariate p-value of <0.05 and multivariate variable importance in the projection (VIP) value of >1.0.
Pearson correlation coefficient analysis (Pearson’s r) was performed to investigate whether metabolites
correlated with the NRI score, caloric intake, and oral fat intake.

3. Results

3.1. Baseline Clinical Characteristics and Oral Supplementation

No significant differences were observed in variables, including age, gender distribution, BMI,
diagnosis, and type of operation between groups (Table 1). The average duration for oral diet was
similar in both groups (Table 1). On average, full liquid diet in the non-HFS and HFS groups was
started on POD 1.7 + 0.7 and 1.3 + 0.2, respectively. Full liquid diet was started on POD 4.3 + 0.8 in the
HFS group along with oral high fat supplement and on POD 4.6 + 0.4 in the non-HFS group without
the supplement. On average, 33.3% of HFS patients had more than 2 cans per day of HFS protocol, and
the remaining 66.7% of patients took HFS 1 to 2 times a day. A total of 64 + 21.4 servings of HFS were
consumed by patients throughout the study period. The HFS group experienced general side effects,
including postoperative pancreatic fistula (POPF) (2), bowel ileus (1), anxiety and pain (1), bilirubin
elevation (1), pancreatitis (1), and generalized edema (1). The non-HFS group had POPE, bile leak (1),
wound infection (2), hematochezia (1), and pneumonia (1). Our high fat ONS formula did not exert
serious postoperative complications. The average duration of hospital stay was not different between
the groups (Table 1).

Table 1. Comparison of baseline clinical characteristics and energy intake during hospital stay between
non-HFS and HFS groups.

Patient Characteristics Non-HFS (n =9) HFS (n =12) p-Value
Age (year) 66.3+3.3 552+ 4.4 0.095
Male/Female (1 (%)) 6 (66.7)/3 (33.3) 7 (58.3)/5 (41.7) 0.714
Weight (kg) 56.3+7.3 65.1 +10.7 0.037
PIBW (kg/kg%) 103.2 +3.9 112.4 £ 4.0 0.123
BMI (kg/m?) 222+09 23.7+0.8 0.236
Histological type
Pancreatic ca. (head/body/tail) 3(1/1/1) 5 (3/1/0)
Ampulla of vater cancer 2 2
Common bile duct 4 2 0.781
Pancreatic NET 0 1
IPMN 0 1
Solid pseudopapillary carcinoma 0 1

Surgical operation

PPPD 8 10 1.000
DP 1 2
Total oral diet period (day) 142 +35 147 +2.8 0.922
Percentage of energy intake to

EER (kcal/kcal %) *

from total caloric intake (%) 89.6 £5.9 757+75 0.185

from oral intake (%) 285+ 4.1 57.0+5.3 0.001

from meal (%) 285 +4.1 439 +42 0.003

Hospitalization period 149 +3.6 15.0 +2.7 0.980

p-values were derived from independent Student’s t-test at baseline. The statistical differences between groups for
histological type were obtained using Fisher’s exact test after crossover analysis. * measured during hospitalization
period. Values were expressed as mean =+ standard error. PIBW, percentage weight to ideal body weight; BMI,
body mass index; pancreatic NET, pancreatic neuroendocrine tumors; IPMN, intraductal papillary mucinous
neoplasm; PPPD, pylorus-preserving pancreaticoduodenectomy; DP, distal pancreatectomy; EER, estimated
energy requirement.
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3.2. Analysis of Oral Caloric Intake and Meal Intake

Total average daily caloric intake did not differ between the groups (1367.2 + 75.5 kcal/day in the
HEFS group and 1255.4 + 123.0 kcal/day in the non-HFS group, p = 0.485). The average oral caloric
intake in the HFS group was higher than that in the non-HFS group (949.6 + 88.7 kcal/day in the HFS
and 447.8 + 71.4 kcal/day in the non-HFS, p < 0.001). Approximately, the estimated energy requirement
was achieved more by oral caloric intake in the HFS group than in the non-HFS group (Table 1). The
non-HFS group had higher non-oral caloric intake (via parenteral nutrition) than the HFS group (p <
0.05, Figure 1b). From POD 9 to 14, the HFS group showed a higher cumulative oral caloric intake than
the non-HFS group (Figure 1c). The HFS group had higher cumulative oral fat intake (kcal) on PODs 5
to 14 (Figure 1d). Interestingly, a high meal intake of 284.17 kcal was seen in the HFS group compared
to the non-HFS group (not shown, p = 0.012). Cumulative meal caloric intake was higher on PODs 10
to 14 in the HFS group than in the non-HFS group (Figure le). When nutrition supply was considered
only via the oral route, the HFS group was provided more fat and protein and less carbohydrates than
the non-HFS group (Figure 1f).

3.3. Anthropometry, Blood Biochemistry, NRI Score, and Pancreaticobiliary Cancer Blood Biomarkers

Postoperatively, both groups lost body weight at preDC and postDC than at the baseline, and
the extent of weight loss was not significantly different between groups (Figure 2a-b). The changes
in all tested blood biochemical data, including serum albumin, Total-C, HDL-C, and LDL-C, were
not significantly different between the non-HFS and HFS groups at preDC and postDC compared
to the baseline (Table 2.) NRI is a valid malnutrition evaluation tool and has been proven effective
in the assessment of malnourished patients who underwent pancreatic surgery [23]. NRI scores in
both groups significantly decreased at preDC compared to the baseline, but the score was significantly
higher in the HFS groups than in the non-HFS group (Figure 2e). NRI scores were correlated with oral
caloric intake (kcal), oral fat intake (g), and meal caloric intake (kcal) (Figure 2g-I, p < 0.05), but not
with total caloric supply (Figure 2f).

3.4. Analytical Model Selection for Non-Targeted Metabolomics

To identify the serum metabolites affected by HFS, non-targeted metabolomic analysis was
performed. A total of 10,416 ionized compounds were detected from the MS/MS data of serum samples
at the baseline, preDC, and postDC. Metabolomic models of group comparison between HFS and
non-HFS samples were validated by OPLS-DA only at preDC (Figure 3a—). Figure 3a and c showed
no significant differences in the metabolites of the two groups obtained at the baseline and postDC
(p = 0.322 and p = 0.052). The only adaptable model was the comparison between the two groups
at preDC (R%Y = 0.842, Q% = 0.601, p = 0.005, Figure 3b). A 500 permutation analysis validated the
analytical model (Figure 3d).
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Figure 2. Changes in body weight, pancreatic blood biomarkers, and nutritional risk index (INRI)
and the correlations between NRI scores and oral intakes of postoperative pancreatic cancer patients.
(A-B) Body weight (ANOVA) and weight percentage relative to baseline (paired t-test) compared
between groups at different time points; (C-D) blood levels of pancreatic cancer-specific biomarkers,
carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9), at different time points in the
non-HFS and HFS groups (Student’s t-test). (E) Changes in nutritional risk index (NRI) score on the
day before discharge (preDC) compared between non-HFS and HFS groups (Mann-Whitney U test).
(F-I) Correlation between NRI score and total caloric supply (F), oral caloric intake (G), oral fat intake
in calories (H), and meal caloric intake (G) (Pearson’s r correlation analysis). Values expressed as
mean + standard error. Non-HFS, non-supplemented group; HFS, high fat supplement group; preDC,
day before discharge; postDC, first outpatient visit day after discharge; BMI, body mass index; NRI,
nutritional risk index; CEA, carcinoembryonic antigen; CA 19-9, cancer antigen 19-9. *p < 0.05, **p <
0.01, ***p < 0.005.
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Table 2. Comparison of biochemical parameters between non-HFS and HFS groups.

Normal Non-HFS (n =9) HFS (n =12) p-Value

Parameters Range Baseli ; 3 5 5
aseline preDC postDC Baseline preDC postDC Baseline preDC postDC
Prealbumin (g/L) 150-350 198.9 £20.4 1533 +23.4 2269 +23.0 2387 +6.1 1755 +14.8* 2427 +20.2 0.1450 0.9914 0.5753

Albumin (g/dl) 3.5-5.0 3.94 +£0.13 312+0.10* - 3.98 +£0.16 3.32+0.13* - 0.8842 0.3055 -

Creatinine (mg/dl) 10-300 65.4 +18.2 823+152 1502+164* 757+10.7 91.7 +18.3 215.0 £349* 0.6340 0.8618 0.1340
TG (mgy/dl) <150 1208 +24.8 1304 +224 1106+171  129.6+119 125.5 +10.9 1241+ 6.8 0.7548 0.6614 0.4836
Total-C (mg/dl) <200 155.8 +46.2 1367 +304  156.0+485 1743 +452 137.8+£329*  168.0 +42.6 0.1849 0.4683 0.2770
HDL-C (mgy/dl) >60 439 +3.8 28.6+3.4*% 469 £5.0 438 £3.2 335+4.1*% 443 +£3.8 0.9778 0.2872 0.6695
LDL-C (mgy/dl) <100 86.0 +£12.2 81.3+104 974 +14.8 107.2 +11.1 81.5+£81* 107.1 +10.9 0.2146 0.0911 0.8857
Transferrin (mg/dl) 212-360 2087 +17.8 181.4+177* 2214+142 2528 +11.8 1858 +21.5* 2555+11.1 0.0580 0.3672 0.3146
Lipoprotein (mgy/dl) >30 1998 +4.63 1813 +4.69 26.18+8.84 11.70 + 2.5 15.69 + 3.95 14.24 +2.90 0.1431 0.2699 0.8775
CRP (mg/L) <3.00 1413 +£11.69 3890+8.72*  10.04 +3.93 281+0.78 3268 +£10.19* 553 +2.66 0.3618 0.9883 0.7493

Values were expressed as mean + standard error. ¥ Non-HFS and HFS groups were compared at the baseline using independent samples of Student’s t-test. SThe difference between the
two groups at preDC and postDC was compared using linear regression with baseline as the control factor. p-values obtained for the statistical analysis in the group were derived from
paired-independent Student’s t-test. * p < 0.05. TG, triglyceride; Total-C, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CRP,
C-reactive protein.
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Figure 3. Metabolic analyses of oral fat intake-associated serum metabolites and their correlation with
NRI score. (A—C) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot comparing
HFS and non-HFS groups at baseline (A), preDC (B), and postDC (C); (D) 500 permutation validation
plot for non-HFS compared with HFS at preDC. All permuted R? and Q? values on the left were lower
than the points on the right, and Q? regression line had a negative intercept (R? = 0.776, Q> = —0.428,
Y = —0.542); (E-F) box plots for dysregulated pancreatic cancer-specific metabolites, log-transformed;
(G) heat map for comparison by 42 metabolites correlated with oral fat intake in the HFS group compared
with the non-HFS group at baseline, preDC, and postDC. The values used in the heat map are logp
transforms of fold change values divided by baseline peak intensities; (H) pathway diagram of 42 oral fat
correlated-metabolites significantly hit in the pathway analysis. (I) Venn diagrams reflecting metabolites
significantly correlated in oral fat intake (1 = 42), oral caloric intake (1 = 23), and NRI scores (1 = 4) among
195 metabolites; (K-N), LysoPC(16:0) and SM(d18:1/24:1) significantly correlated with oral fat intake and
NRI score (Pearson’s r correlation analysis). OPLS-DA, orthogonal partial squares discriminant analysis;
non-HFS, non-supplemented group; HFS, high fat supplement group; preDC, day before discharge;
postDC, first outpatient visit day after discharge; LysoPC, lysophosphatidylcholine; SM, sphingomyelin;
PE, phosphatidylethanolamine; NRI, nutritional risk index.

3.5. Identification of Metabolites Present in the HFS Group and the Non-HFS Group

After comparison of metabolites at preDC of the non-HFS and HFS groups, 516 differential peaks
were selected using the cutoff values of the OPLS-DA VIP score of >1.0 and p value of <0.05. In all,
321 peaks were excluded due to non-identification from the libraries or being identified to be drugs and
xenobiotics. Finally, 195 metabolites were identified and used for further analysis (Supplementary Table
S2). When compared with the non-HFS group, 176 metabolites were up-regulated and 19 metabolites
were down-regulated in the HFS group (Supplementary Figure S1). Among previously reported
pancreatic cancer-associated metabolites [24], significant upregulations in lysophosphatidylcholine
(LysoPC)(18:2) (Figure 3e) and sphingomyelin (5M)(d18:1/24:1) (Figure 3f) were detected in the HFS
group compared with the non-HFS group. A significant upregulation of oleic acid in the HFS group
was detected compared to the non-HFS group (Supplementary Table S2).
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3.6. Identification of Metabolites Associated with both NRI and Oral Fat Intake

Oral fat intake was correlated with 42 metabolites (Supplementary Table S3). Heat maps of these
metabolites at the baseline, preDC, and postDC are shown in Figure 3g. The significant metabolic
pathway associated with them was that of glycerophospholipid metabolism (false discovery rate
(FDR) = 0.002, pathway impact = 0.231) (Figure 3h). Thirteen out of 42 metabolites were related
to glycerophospholipid metabolism (9 metabolites) and to glycerolipid metabolism (4 metabolites).
Because of the significant correlation between oral fat intake and the NRI score (Figure 2f), we
further identified which oral fat intake-correlated metabolites were also associated with the NRI
score. Of the 42 metabolites, 4 were associated with changes in NRI scores (Figure 3i), which were
N-formyl-L-methionine, phosphatidylethanolamine (PE)(20:4/22:6), LysoPC(16:0), and SM(d18:1/24:1).
Among these 4 metabolites, oral fat-specific correlation was seen only with LysoPC(16:0) and
SM(d18:1/24:1) (Figure 3i,k—n).

4. Discussion

This was the first study to report that high fat-derived energy dense ONS application was tolerable
and feasible in pancreatic cancer patients who underwent pancreatobiliary resection and could further
improve patients’ nutritional statuses. Throughout the study period, the subjects demonstrated fair
levels of compliance to HFS in comparison with other ONS studies on postoperative patients [13]. We
expected higher levels of total caloric intake in the HFS group than in the non-HFS group because
of additional oral supplement. However, high energy supply via parental nutrition in the non-HFS
group resulted in no significant differences in total calorie intake between groups. A conspicuous
effect of the HFS was the enhancement of oral caloric intake via the increase in meal intake and
HES. Interestingly, oral fat or calorie intake was associated with NRI scores, suggesting that the oral
high fat supplementation might have improved the nutritional status in postoperative pancreatic
cancer patients.

Our fat source was mainly high oleic acid sunflower oil and MCT, which gave rise to 38.0% oleic
acid and 22.3% MCTs of the total calories in the supplement. Anti-cancer effects of oleic acid have been
reported in many types of cancers, including pancreatic cancer [25], breast cancer [26], and colorectal
cancer [27]. In a prospective cohort study, dietary oleic acid intake was inversely related to the risk of
pancreatic ductal adenocarcinoma (significant in patients with a BMI > 25 kg/m?) [25]. Another study
using tumor tissues of pancreatic ductal adenocarcinoma patients revealed that oleic acid and stearic
acid were significantly higher in the group with favorable survival than in that with low survival [28].
Thus, our HFS might have provided additional benefits to the patients due to the high contents of
oleic acid. The use of MCT as a fat source in the HFS was intended to enhance intestinal absorption
without further increasing the need for digestive enzymes. Because of their short fatty acid length,
MCTs are absorbed via the portal vein and can be an efficient energy source compared with long-chain
triglycerides [29,30]. The MCTs used in the study were caprylic (C8:0), capric (C10:0), and lauric (C12:0)
acids. MCT may also spare muscle protein for energy demand in postoperative patients and possibly
increase survival rate [31]. In a randomized clinical trial with gastrointestinal cancer patients who
underwent surgery (including 30 patients who had pylorus-preserving pancreaticoduodenectomy),
MCT supplementation was effective in increasing the plasma prealbumin and reducing the length of the
hospital stay [32]. Although there were conflicting reports of MCT on appetite [33,34], the use of MCT
in the HFS might have increased the meal consumption in our subjects who were in energy-demanding
states due to postsurgical stress. MCT has been known to decrease dietary food [33]. However, a
recent study reported the appetite-increasing effects of MCT in anorexia nervosa patients [34]. MCT
(>6 g/day) increased the appetite and hormone ghrelin levels in these anorexic patients [34]. High
fat itself was also suggested to increase caloric intake [35]. A high fat diet for 2 weeks increased the
food intake and body weights of healthy individuals [36]. Exposure to a high fat meal increased
energy intake after 24 hours compared with high carbohydrate meal [37]. Increased food intake after
lipid ingestion has been demonstrated due to orosensory stimulation in rats [38]. Oral consumption
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of fat may slow satiety signals than direct fat delivery into the intestines, therefore allowing higher
calorie intake before reaching satiety [18]. By contrast, fat effects on satiety can differ depending on the
extent of saturation and/or lengths of fatty acids. Monounsaturated (oleic acid, C18:1) and saturated
fats (stearic acid, C18:0) had less satiety effects than polyunsaturated fats (linolenic acid, C18:2) [37].
Thus, more research on the effects of HFS on appetite and/or meal intake in patients at nutritional risk
is warranted.

Our metabolomic analysis using UHPLC-Orbitrap-FTMS found 42 potential metabolite biomarkers
associated with oral high fat supplementation in postoperative pancreatic cancer patients. Hit metabolites
were involved in lipid metabolism (glycerophospholipid, glycerolipid, fatty acid metabolism, etc.).
Alterations in phospholipid levels have been reported in pancreatic cancer patients, in whom LysoPC(18:2)
was downregulated [24], while upregulation of this metabolite was detected in the HFS group compared
to the non-HFS group. Another study demonstrated the inverse relationships between the levels of
LysoPC (16:0, 18:2, and 20:4) metabolites and the risk of breast, prostate, and colorectal cancer [39].
All LysoPCs differentially detected in our HFS group were upregulated, which were LysoPC(16:0, 18:2,
18:3, 20:0, 20:1, 20:2, 20:4, 22:5, 22:6, and 24:1). Particularly, LysoPC(16:0) was positively associated with
NRI scores. In a mass spectrometry-based study, plasma LysoPC(16:0) was more significantly decreased
in lung cancer patients than in healthy controls [40]. In particular, low levels of LysoPC(16:0) in cancer
tissues were suggested to be a biomarker associated with recurrence in prostate cancer patients [41].
Oral high fat supplementation-induced upregulation of LysoPC metabolites, including LysoPC(16:0),
might have yielded beneficial health effects in postoperative pancreatic cancer patients. On the contrary,
high LysoPC(16:0) levels were reported to be an ovarian cancer biomarker [42]. Thus, lysophospholipid
metabolism in cancer might vary depending on the type and stage of cancer. Another metabolite associated
with both oral fat intake and NRI score was SM(d18:0/24:1). Eicosanoids generated by the action of
phospholipase A, (PLA;) can increase the enzymatic hydrolysis of sphingomyelinase and produce SM, a
major constituent of lipid rafts in the plasma membrane [43]. The same SM(d18:0/24:1) metabolite was
downregulated in pancreatic cancer patients [24]. Exogenous sphingomyelin inhibits chemokine-induced
cell migration [44]. The upregulation of SM(d18:0/24:1) by oral high fat supplementation might have
contributed to the overall health benefits of the HFS in postoperative pancreatic cancer patients, but
further studies are warranted to confirm this finding.

We demonstrated that oral high fat supplementation in postoperative pancreatic cancer patients
increased their oral caloric and meal intake and thereby improved NRI. Serum metabolites associated
with pancreatic cancer were altered in benefit of the surgical patients receiving high fat oral
supplementation compared with the control group. In conclusion, oral high fat supplementation may
have positive effects on the health status of postoperative pancreaticobiliary cancer patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/4/893/s1,
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preDC; Table S1. Fatty acid composition (%) of the high fat oral supplement; Table S2. List of total metabolites
differentially identified in the comparison of non-HFS and HFS groups at preDC; Table S3. List of metabolites
correlated with oral fat intake (kcal).
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