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Obesity, adipokines, and C-peptide 
are associated with distinct plasma 
phospholipid profiles in adult 
males, an untargeted lipidomic 
approach
C. Austin Pickens1, Ana I. Vazquez2, A. Daniel Jones   3,4 & Jenifer I. Fenton1

Obesity is associated with dysregulated lipid metabolism and adipokine secretion. Our group has 
previously reported obesity and adipokines are associated with % total fatty acid (FA) differences in 
plasma phospholipids. The objective of our current study was to identify in which complex lipid species 
(i.e., phosphatidylcholine, sphingolipids, etc) these FA differences occur. Plasma lipidomic profiling 
(n = 126, >95% Caucasian, 48–65 years) was performed using chromatographic separation and high 
resolution tandem mass spectrometry. The responses used in the statistical analyses were body mass 
index (BMI), waist circumference (WC), serum adipokines, cytokines, and a glycemic marker. High-
dimensional statistical analyses were performed, all models were adjusted for age and smoking, and 
p-values were adjusted for false discovery. In Bayesian models, the lipidomic profiles (over 1,700 lipids) 
accounted for >60% of the inter-individual variation of BMI, WC, and leptin in our population. Across 
statistical analyses, we report 51 individual plasma lipids were significantly associated with obesity. 
Obesity was inversely associated lysophospholipids and ether linked phosphatidylcholines. In addition, 
we identify several unreported lipids associated with obesity that are not present in lipid databases. 
Taken together, these results provide new insights into the underlying biology associated with obesity 
and reveal new potential pathways for therapeutic targeting.

Obesity is associated with insulin resistance, oxidative stress, chronic low-grade inflammation, and dysregulated 
secretion of adipose-derived cytokines (i.e., adipokines)1. Obesity is also associated with altered lipid metabolism 
(reviewed in detail ref. 2) and many lipids function as signaling molecules involved in inflammation pathways. 
The chronic low-grade inflammation in obesity can alter insulin receptor downstream signaling leading to insulin 
resistance (reviewed in detail ref. 3), and insulin resistance can affect lipid storage and lipid metabolism4.

The human plasma lipidome is comprised of lipid species such as glycerolipids, fatty acids (FAs), choles-
terol esters, and phospholipids (PLs) including the glycerol-based diacylphospholipid and lysophospholipid 
(LPL), and the sphingosine-based sphingolipids5. PL contain esterified fatty acids (FAs), for instance, there are 
two esterified FAs in diacylphospholipids such as: phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylserine (PS), phosphatidylglycerol (PG), and phosphatidylinositol (PI), and there is one esterified 
FA in their respective LPLs: LPC, LPE, LPS, LPG, and LPI. FAs are endogenously synthesized except for the 
essential polyunsaturated FA (PUFAs) linoleic acid (LA), a C18:29Z,12Z omega-6 (ω-6), and alpha-linolenic acid 
(ALA), a C18:39Z,12Z,15Z omega-3 (ω-3). Obesity is associated with increased elongation, desaturation, and oxy-
genation of FAs, which can lead to higher levels of LA-derived long chain PUFAs such as arachidonic acid (ARA), 
a C20:45Z,8Z,11Z,14Z ω-62, 6, and ARA-derived proinflammatory signaling lipids7. Despite FA metabolites being 
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directly involved in inflammatory signaling, the metabolism of PLs are also involved in activating signal trans-
ducing pathways associated with inflammation regulation [reviewed in detail ref. 8].

The metabolism of diacylphospholipids results in the production of LPs, which are generated by lecithin:cho-
lesterol acyltransferase (LCAT)9, and phospholipase A1 (PLA1) and A2 (PLA2)10. LPLs such as LPCs are lig-
ands for G-protein coupled receptors (reviewed in detail ref. 11) and can exert either pro-inflammatory12, 13 or 
anti-inflammatory responses depending on the FA chain esterified14. Several studies report obesity is inversely 
associated with LPLs. For instance, overweight and obese individuals have lower LPC(18:1) and (18:2)15, and 
Rauschert et al. reported WC is inversely associated with LPC(18:1) and (18:2)16. Higher levels of LPC(18:2) were 
independently associated with a decreased risk of type-2 diabetes in a European Prospective Investigation into 
Cancer and Nutrition (EPIC)-Potsdam study17. In a recent randomized control trial, supplementation with ω-3 
PUFAs increased ω-3s in LPLs and lowered ω-6s in LPLs, but overall LPLs were still lower in obese compared 
with normal and overweight individuals18. Some studies suggest that increases in some LPLs such as LPC(18:0) 
are indicators of high fat diet induced obesity19, and in obesity resistant mice, HFD increases plasma LPCs in par-
ticular LPC(18:0), (18:1), (18:2), (22:6)20. The decrease in plasma LPLs may result from altered lipid metabolism 
in the liver21, since LPLs changes are associated with fatty liver22, 23. Although there are conflicting reports on 
whether specific plasma LPLs increase15, 21, 24 or decrease8, 15, 25 in obesity, there is a clear link between LPLs and 
obesity-associated comorbidities.

Our group has previously reported that plasma PL FA levels were associated with obesity26, adipokines, and 
the glycemic marker C-peptide27. In these studies, the plasma PL FA measurements were obtained using a FA 
methyl ester (FAME) analysis and by analyzing PL FAs as % of total FAs. PL FAME analyses involve hydrolyzing 
FAs from their parent PL (i.e., glycerol-based PLs, sphingolipids, etc), meaning the PLs class (i.e., LPLs) associ-
ated with the FA differences cannot be determined. We hypothesized that our previously reported plasma PL 
FA differences associated with obesity26 and cytokines27 occur in specific PLs. In our current study, we analyzed 
plasma collected from the same patients at the same time point as the plasma analyzed in our previous FAME 
studies26, 27, to determine these specific PLs with differing FAs. We investigated associations between the traits 
obesity, adipokines, proinflammatory cytokines, and C-peptide, and intact plasma PLs by using negative-mode 
high-resolution tandem mass spectrometry (MS/MS) to 1) identify specific plasma PL species with FA differences 
associated with the traits, and 2) assess the contribution of the entire plasma lipidome on the variation of traits 
using multidimensional statistical methods.

Results
Participant characteristics.  Median and range values of age, smoking, anthropometric, and serum adi-
pokines, glycemic, and inflammatory markers of the overall population (n = 126) and separated by BMI cate-
gories are presented in Table 1. In brief, lean and obese participants were older than overweight participants. In 
the obese group, 19 patients had BMI > 35 and only 6 patients had BMI > 40. Both BMI and WC increased with 
increasing BMI category. Serum leptin and C-peptide significantly increased across BMI category, and serum 
adiponectin was decreased in obese participants compared to lean and overweight participants. Serum TNF-α 
and IP-10 were significantly elevated in obese participants compared to overweight and lean participants, while 
MCP-1 was only elevated in obese participants compared to lean.

Lipidomic profiles explain a large proportion of inter-individual variation of obese traits.  The 
lipidomic profiles accounted for an important proportion of the inter-individual variation of all responses 
(Table 2). For several traits (i.e., BMI, WC, and leptin) lipidomic profiles accounted for over 60% of the variation 
in the samples (Table 2). Lipidomic profiles accounted for roughly 40% of the variation in total-adiponectin 

Parameter Overall n = 126a Lean n = 28a Overweight n = 46a Obese n = 52a BH FDR p-valueb

Age (years) 58 [48–65] 58 [50–65]A 54 [48–65]B 59 [50–65]A p < 0.005

Ever Smoked (% total) 31 25 24 27 —

BMI (kg/m2) 29.1 [19.2–45.6] 23.6 [19.2–25.0]A 28.1 [25.4–29.9]B 33.7 [30.0–45.6]C p < 0.0001

WC (cm) 104.8 [75.6–146.1] 85.7 [76.2–101.6]A 101.6 [82.5–113.7]B 119.4 [75.6–146.1]C p < 0.0001

Leptin (ng/mL) 6.1 [0.3–49.5] 2.1 [0.3–6.0]A 5.2 [0.7–10.2]B 13.7 [3.8–49.5]C p < 0.0001

Total Adiponectin (μg/mL) 4.2 [1.0–13.2] 5.4 [1.9–13.2]A 4.8 [2.2–8.5]A 3.7 [1.0–8.5]B p < 0.005

C-peptide (ng/mL) 2.4 [0.7–9.9] 1.4 [0.7–5.1]A 2.1 [0.9–8.1]B 3.3 [1.0–9.9]C p < 0.0001

IL-6 (pg/mL) 1.6 [0.0–137] 0.2 [0.0–40.9]A 1.0 [0.0–96.6]A 3.4 [0.0–137]A —

TNF-α (pg/mL) 7.4 [1.6–67.1] 5.7 [2.8–26.2]A 7.3 [1.6–24.1]A 8.6 [1.6–67.1]B p < 0.0005

IP-10 (pg/mL) 306 [120–1192] 257.5 [120–557]A 271 [145–1029]A 378 [147–1192]B p < 0.0005

MCP-1 (pg/mL) 483 [85–1018] 428 [218–875]A 488 [285–1018]AB 511 [85–922]B p < 0.05

Table 1.  Median [range] of the participant characteristics, in the sample, and divided by BMI category. Body 
mass index (BMI), waist circumference (WC), tumor necrosis factor-alpha (TNF- α), interferon gamma-
induced protein-10 (IP-10), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1). aValues 
expressed as median [range]. Cytokines quantified from serum. bKruskall Wallis one-way ANOVA was 
conducted across BMI categories along with Dunn’s test for multiple comparison. The superscripted letters A, 
AB, B, and C represent the multiple comparison test for each parameter for the lean, overweight, and obese 
categories. P-values were adjusted using Benjamini-Hochberg false discovery rate (BH FDR) correction.
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Figure 1.  Manhattan plots of the –log10(p-value) for the traits: (A) BMI, (B) WC, (C) Leptin, (D) Total 
Adiponectin, and (E) C-peptide. Single lipid regression models defined as: Traiti = Agei + Smokingi + Lipidj 
where i = (1, …, 126) and j = (1, …, 1745). Each y-axis represents −log10(p-value) for each respective model, 
and each x-axis represent the retention time of the metabolite in minutes. Plasma lipid Benjamini-Hochberg 
false discovery corrected p-values < 0.05 are circled in red. Body mass index (BMI), waist circumference (WC), 
tumor necrosis factor-alpha (TNF- α), interferon gamma-induced protein-10 (IP-10), interleukin-6 (IL-6), 
monocyte chemoattractant protein-1 (MCP-1).
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and C-peptide concentrations. For the inflammatory cytokines IL-6, TNF-α, IP-10, and MCP-1, lipidomic pro-
files accounted for about 25% of variation in the samples. The 95% confidence intervals for most responses was 
roughly 10–20% for each respective trait (Table 2).

Phospholipid classes and individual phospholipids and are associated with obese traits.  Results 
of age and smoking adjusted single lipid regressions are outlined in Fig. 1 for the traits BMI, WC, leptin, total 
adiponectin, and C-peptide, and for each trait the primary id, estimated effects, and p-values of lipids with BH 
FDR p-values < 0.05 are displayed in Supplementary Tables 2, 3, 4, 5 and 6, respectively. Since no lipids were 
significantly associated with any response after 11.5 mins, the Manhattan plots were created to span from 0.5 
(i.e., the start of MS/MS data collection) to 11.5 mins for clarity. In BMI regressions, 25 plasma lipids had BH 
FDR p-values < 0.05 and LPLs accounted for over 70% of lipids with Bonferroni p-values < 0.05 (Fig. 1A). WC 
was significantly associated with 35 lipids below the BH FDR (Fig. 1B). Leptin was significantly associated with 
20 plasma lipids below the BH FDR (Fig. 1C). In total adiponectin regressions there were 22 lipids below the BH 
FDR (Fig. 1D). For WC, leptin, and total adiponectin, over 50% of lipids with Bonferroni p-values < 0.05 were 
LPLs (Fig. 1B,C and D, and Supplementary Tables 3, 4 and 5). C-peptide was significantly associated with 11 
plasma lipids below the BH FDR (Fig. 1E). Neither IL-6, IP-10, or MCP-1 had any lipid significant below the BH 
FDR (data not shown).

Next, lipids significant across several traits from single lipid regression were inputted into the software 
Venny28. This was performed to illustrate the number of significant lipids with un-adjusted p-values and the 
number of significant lipids with BH FDR adjusted p-values, from each trait using Venn diagrams. Since Venny 
creates a Venn diagram for up to 4 traits, the anthropometrics BMI and WC, and the adipokines leptin and total 
adiponectin were selected for the illustration. Relationships between the traits and lipids with p-values < 0.05 are 
presented in Fig. 2A. There were numerous lipids with p-values < 0.05 associated with traits (Figs 1 and 2A), for 
instance: 180 lipids with BMI, 259 lipids with WC, 195 lipids with leptin, and 132 lipids with total adiponectin. In 
total, there were 59 lipids associated between the four traits (Fig. 2A). A Venn diagram of only lipids with BH FDR 
p-values < 0.05 for the traits are presented in Fig. 2B. There were 6 lipids with BH FDR p-values < 0.05 associated 
between the four traits (Fig. 2B), and the primary ids were: X1.17_564.3289, X1.42_566.3497, X1.21_476.2768, 
X1.51_592.3513, X1.03_562.3132, and X7.15_786.5626. A complete list of lipids significant in at least 2 or more 
single marker regression models are outlined in Table 3.

Figure 2.  Venn diagrams displaying the relationship of lipids significantly associated between the traits body 
mass index (BMI), waist circumference (WC), leptin, and total adiponectin (Total Adipo). (A) Relationship of 
lipids with p-values < 0.05 for the traits. (B) Relationship of lipids with Benjamini-Hochberg p-values < 0.05.
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Biplot.  A biplot analysis (Fig. 3) was derived from the 1,745 beta coefficients from each respective lipid in 
single marker regressions and the 9 traits (i.e., BMI, WC, leptin, total adiponectin, C-peptide, IL-6, IP-10, and 
MCP-1). Data were multidimensional, thus a biplot was used to extend the bivariate scatter plot. Biplots allow dis-
playing information on samples and variables simultaneously. Here, a matrix with the lipid effects was built with 
samples in the rows (beta coefficients of the 1,745 samples) and 9 different lipid traits in the columns (i.e., BMI, 
WC, leptin, total adiponectin, C-peptide, IL-6, IP-10, and MCP-1). That matrix was decomposed in three using 
SVD, and in the biplot presented in Fig. 3, samples are displayed as points while traits are displayed as vectors. 
The vectors 1 and 2 from the SVD derived from the plasma lipid estimated effects, are represented with dots, and 
the loadings of the traits are represented with red arrows (in general, leftmost and bottom axes), and the inverse 
loadings of the traits are represented with blue arrows (in general, uppermost and right axes). Vectors 1 and 2 
accounted for 96% of the variation in the lipidomics profiles. The orthogonal projection of the dots in the vectors 
are an approximation of the effect of each lipid for that trait. For instance, X12.43_934.7918 contributes to higher 
MCP-1 concentrations, while X8.17_830.6155 and 12.14_850.7682 both contribute to lower MCP-1 concentra-
tions. The lipids X8.24_880.6145 and 3.52_421.3076 contributed to higher BMI, WC, and MCP-1 concentrations, 
and the lipids X1.51_592.3513 and X1.35_669.3989 contributed to lower BMI, WC, and MCP-1 concentrations. 
In addition, the score of MCP-1 in the first vector was scaled by a factor 25 (i.e., original score >12,000) to display 
it within the range of the other traits in the figure. The traits IL-6, leptin, total adiponectin, C-peptide, and IP-10 
did not significantly load into vectors 1 and 2.

Different BMIs display different lipidomic profiles.  Next, BMI was regressed on Pc scores derived from 
the 1,745 lipid abundances (Fig. 4). The first 10 Pc scores were analyzed individually and models were adjusted for 
age and smoking. The 4th principal component accounted for 5.9% of Eigen value percent total variation and was 
positively associated (estimated effect = 18.7) with BMI (Bonferroni p < 0.05, data not shown). The 6th principal 

Figure 3.  Singular value decomposition modeled on the 1,745 regression beta coefficients from plasma lipids in 
age and smoking regression for each respective parameter. ( ) represent the plasma lipid loading score into 
vectors 1 and 2. Plasma lipids are highlighted if radius >0.15. Parameters are listed in red text with red arrows 
and the inverse of the parameters are listed in blue text with blue arrows. The score of MCP-1 in vector 1 is 
scaled by a factor 25 (i.e., original score >12,000). Body mass index (BMI), waist circumference (WC), tumor 
necrosis factor-alpha (TNF- α), interferon gamma-induced protein-10 (IP-10), interleukin-6 (IL-6), monocyte 
chemoattractant protein-1 (MCP-1).

Parameter σ σ σ+µ µ ε%/2 2 2  [95% CI]

BMI 64% ± [38%, 84%]

WC 69% ± [46%, 85%]

Leptin 76% ± [56%, 90%]

Total Adiponectin 42% ± [21%, 66%]

C-peptide 48% ± [23%, 73%]

IL-6 23% ± [10%, 43%]

TNF- α 28% ± [12%, 54%]

IP-10 23% ± [10%, 43%]

MCP-1 24% ± [11%, 45%]

Table 2.  Percent of the inter-individual differences in response variables that can be attributed to lipidome 
profiles, posterior mean [95% Confidence region]. Body mass index (BMI), waist circumference (WC), tumor 
necrosis factor-alpha (TNF- α), interferon gamma-induced protein-10 (IP-10), interleukin-6 (IL-6), monocyte 
chemoattractant protein-1 (MCP-1).
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Primary ID Common name Models where significant

X0.99_586.3136 LPC(20:5) WC, leptin, Pc4

X1.03_562.3132 LPC(18:3) BMI, WC, leptin, total adipo

X1.08_612.3280 LPC(22:6) BMI, WC, leptin

X1.17_564.3289 LPC(18:2) BMI, WC, leptin, total adipo, C-peptide

X1.21_476.2768 LPE(18:2) BMI, WC, leptin, total adipo

X1.22_544.2648 LPS(20:4) BMI, total adipo

X1.35_669.3989 Unknown SVD

X1.42_566.3497 LPC(18:1) BMI, WC, leptin, total adipo, C-peptide

X1.49_478.2927 LPE(18:1) BMI, total adipo

X1.51_592.3513 LPC(20:2) BMI, WC, leptin, total adipo, SVD

X1.59_554.3446 LPC(17:0) BMI, WC

X1.91_594.3757 LPC(20:1) WC, leptin

X2.65_255.2331 Palmitic acid Pc4

X3.52_421.3076 TLTI BMI, WC, SVD

X4.18_794.5050 Unknown BMI, WC, total adipo

X4.37_881.5140 PI(16:0_22:6) Pc4

X5.23_826.5592 PC(18:2_18:2) BMI, WC, total adipo

X5.43_1068.6601 Unknown BMI, WC, leptin

X5.90_810.5600 PC(O-16:0_20:5) WC, leptin

X6.50_828.5729 PC(18:1_18:2) BMI, WC, total adipo

X7.15_786.5626 PC(O-16:1_18:2) BMI, WC, leptin, total adipo, C-peptide

X7.32_864.6056 PC(O-18:1_22:5) WC, leptin

X7.47_788.5783 PC(O-16:0_18:2) WC, total adipo

X8.17_830.6155 PC(18:0_18:2) SVD

X8.23_950.6408 TLTI Pc4

X8.24_880.6145 PC(20:1_20:4) SVD

X8.44_716.5227 PE(16:0_18:1) total adipo, C-peptide

X8.61_1038.473 TLTI WC, C-peptide

X8.61_766.5363 PE(18:0_20:4) WC, leptin, total adipo, C-peptide

X8.67_864.6048 PC(O-18:0_22:6) Pc4

X8.90_880.6027 PC(18:0_22:5) BMI, WC, leptin

X8.93_856.6036 PC(18:0_20:3) BMI, WC, leptin, C-peptide

X9.01_1128.5388 TLTI WC, leptin

X9.03_842.5446 TLTI Pc4

X9.42_814.5927 PC(O-18:1_18:2) BMI, WC

X9.45_1261.8069 TLTI Pc4

X9.66_768.5494 PE(18:0_20:3) leptin, C-peptide

X9.96_1034.5762 TLTI Pc4

X10.11_1381.848 Unknown WC, Pc4

X10.19_802.5695 TLTI Pc4

X10.33_871.6904 SM(d19:1/24:1) WC, leptin, Pc4

X11.20_1012.7670 TLTI Pc4

X12.14_850.7682 TLTI SVD

X12.43_934.7918 TLTI SVD

X13.07_988.794 TLTI Pc4

X13.10_920.7410 TLTI Pc4

X13.11_919.7343 TLTI Pc4

X14.31_881.7973 TLTI Pc4

X14.33_869.3325 TLTI Pc4

X14.35_1062.754 TLTI Pc4

X14.38_880.7349 TLTI Pc4

Table 3.  Identification of plasma lipid biomarkers. The structural of identification of plasma lipids was 
performed based if m/z: was significant in two or more models from single marker regression analyses of 
responses, or had a radii ≥ 0.15 in singular value decomposition analysis, or was one of the top ten lipids 
positively and inversely associated with principal component 4. Plasma lipids meeting this criterion that were 
too low to identify (TLTI) are listed. Plasma lipid common names determined by lipid structure identification 
using Lipid Maps and Human Metabolome databases, and manual confirmation of mass spectra. The “_” 
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component was inversely associated with BMI, and principal components 7, 8, 9, and 10 were positively associ-
ated with BMI; estimated effects: −16.1, 11.9, 11.8, and 11.0, respectively. In order to determine which lipids were 
driving the 4th principal component scores, the 4th principal component scores were regressed on the 1,745 lipids 
individually, and the top 10 beta coefficients positively and inversely associated with the 4th principal component 
scores, and the lipids respective Bonferroni corrected p-values are presented in Supplementary Table 8.

Structural identification of primary ids.  The primary ids significantly associated with traits across sev-
eral models were selected for structural identification. The primary ids, lipid common name, and list of models 
where each respective primary id was significant, are outlined in Table 3. PL head groups were determined as 
follows: PCs were confirmed by loss 60.02 Da (methyl formate), PEs were confirmed by presence of 140.01 m/z 
(ethanolamine phosphate), PIs were confirmed by presence of 241.01 m/z (inositol phosphate-H2O), and PSs were 
confirmed by neutral loss of 87.03 Da (loss of serine). FA chains length and degree of saturation were determined 
as follows: C16:0 was confirmed by presence of 255.233 m/z, C17:0 was confirmed by presence of 269.248 m/z, 
C18:0 was confirmed by presence of 283.264 m/z, C18:1 was confirmed by presence of 281.248 m/z, C18:2 was 
confirmed by presence of 279.233 m/z, C18:3 was confirmed by presence of 277.217 m/z, C20:1 was confirmed by 
presence of 309.279 m/z, C20:2 was confirmed by presence of 307.264 m/z, C20:3 was confirmed by presence of 
305.248 m/z, C20:4 was confirmed by presence of 303.233 m/z, C20:5 was confirmed by presence of 301.217 m/z, 
C22:5 was confirmed by presence of 329.248 m/z, and C22:6 was confirmed by presence of 327.233 m/z.

Eleven LPLs were associated with traits from several lipid classes including LPC, LPE, and LPS. These LPLs 
identified included: LPC(17:0), (18:1), (18:2), (18:3), (20:1), (20:2), (20:5), and (22:6); LPE(18:1) and (18:2); and 
LPS(20:4). The primary id X1.35_669.3989 fell within the retention time range of LPLs but did not exhibit a 
fragmentation pattern indicative of PLs (Supplemental Table 9) and was not available in lipid databases. The free 
FA palmitic acid was confirmed by 255.2331 m/z and matching the retention time (2.65 min) with a pure stand-
ard. The primary ids X4.18_794.5050, X5.43_1068.6601, and X10.11_1381.8480 did not have a fragment pattern 
indicative of PLs, although X5.43_1068.6601 did produce the m/z 1023.6949 indicative of formate (45.99 Da) loss.

Six PCs with ether linked chains were associated with several traits. These PCs with ether linked lipids 
included: PC(O-16:0_20:5), PC(O-16:1_18:2), PC(O-18:1_22:5), PC(O-16:0_18:2), PC(O-18:0_22:6), and PC(O-
18:1_18:2). Ether linked chains in PCs were confirmed as follows: 466.3303 m/z for O-16:0, 464.3147 m/z for 
O-16:1, 494.3616 m/z for O-18:0, and 492.3460 m/z for O-18:1. In addition, there were several diacyl PLs asso-
ciated with traits that contained FA chains ≥C18:0 and FA chains indicative of ω-6s, including: PC(18:2_18:2), 
PC(18:0_18:2), PC(20:1_20:4), PE(18:0_20:4), PC(18:0_22:5), PC(18:0_20:3), and PE(18:0_20:3). Since sphingo-
lipids do not fragment well in negative mode, primary id X10.33_871.6904 was determined to be SM(d19:1/24:1) 
as follows: by confirmation of methyl formate loss of parent ion and presence of daughter ion 811.6074 m/z in 
negative mode, and the presence of 827.70 m/z (the SM(d19:1/24:1) [M + H]+) at 10.33 min in positive mode, and 
the fragments 278.28 m/z (indicative of SM d19:1 [long chain base-H2O]+) and 336.37 m/z (indicative of SM with 
24:1 FA in positive mode). A complete table of the primary ids, common name, molecular adducts, theoretical 
m/z, and mass error (<0.05 for all identified lipids) are presented in Supplementary Table 10.

between fatty acids in glycerophospholipid structures is used, since the position at the sn1 and sn2 position 
cannot be determined. Plasma lipids listed as unknown did not match a lipid library database search or exhibit 
a fragmentation pattern indicative of phospholipids in ms/ms analyses. Spectra of unknowns are listed in 
Supplementary Table 9. Body mass index (BMI), waist circumference (WC), total adiponection (total adipo), 
principal component 4 (Pc4) and singular value decomposition (SVD).

Figure 4.  X-axis represent the principal component, and Y-axis represents the percent total variation of 
principal components or beta coefficient, respectively. Only the first 10 principal components (Pc) are displayed. 
Black bars represent the percentage of the sum of all possible eigenvalues; the Eigen value % of total variation. 
Gray bars represent the beta coefficients from regressions; model: (BMIi = Agei + Smokingi + Pck) where i =  
(1, …, 126) and k = (1, …, 10). *p-value < 0.05 and ****p-value < 0.0001. Body mass index (BMI).
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Plasma PL FA chains are associated to FAs with specific double bond position and geometry in 
plasma PL.  The untargeted analysis employed in our study does not determine the double bond geometry 
(i.e., cis/trans) or position (i.e., between carbons 6–7, 10–11, etc) on the unsaturated FA chains. The significant 
plasma PL structurally characterized in our current study (Table 3) were regressed on the % total plasma PL FA 
levels from our previous study26, since the plasma analyzed in our current and previous study were collected from 
the same patients at the same time point. Thus, researchers can infer the ω-family, and double bond geometry 
and position of the FA chains from our untargeted results. For instance, each one unit change in the % of LA 

Common 
namea

Palmiticb 
C16:0

Stearicb 
C18:0

Oleicb 
C18:1

Elaidicb 
C18:1

Eicoseno 
icb C20:1

Linol 
eicb 
C18:2

Linoelai 
dicb 
C18:2

ALAb 
C18:3

Eicosadie 
noicb 
C20:2

DGLAb 
C20:3

ARAb 
C20:4

EPAb 
C20:5

DPA 
ω-3b 
C22:5

DPAω-
6b 
C22:5

DHAb 
C22:6

Nerv 
onicb 
C24:1

LPC(20:5) — — — — — — — — — — — 1.02 — — — —
LPC(18:3) — — — — — — — 0.24 — — — — — — — —
LPC(22:6) — — — — — — — — — — — — — — 0.96 —
LPC(18:2) — — — — — 0.90 0.01 — — — — — — — — —
LPE(18:2) — — — — — 1.33 0.03 — — — — — — — — —
LPS(20:4) — — — — — — — — — — −0.85 — — — — —
LPC(18:1) — — 0.36 0.02 — — — — — — — — — — — —
LPE(18:1) — — 0.48 0.09 — — — — — — — — — — — —
LPC(20:2) — — — — — — — — 0.28 — — — — — — —
LPC(17:0) — — — — — — — — — — — — — — — —
LPC(20:1) — — — — 0.11 — — — — — — — — — — —
Palmitic acid 1.24 — — — — — — — — — — — — — — —
PI(16:0_22:6) 0.09 — — — — — — — — — — — — — 0.97 —
PC(18:2_18:2) — — — — — 2.61 —0.29 — — — — — — — — —
PC(O—
16:0_20:5) — — — — — — — — — — — 0.99 — — — —

PC(18:1_18:2) — — 0.15 −0.17 — 1.05 −0.14 — — — — — — — — —
PC(O-
16:1_18:2) — — — — — 0.93 −0.12 — — — — — — — — —

PC(O-
18:1_22:5) — — — — — — — — — — — — 0.70 0.21 — —

PC(O-
16:0_18:2) — — — — — 1.14 −0.13 — — — — — — — — —

PC(18:0_18:2) — 0.54 — — — 1.04 −0.33 — — — — — — — — —
PC(20:1_20:4) — — — — 0.31 — — — — — −0.11 — — — — —
PE(16:0_18:1) 2.53 — 0.33 −0.21 — — — — — — — — — — — —
PE(18:0_20:4) — 0.77 — — — — — — — — 0.12 — — — — —
PC(O-
18:0_22:6) — — — — — — — — — — — — — — 0.74 —

PC(18:0_22:5) — 1.86 — — — — — — — — — — −0.28 0.63 — —
PC(18:0_20:3) — 0.76 — — — — — — — 0.68 — — — — — —
PC(O-
18:1_18:2) — — — — — 0.65 −0.11 — — — — — — — — —

PE(18:0_20:3) — 1.62 — — — — — — — 0.82 — — — — — —
SM(d19:1/24:1) — — — — — — — — — — — — — — — 0.81

Table 4.  Relationship between untargeted PL FA chains and the % of geometric and positional FA isomers 
in plasma PL. Each plasma PL was regressed on the % of each FA isomer in the plasma PL, and models were 
adjusted for BMI. This was performed to determine the relationship between the abundance of each plasma 
PL significantly associated with the responses in our study and the % of FA isomers in plasma PL from our 
previous study. For instance, LPC(18:2) and LPE(18:2) were significantly associated with the % of linoleic acid 
(LA, ω-6, C18:2Δ9Z,12Z) in plasma PL, whereas LPC(18:2) and LPE(18:2) were not correlated with the % of trans-
isomer linoelaidic acid (ω-6, C18:2Δ9E,12E) in plasma PL. Numeric values represent the estimated effects (beta 
coefficients) and are bolded if p < 0.05. The plasma analyzed from both data sets were collected at the same time 
point from the same patients. Models were defined as: log(plasma PL) = log(% FA isomer in plasma PL) + BMI. 
aThe significant PL associated with the responses that were structurally characterized in our study. The 
experimental methodology employed was the UPLC-ESI-MSE analysis of crude lipid extracts outlined in this 
manuscript. bThe geometric and positional FA isomers that were targeted in our previous study (Pickens et al. 
PLEFA. 2015). The experimental methodology employed was the FAME analysis of isolated plasma PL by GC-
FID. The specific isomers investigated were: oleic acid (ω-9C18:1Δ9Z), elaidic acid (ω-9C18:1Δ9E), eicosaenoic 
acid (ω-9, C20:1Δ11Z), linoleic acid (LA, ω-6, C18:2Δ9Z,12Z), linoelaidic acid (ω-6, C18:2Δ9E,12E), dihomo-gamma-
linolenic acid (DGLA, ω-6, C20:3Δ8Z,11Z,14Z), arachidonic acid (ARA, ω-6, C20:4Δ5Z,8Z,11Z,14Z), docosapentaenoic 
acid ω-6 (DPA ω-6, C22:5Δ4Z,7Z,10Z,13Z,16Z), alpha-linolenic acid (ALA, ω-3, C18:3Δ9Z,12Z,15Z), eicosapentaenoic 
acid (EPA, ω-3, C20:5Δ5Z,8Z,11Z,14Z,17Z), docosapentaenoic acid ω-3 (DPA ω-3, C22:5Δ7Z,10Z,13Z,16Z,19Z), 
docosahexaenoic acid (DHA, ω-3,C20:5Δ4Z,7Z,10Z,13Z,16Z,19Z), and nervonic acid (ω-9, C24:1Δ15Z).
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(ω-6, C18:2Δ9Z,12Z) in plasma PL was associated with an average one unit change in LPC(18:2) and LPE(18:2) 
levels (Table 4). These 18:2 containing LPLs were not associated with the % of the trans-isomer linoelaidic acid 
(ω-6, C18:2Δ9E,12E) in plasma PL as outlined in Table 4. For each one unit change in the % of eicosapentaenoic 
acid (EPA, ω-3, C20:5Δ5Z,8Z,11Z,14Z,17Z) in plasma PL, the average change in mean LPC(20:5) and PC(O-16:0_20:5) 
levels were roughly one unit. Similarly, LPC(22:6), PI(16:0_22:6), and PC(O-18:0_22:6) were highly associated 
with the % of docosahexaenoic acid (DHA, ω-3,C20:5Δ4Z,7Z,10Z,13Z,16Z,19Z). PC(O-18:1_22:5) was highly associated 
with the % of docosapentaenoic acid ω-3 (DPA ω-3, C22:5Δ7Z,10Z,13Z,16Z,19Z) in plasma PL, and PC(O-18:1_22:5) 
and was not associated with % of DPA ω-6 (C22:5Δ4Z,7Z,10Z,13Z,16Z) in plasma PL (Table 4). On the other hand, 
PC(18:0_22:5) was highly associated with the % of DPA ω-6 (C22:5Δ4Z,7Z,10Z,13Z,16Z) in plasma PL and was not 
associated with % of DPA ω-3 (C22:5Δ7Z,10Z,13Z,16Z,19Z) in plasma PL. Each model in Table 4 was adjusted for BMI 
to account for the underlying association between BMI, and the plasma PL and % of FA isomer. The results 
presented in Table 4 were similar to the spearman correlations between each PL and the % of each FA isomer 
(Supplementary Table 11).

Discussion
This study characterized plasma PL profiles related to obesity and obesity-associated serum adipokines, cytokines, 
and the glycemic marker C-peptide. Specifically, we report that several classes of LPLs (i.e., LPC, LPE, and LPS) 
are inversely associated with BMI, WC, leptin, and C-peptide. Plasma ether linked PCs were also significantly 
decreased in obesity, including 16 and 18 carbon saturated and unsaturated ethers. On the other hand, total adi-
ponectin, an anti-inflammatory adipokine inversely associated with obesity, was positively associated with LPLs 
and C18:2 containing PLs. Overall we report that C18:2 is lower in several lipid classes (i.e., LPLs, diacyl PCs, and 
ether linked PCs) in obese individuals. The significant PL containing C18:2 chains were highly associated with the 
% of LA (ω-6, C18:2Δ9Z,12Z) in plasma PL. We previously reported in this study population, that median plasma 
PL LA (ω-6, C18:2Δ9Z,12Z) levels are roughly 3% lower in our obese patients compared to lean26. Results of our 
current study indicate that plasma PL FA differences occur in specific PL species, and since obesity is associated 
with altered lipid metabolism, our results provide insight into metabolic pathways that may be of interest for 
future research.

Associations between LPLs and overweight/obesity are well described, in particular the decrease in 
LPC(18:2)15, 16. After weight loss in obese individuals there is an increase in LPCs, in particular C18:2, suggesting 
the inverse association between LPLs and obesity could be related to diet or weight loss29, 30. Interestingly, the 
seminal paper by Pietilainen et al. reported in monozygotic twins that obesity was associated with increases 
serum LPCs, including LPC(18:2), and decreases in serum ether lipids, which suggests that changes in LPL pro-
files are likely associated with genetic factors related with obesity rather than environmental and lifestyle factors31. 
In experimental models with high fat diets (HFD), there are rapid decreases in plasma LPC(18:1), (18:2), (20:1), 
and (20:5)25. Del Bas et al. recently reported, in a randomized control trial, that ω-3 PUFA supplementation only 
increases ω-3s in LPLs and lowers ω-6s in LPLs, but has no effect on overall LPL concentrations in overweight 
individuals18. Therefore, the observed decrease in plasma LPLs may suggest that our obese patients were consum-
ing high-fat diets prior to study recruitment, and we did not assess dietary status in our study. C-peptide, a marker 
of insulin production, was also inversely associated with LPLs including LPC(18:2). Higher C-peptide indicates a 
higher production of insulin32. Our patient exclusion criteria excluded individuals with type-1 or type-2 diabetes, 
and those being treated for insulin resistance. Lower levels of plasma LPCs are associated with obese individu-
als25, obese individuals with type-2 diabetes25, and have been associated with insulin resistance independent of 
obesity33. Interestingly, LPCs activate PPARδ to reduce skeletal muscle inflammation and ER stress34, and accu-
mulations of fat in skeletal muscle35 and liver36 are associated with decreased insulin sensitivity.

Studies have shown that fat accumulation in the liver occurs independent of obesity and is more associated 
with insulin resistance37. Insulin resistance is associated with increased hepatic fat accumulation, which alters 
hepatic lipoprotein secretion such as increasing secretion of low-density and very low-density lipoproteins, and 
decreasing secretion of high-density lipoproteins [reviewed in detail ref. 38]. In fact, high-density lipoprotein 
particles are rich in LPLs and obesity is associated with decreases in high-density lipoproteins39. We did not assess 
lipoprotein levels or screen our patients for fatty liver disorders, however, LPC(18:2) and ether lipid concentra-
tions are inversely associated with liver fat percentages and are predictive of NAFLD40. Furthermore, the enzyme 
LCAT is largely responsible for generating plasma LPLs, and LCAT is present in low-density lipoproteins, which 
are increased in individuals with obesity, insulin resistance, and fatty liver disorders [reviewed in detail refs 8 
and 38]. Sansone et al. reported that intra-patient concentrations of LA (C18:2Δ9Z,12Z) were higher in plasma 
cholesterol esters and lower in RBC PLs, suggesting that LA is being shunted from the PL to neutral lipids such 
as cholesterol esters41. It is likely our observed decrease is plasma LPLs could be associated with a combination of 
factors including dietary intake, altered lipoprotein metabolism, shunting of specific FAs from PL to cholesterol 
esters, insulin resistance, and fatty liver.

Overall most of the significant plasma PL FAs differences in our results were PUFAs, in particular C18:2 
which decreased in LPLs, ether linked PCs, and diacyl PCs. The specific double bond location and geometry of 
unsaturated FA chains are associated with metabolic diseases42. Correlations between the significant PL con-
taining 18:2 chains and FA data from our plasma PL FAME analysis indicated that LA (C18:2Δ9Z,12Z) is likely 
decreasing in these specific LPLs, ether lipids, and diacyl PCs (Table 4). A recent meta-analysis reported that 
long chain PUFA profiles, in particular ω-6s, are dysregulated in overweight and obese individuals6. In obesity, 
decreases in LA are associated with increases in LA-derived DGLA by the enzyme delta-6-desaturase (D6D). 
Taking into account the results from Sansone et al.41, LA decreases in obesity are likely due to a combination of 
LA shunting to neutral lipid species and increased metabolism of LA to long chain ω-6 PUFAs through D6D. We 
have previously reported in our study population that PL DGLA levels and D6D enzyme activity estimates (EAE), 
D6D EAE = ratio of DGLA/LA, are increased in obese individuals26. In our current study we report C20:3 (i.e., 
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DGLA) is increased specifically in PC(18:0_20:3) and PE(18:0_20:3), and these PL contains 20:3 chains are highly 
associated with the % of DGLA (ω-6, C20:3Δ8Z,11Z,14Z) in plasma PL. In addition, we have also reported in our 
study population that C-peptide concentrations are inversely associated with plasma PL delta-5-desaturase (D5D) 
EAEs (i.e., the ratio of ARA/DGLA) even after adjusting for obesity (i.e., BMI and WC)27. In our current study, for 
each one unit change in PE(18:0_20:3), the average change in mean C-peptide concentrations was roughly 2.13 
units (Supplementary Table 6). It is likely that PLs such as PE(18:0_20:3) and PC(18:0_20:3) are important lipids 
contributing to the increases in PL DGLA levels that is observed in numerous obesity related studies (reviewed 
in detail refs 2 and 6).

The purpose of our study was to identify specific plasma PL species with FA differences associated with traits 
(i.e., BMI, WC, serum C-peptide), and assess the contribution of the entire plasma lipidome on the variation of 
these traits, in a cross-sectional study (n = 126, >96% Caucasian males, ages 48–65). We recognize the generaliz-
ability of our study and these results should be verified in larger, more diverse populations. We acknowledge not 
assessing diet, % energy from fat, and supplement usage are limitations to our study. Although our patient exclu-
sion criteria excluded those with diabetes and those being treated for insulin resistance, it is possible some of our 
obese patients were insulin resistant. Our untargeted analysis identified FA chains esterified in plasma PL, and the 
double bond position and geometry could not be determined using our method. Therefore, we correlated patient’s 
PL FAME levels with their levels of significant untargeted lipids, so the double bond geometry and position can 
be inferred. In conclusion, the whole plasma lipidomic profiles accounted for over 60% of the inter-individual 
variation in obesity. Our results are in agreement that obesity is associated with decreases in LPLs15–18, 25, ether 
linked lipids31, 43–45, and an overall decrease in plasma PL LA2, 6, 41. We report plasma PL LA likely decreases in 
the following lipid species: the LPLs LPC(18:2) and LPE(18:2), the diacyl PCs PC(18:0_18:2), PC(18:1_18:2), 
and PC(18:2_18:2), and the ether linked PCs PC(O-16:0_18:2), PC(O-16:1_18:2), and PC(O-18:1_18:2). Future 
research should quantify the levels of these specific lipids using synthetic standards and determine their feasibility 
for use in clinical diagnostics screenings for obesity-associated co-morbidities.

Materials and Methods
Study population.  Data are described elsewhere26, 46–50. In brief, healthy and asymptomatic male subjects 
(n = 126, >96% Caucasian) 48 to 65 years of age were enrolled between 2009 and 2011 in a cross-sectional study. 
Data are comprised of clinical metadata on individuals’ co-morbidities, family history, and use of medications. 
Individuals with the following medical conditions were excluded: (1) cancer in the previous two years, (2) surgery 
in the previous two years, (3) type-1 and type-2 diabetes, and (4) autoimmune diseases. Immediately after enroll-
ment, trained staff collected anthropometric measurements and venous blood of study participants. In brief, body 
mass index (BMI) was assessed by recording patient’s height using a stadiometer and weight using digital plat-
form scale. The plasma fraction was separated from whole blood by centrifugation and stored at −80 °C until time 
of analysis. Smoking status was assessed as “ever smoked” or “never smoked”. A previous complete description of 
this study can be found elsewhere46. All participants provided written informed consent, and all experiments were 
performed in accordance with relevant guidelines and regulations. The study was approved by the Biomedical and 
Health Institutional Review Board of Michigan State University (IRB# 08-786).

Plasma preparation.  A detailed list of chemicals, solvents, and internal standards used in plasma lipid 
extractions are presented in Supplementary Table 1. Plasma lipid extraction was performed following a Waters 
application note51, but modified as specified. A quality control (QC) sample was made by pooling 10 μL plasma 
from all 126 samples, and this QC sample was extracted and processed alongside individual samples. Plasma sam-
ples were thawed on ice. A 50 μL aliquot of each plasma was transferred to a labeled microcentrifuge tube con-
taining 200 μL of the extraction solution (2:1 v/v, 100 μg/μL BHT, 5 ng/μL PLs and 0.2 ng/μL Cer). These mixtures 
were then incubated on ice for 15 minutes, then vortexed for 30 s. After vortexing, protein crash was performed 
by centrifugation in an accuSpin™ Micro R centrifuge at 13,000 × g for 5 min at 4 °C (Fisher Scientific, Waltham, 
MA). Following centrifugation, each lower organic phase was collected and transferred to new labeled microcen-
trifuge tube, evaporated to dryness in a Savant SpeedVac (ThermoQuest, Holbrook, NY) for 3 h, with no applied 
heating, then stored under high-purity nitrogen at 4 °C for no longer than 1 day. Dried residues were re-dissolved 
in 500 μL HPLC-grade isopropanol:acetonitrile:water (2:1:1 v/v/v), then vortexed gently. Re-dissolved extracts 
were again centrifuged 13,000 × g for 5 min at 4 °C (Fisher Scientific). After centrifugation, 100 μL drawn from 
the top of the supernatant was transferred to an amber autosampler vial with glass insert, and the vials were 
purged with high-purity nitrogen and sealed.

Lipidomic profiling by UPLC-MS/MS analyses.  Mass spectrometric analysis was accomplished follow-
ing Waters application note51, but modified as specified. In brief, reverse phase ultra-performance liquid chroma-
tography (UPLC)-ESIneg-MS/MS was performed on a Waters ACQUITY UPLC (Waters, Milford, MA) coupled 
to a Waters Xevo G2-XS quadrupole time-of-flight mass spectrometer (Waters). Chromatographic separation 
was performed with an ACQUITY UPLC CSH C18 1.7 µm 2.1 × 100 mm column (Waters) held at 55 °C. The 
autosampler (Waters) temperature was held at 10 °C. The UPLC method was shortened to 15 min and the mobile 
phases and gradients, along with mass spectrometer settings are outlined in Supplementary Table 1. Data acqui-
sition was performed using MSE in continuum mode with leucine enkephalin as lock mass for mass correction. 
The QC sample was injected after every 10th sample throughout the entire analysis.

Data alignment and processing of plasma lipids.  Results from UPLC-MSE analyses were imported into 
Progenesis QI v2.0 (Nonlinear Dynamics, Durham, NC). Peaks were aligned using one of the QC samples as ref-
erences. Peak picking was performed under normal conditions, collecting signals from 4802 ions. The Progenesis 
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QI generated data set was subjected to relative mass defect filtering to narrow ions to those of potential lipids52, 
and ions with relative mass defects <350 and >950 parts-per-million (ppm) were excluded from the data set. 
The mass defect filtered data set was then imported into R for multivariate statistical analyses. Since large -omic 
data sets often have 10–20% missing values53, 54, 1126 ions with >20% missing values were excluded from the data 
set, the 10 IS were split from the data set, and peak areas for the remaining 1,745 ions were mean imputed. Next, 
due to a time of injection affect (details are presented in Supplementary Table 1), the data matrix peak areas were 
normalized to the IS PC(8:0/8:0) signal. After IS normalization of data matrix, the coefficient of variation between 
QC injections was <5% for the most significant lipids outlined in this manuscript.

Plasma PL FAME data.  Plasma was extracted and PL were isolated as previously described55, 56. 
Experimental methods and PL FAME acquisition are outlined in detail as previously described26.

Statistical analyses.  Our study was powered (0.8) to detect differences in plasma FAs, as previously 
described49. Statistical analysis of the data was performed using R v3.2.257, and all R-code used in these anal-
yses are included in the Supplementary Table 12 and publicly available at https://github.com/AustinPickens/
Untargeted-Lipidomics. The responses used in the statistical analyses were the traits: BMI, waist circumference 
(WC), log transformed serum leptin, log transformed serum total adiponectin, log transformed serum c-peptide, 
log transformed serum interleukin-6 (IL-6), log transformed serum tumor necrosis factor-alpha (TNF- α), 
log transformed serum interferon gamma-induced protein-10 (IP-10), and serum monocyte chemoattractant 
protein-1 (MCP-1). The analysis consisted of two parts: (1) Single lipid regressions on each trait associating the 
abundance of the lipid in plasma with the responses, to identify individual plasma lipids significantly associ-
ated with each response; (2) High dimensional analyses including principal components (Pc), singular value 
decomposition (SVD), and a model regressing the responses in all lipids in plasma, to identify whether the 
inter-individual differences can be attributed to the lipidomic profile. P-value correction was performed accord-
ing to Benjamini-Hochberg false discovery rate (BH FDR) and Bonferroni58, 59.

Single Lipid Regressions.  Response variables include: BMI, WC, log transformed leptin, log transformed total 
adiponectin, log transformed c-peptide, log transformed IL-6, log transformed TNF- α, log transformed IP-10, 
and MCP-1. We herein refer to these responses as traits, and these traits consist of phenotype yi(i = 1, …, 126) 
indexed by individuals (i) and the set of predictors coming from the lipidomic data as well as clinical covariates 
including age of the participant (ai) 56.9 ± 4.7 (mean ± s.d.), the status of smoking behavior (si) 25.40% ever 
smoked, 57.14% never smoked, 17.46% smoking unknown. In each regression only one of the lipids was included 
from the pareto standardized lipidomic data (lij). The statistical model was adjusted for each lipid, j = 1, …, 1745 
as follows in Eq. (1):

β β β β ε= + + + +y a s l , (1)i j i j i j ij j ij0 1 2 3

let β0j be a general intercept, and β1j, β2j and β3j the corresponding regression coefficients and εij a random resid-
ual following a IID normal distribution centered at zero. A total of 1,745 regressions, one per lipid, were adjusted 
in Eq. (1).

High dimensional analyses.  The lipidomic data is a high-dimension dataset with a higher number of parameters 
to estimate (p = 1745) then observations (n = 126); for example p ≫ n. Thus, the following analysis were per-
formed: A) Pc derived from lipidomic data abundances, B) SVD derived from the lipids estimated effects obtained 
in the single marker regressions, and C) whole lipidome regressions, as described in refs 60–62.

	A)	 The transposed cross product (i.e., X′X) of the nxm (n = 1, …, 126; m = 1, …, 1745) matrix of lipidomic 
abundances was used to produce an nxn matrix of distances. Next, an Eigen value decomposition of the 
nxn matrix was employed to generate Eigen values and Pc scores for each of the Pcs-derived from lipid 
abundances. There were 126 Pcs generated and we evaluated only the first ten Pcs. The effects of each Pc 
were evaluated by regressing BMI against Pc scores individually. The statistical model was adjusted for each 
Pc, k = (1, …, 10) as follows in Eq. (2):

β β β β ε= + + + +BMI a s Pc (2)i k i k i k ik k ik0 1 2 3

let BMI be the phenotype (i = 1, …, 126) indexed by individuals (i) and the set of predictors coming from 
the Pc scores derived from lipid abundances and let β0j be a general intercept, and β1k, β2k, and β3k the cor-
responding regression coefficients and εik a random residual following a IID normal distribution centered 
at zero. A total of 10 regressions, one per Pc, were adjusted in Eq. (2). Finally, since Pc4 was highly associat-
ed with BMI, Pc4 scores were regressed on the individual lipids, one at a time to identify the lipids driving 
Pc4. The statistical model adjusted for each lipid, j as follows in Eq. (3):

β β ε= + +Pc l4 (3)i j ij j ij0 1

in this analysis, Pc4 loadings are derived from lipid abundances and the set of predictors coming from 
lipidomic data and let β0j be a general intercept and β1j the corresponding regression coefficients and εij a 
random residual following a IID normal distribution centered at zero. A total of 1,745 regressions, one per 
lipid, were adjusted in Eq. (3).

	 B)	 Data were multidimensional, thus, a biplot was used to extend the bivariate scatter plot. Biplots allow 
displaying information on samples and variables simultaneously. Here, a matrix with the lipid effects 
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was constructed with lipids in the rows (beta coefficients of the 1,745 lipids) and 9 different traits in the 
columns (i.e., BMI, WC, leptin, total adiponectin, C-peptide, IL-6, IP-10, and MCP-1). That matrix was 
decomposed in three using SVD, and the biplot results, displayed in Fig. 3, are the first two vectors that 
spanned the rows based on the column space of the SVD63.

	C)	 Finally, the lipidome was fully accounted for in a whole genome regression analysis61, 62. The probabilistic 
model assumed used in each of the responses was as follows in Eq. (4),

∑β β β α ε= + + + +
=

=
y a s x ,

(4)
i

j

j

ij j i0 1 2
1

1745

where α= ∑ =
=u xi j

j
ij j1

1745  represents the total effect of the lipids on trait yi, xij is the lipidomic abundance for par-
ticipant i and lipid j, and αj is the estimated effect. In Eq. (4), assume that the responses consist of the traits 
indexed by individuals (i) and the set of predictors coming from the lipidomic data. ui follows a normal distribu-
tion centered zero with variance covariance σ~ ( )u N G0,i g

2 , and G is an nxn matrix of distances to measure 
similarities between participants with respect to their lipid profiles, as previously described64. These analyses were 
conducted using the R-package BGLR65, using a long Markov Chain of 200,000 iterations and 50,000 samples 
were discarded for burn in. Inference was done based on one of every 5 samples of the last 150,000. High dimen-
sional regressions were adjusted to the lipidomic data as describe before for other omics60, 66.

Structural Identification of Plasma Lipids.  Lipids in this study are presented in the form of Xretention 
time_mass-to-charge ratio (i.e., X1.17_564.3289 [1.17 mins, 564.3298 m/z]). The structural of identification of 
plasma lipids was performed if the integrated peak areas for the ion: were significant in two or more models from 
single marker regression analyses of responses, or had radii ≥0.15 in SVD analysis (Fig. 3, and Supplementary 
Table 7), or was one of the top ten lipids positively and inversely associated with Pc4 (Supplementary Table 8), and 
the m/z exhibited a fragmentation pattern indicative of a free FA, LPL, or PL species. Since the objective of this 
study was to identify free FA and PL differences related to obesity and obesity-associated adipokines, significant 
lipid ions that did not have fragment patterns matching free FA and PLs are listed as unknown (Table 3), and 
their spectra are listed in Supplementary Table 9. Plasma lipids meeting our criteria for identification that are 
not listed in Table 3 were too low in abundance to obtain a useful MS/MS spectrum and are listed as too low to 
identify (TLTI). Lipid structure identification was confirmed using Lipid Maps (http://lipidmaps.org) and Human 
Metabolome database (http://www.hmdb.ca), and manual evaluation of MS/MS spectra. The “_” denotation is 
used between FAs in glyceroPL structures, since the FA position (i.e., either sn1 and sn2) were not determined.
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