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Background: There are now approximately 450 discrete inborn
errors of immunity (IEI) described; however, diagnostic rates
remain suboptimal. Use of structured health record data has
proven useful for patient detection but may be augmented by
natural language processing (NLP). Here we present a machine
learning model that can distinguish patients from controls
significantly in advance of ultimate diagnosis date.
Objective: We sought to create an NLP machine learning
algorithm that could identify IEI patients early during the
disease course and shorten the diagnostic odyssey.
Methods: Our approach involved extracting a large corpus of
IEI patient clinical-note text from a major referral center’s
electronic health record (EHR) system and a matched control
corpus for comparison. We built text classifiers with simple
machine learning methods and trained them on progressively
longer time epochs before date of diagnosis.
Results: The top performing NLP algorithm effectively
distinguished cases from controls robustly 36 months before
ultimate clinical diagnosis (area under precision recall curve >
0.95). Corpus analysis demonstrated that statistically enriched,
IEI-relevant terms were evident 241 months before diagnosis,
validating that clinical notes can provide a signal for early
prediction of IEI.
Conclusion: Mining EHR notes with NLP holds promise for
improving early IEI patient detection. (J Allergy Clin Immunol
Global 2024;3:100224.)
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Individuals with rare diseases experience lengthy diagnostic
odysseys, increased morbidity, and adverse health outcomes at
disproportionate rates.1-3 Similarly, persons living with undiag-
nosed primary immune disorders/inborn errors of immunity
(IEI) often come to diagnosis latewith resultant suboptimal health
status.4,5 Reasons for delayed diagnosis among individuals with
IEI include lack of IEI sign and symptom recognition by health
care providers, clinical heterogeneity masking the primary disor-
der, and suboptimal use of health system science to detect patients
within populations.6-8While education campaigns remain critical
for raising awareness about IEI, leveraging health system data has
shown promise for predicting immunologic risk across popula-
tions.8-11 Machine learning (ML) and other computational ap-
proaches are emerging to enable earlier and more accurate
diagnoses.8,12,13 To date, application of ML and artificial intelli-
gence has been limited to analyzing structured electronic health
record (EHR), laboratory, and genomic data; however, use of un-
structured data such as free text remains largely untapped as a
resource.8,10,12,14

Natural language processing (NLP) refers to the branch of
computer science and artificial intelligence whereby free text is
represented in a manner that renders it interpretable by com-
puters. NLP has been widely applied to biomedicine and used in
pursuit of optimizing diagnoses from clinical notes.15-17 Recent
work in this arena has also called for a focus on leveraging
EHR text to more precisely extract and understand symptoms
for various disease states.18 Given strides that the NLP research
community has made toward improving diagnostic rates for per-
sons with conditions such as Alzheimer disease, subclinical
strokes, thromboembolic disease, and childhood asthma, there
is optimism for its utility in rare diseases such as IEI.19-22

In contrast to structured EHR data, unstructured free text
permits great flexibility in modeling various features of relevance
for predicting and understanding IEI from the written language of
health care providers. Natural language is not limited by
precoordinated terms inherent in ontologies like the International
Classification of Disease (ICD)-10. For example, relevant clinical
features that could herald undiagnosed IEI include recurrent
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fevers and recurrent infections of varying type. These clinical
concepts can be described in complex ways via written text which
allow for more rich assessments about event frequency unlike
structured codes that are only binary (eg, present or absent). For
example, text-derived descriptors of recurrent fever include ‘‘pa-
tient has recurrent fevers,’’ ‘‘patient has had fevers without origin
for 2 weeks,’’ and ‘‘patient’s fever reached 1038F for 10 days in a
row.’’ This free-text information may relate to an elicited history
from a parent/caregiver in the outpatient setting and/or they may
be descriptions of an observed clinical course in a hospital setting.
In comparison, structured codes would only provide insight into
frequency of fevers as a count of individual fever codes (eg,
780.86) or if the health care provider enters a more precise code
indicating ‘‘relapsing fever’’ (eg, A68.9). In either case, the rich-
ness of concern about ‘‘recurrent fever’’ is often underappreciated
with structured data.

The purpose of this study was to develop an NLP system
capable of early IEI patient recognition using real-world clinical
notes. Our experimental goal was to quantitatively assess NLP
classifier capacity for IEI patient diagnosis before their receipt of
an IEI diagnosis via clinical practice. In this report, we describe an
NLP system that we trained on coded IEI cases and similarly
matched controls. Case verification was undertaken via clinical
immunology domain expertise and the computational approach
via data extraction from real-world EHR free text. We found our
system to be capable of early IEI diagnosis using only clinical-
note free text among a cohort of verified IEI subjects.
METHODS

Data description
Deidentified EHR information was extracted from the Texas

Children’s Hospital Epic system on 5,901 verified IEI patients and
285,614 controls. Inclusion criteria for IEI subjects required that
an individual had at least 2 primary immune disorder/IEI-
representative diagnostic codes entered in their health record on
different dates; controls were specified by the complete absence
of any such codes.23 To establish timing of clinical diagnosis for
each IEI subject, a time stamp flag was placed at the date/time for
which the first specific IEI code was entered.

Creation of the control set involved matching with IEI cases
according to sex, ethnicity/race, age, and number of clinical notes
(see Appendix A in the Online Repository available at www.jaci-
global.org). Controlling for clinical-note count was critical for
proper control matching because IEI patients tended to have far
greater interaction with the health care system, thereby represent-
ing a potential source of bias. Accounting for this finding reduced
the likelihood that anML classifier would simply learn to identify
patients with large quantities of data as opposed to learning the
underlying early indicators of IEI. To account for potential imbal-
anced evaluations, 5 controls were matched for every IEI patient,
which resulted in 5,901 IEI cases (see Appendix B in the Online
Repository) and 28,100 controls.

For each patient, all clinical notes (eg, progress, history and
physical, consultation, emergency care, discharge summary, and
nursing) were sorted by note-creation time stamp, tokenized, and
processed by MetaMap for medical concept extraction, which
was based on the Unified Medical Language System (UMLS).24

Because we were interested only in the value of the clinical notes
themselves, other patient data (eg, demographics, diagnostic co-
des, laboratory test results) were not considered in this study.
Manual verification
Wemanually reviewed the entire text record for a subset of our

IEI cohort (50 patients) to ensure that no mention of a primary
immune/IEI disorder diagnosis was evident before the diagnosis
time stamp. From this manual review, we also assessed whether
the patient had sufficient information to suggest IEI.We then used
this process to systematically remove subjects and diagnoses that
were not clearly related to IEI, and retrained and validated our
algorithms (see Fig E1 in the Online Repository available at www.
jaci-global.org). Additionally, we manually reviewed the records
for a subset of our control cohort (50 patients) to ensure that IEI
patients were excluded.
Experimental setup
Our principal aim was to assess the ability for the NLP

classifier to identify IEI patients before their diagnosis in normal
clinical practice. As a result, patient data were truncated to
simulate the data available at varying prediagnosis time points.
We experimented with different month cutoffs, starting with
0 months before diagnosis (ie, all notes were available to a
clinician at the time of diagnosis for a given patient) and then
proceeding backward from the diagnosis date in 3-month in-
crements (Fig 1).

Given the low real-world prevalence of IEI as well as our
inability to simulate this case-to-control imbalance, we focused
on standard 1:1 case–control experimentation and relied on
metrics that were more invariant to case balancing. In all the
experiments we describe, the case–control matching procedure
was repeated and optimized for each ML experiment. For these
reasons, a 1:5 case–control balance was used to ensure that
sufficient control data were available to match case data for each
time epoch.
ML model
Because of the large amount of study data, we were unable to

use recommended state-of-the-art deep learning methods such as
bidirectional encoder representations from transformers (aka
BERT), T5, or GPT.25-27 While methods have been proposed to
handle longer clinical sequences (eg, Si and Roberts28 propose
a 3-tiered BERT model, whereas Li et al29 propose Clinical-
Longformer and Clinical-BigBird models), our text data length
was significantly larger than what was evaluated in those tasks.
Therefore, we focused on a relatively simple model that allowed
for the assessment of the potential of NLP classification of IEI
without the significant engineering hurtles needed to scale a
deep learning model to the size of the data used in our experi-
ments. Specifically, we utilized a linear support vector machine
model with L2-regularized L2-loss dual form with a C value of
0.5. We experimented with different feature sets: cased and un-
cased unigrams (1-token sequences), cased and uncased bigrams
(2-token sequences), and UMLS concepts extracted by MetaMap
(represented by the concept unique identifier). Model perfor-
mance was assessed by calculating precision, recall, F1 score,
area under the receiver operator curve, and area under precision
recall curve (AUPRC) on the test set. Model prediction stability
over time was assessed by comparing the AUPRC for models
trained and tested at various intervals from ultimate diagnosis.
Table I lists the relevant data science terms.
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FIG 1. Temporal model configurations. Blue indicates subset of patient notes considered by each model.

For example, model T-6 considers all notes that occurred at least 6 months before IEI diagnosis.

TABLE I. Relevant data science terms

Term Definition

Bigram Any consecutive 2-word pair (eg, ‘‘became ill,’’ ‘‘was sick’’).

Corpus Body of text from which NLP systems are trained and tested.

MetaMap National Library of Medicine tool developed for recognizing UMLS text concepts.

Support vector machine Supervised linear ML model type that mathematically seeks to model boundaries between classes of data.

Token Piece of text taken from corpus and made identifiable for purposes of NLP.

Unified Medical

Language System (UMLS)

Set of files and software used to assemble important biomedical and health-relevant vocabularies and standards.

Unigram Any single text item or word.
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RESULTS
Table II displays our cohort demographic information,

including the prediagnosis subset of notes for IEI patients,
yielding a total of 5,901 IEI cases and 28,100 controls. Of
5,901 IEI cases, 5,207 (88%) contained clinical-note text before
an IEI diagnosis. The most prevalent IEI subcategories fell within
ICD-10 D80.1 (Hypogammaglobulinemia; n 5 1904, 32%),
D82.1 (DiGeorge Syndrome; n 5 869, 15%), D80.2 (Selective
IgA Deficiency; n5 775, 13%), and D81.9 (Combined Immuno-
deficiency; n 5 302, 5%); all subcategories and frequencies are
noted in Appendix B in the Online Repository. Our matching
ensured demographic similarities among cases and controls
with a distribution representative of the population that the hospi-
tal served. We also note a generally sex-balanced cohort, with
only a slight male predominance.

From our original manual review of IEI subject text before
diagnosis, we noted very few (;2%) explicit mentions of IEI
before diagnosis. Most subjects had verifiable clinical features
to suggest immune dysfunction (;82%), as read by an expert
clinical immunologist. Removal of inappropriate diagnoses (eg,
B12-deficiency spectrum disease) did not appreciably alter the
performance of our classifiers. In addition, no control subjects
had clearly evident secondary or primary immune disorders on
manual chart review.

The results in Table III demonstrate that simple unigram fea-
tures generally outperform other basic features (uncased unig-
rams, bigrams, uncased bigrams, and UMLS concepts) within
the setting where all prediagnosis notes are utilized. The bigram
features had slightly higher recall (89.27 vs. 88.27 for unigrams)
and F1 (89.73 vs 89.47); however, unigrams performed better in
all other metrics, including AUPRC.

The experimental findings using shifting temporal windows
(Fig 1) are presented in Table IV.We noted an impressiveminimal
drop in NLP classifier performance as the diagnostic window is
shifted backward in time (AUPRC5 0.94-0.95). As we expected,
as the prediagnosis window shifts backward in time, the number
of patients with notes available was reduced. For example, of the
total 5,205 patients with at least 1 prediagnosis note, only 3,883
(75%) have a note dated at least a month before diagnosis.

On text/corpus review, some of the most statistically enriched
terms (listed in the Online Repository) among IEI subjects
included ‘‘hypogammaglobulinemia,’’ ‘‘leukopenia,’’ ‘‘neutrope-
nia,’’ and ‘‘chronic sinusitis’’ with other expected concepts. We
also noted an element of noise in addition to several EHR artifacts
on UMLS and term review. For example, EHR artifacts included
terms related to institutional vendor transition, such as ‘‘import’’
and ‘‘migrated.’’ We also noted some element of MetaMap
concept noise owing to its overeager matching for the word
‘‘was’’ being mapped to the concepts ‘‘Wiskott-Aldrich syn-
drome’’ and ‘‘WAS gene.’’ These findings were overbalanced by
a substantial number of clinically relevant concepts and terms
relating to IEI and clinical immunology, as shown in the Online
Repository.
DISCUSSION
In this report, we showcase anNLP system trained on coded IEI

cases and similarly matched controls. The case verification was



TABLE II. Patient demographics both overall and before diagnosis

Characteristic Controls

Total

IEI cases

Prediagnosis

IEI cases

No. of patients 28,100 5,901 5,207

No. of notes per patient

Minimum 1 1 1

Maximum 8,302 7,543 5,585

Mean 312.2 378.2 170.9

Median 95 115 32

No. of tokens per patient

Minimum 1 2 2

Maximum 7,891,726 11,711,001 4,637,738

Mean 209,296.9 299,310.6 121,504.7

Median 53,049 77,249 17,935

Ethnicity/race

White Non-Hispanic 14,290 (50.9%) 2,990 (50.7%) 2,656 (51.0%)

Hispanic 7,755 (27.6%) 1,688 (28.6%) 1,486 (28.5%)

Non-Hispanic 2,763 (9.8%) 569 (9.6%) 475 (9.1%)

Asian 1,112 (4.0%) 222 (3.8%) 205 (3.9%)

American Indian,

Hawaiian, multiracial, other

419 (1.5%) 89 (1.5%) 87 (1.7%)

Unknown 1,761 (6.3%) 343 (5.8%) 296 (5.7%)

Sex

Female 13,450 (47.9%) 2,728 (46.2%) 2,416 (46.4%)

Male 14,650 (52.1%) 3,173 (53.8%) 2,789 (53.6%)

TABLE III. Experiments with different classification features

using all prediagnosis data and 1:1 case–control matching

Feature set Precision Recall F1 AUROC AUPRC

Unigrams 90.71* 88.27 89.47 0.96073* 0.96529*

Unigrams (uncased) 89.33 86.92 88.11 0.95416 0.95484

Bigrams 90.43 89.04* 89.73* 0.95803 0.96108

Bigrams (uncased) 90.59 88.85 89.71 0.95893 0.96166

UMLS concepts 87.48 88.65 88.06 0.95173 0.95470

AUROC, Area under receiver operator curve.

*Highest performance for that particular metric.

TABLE IV. Experiments using increasing amounts of pre-

diagnosis censoring with unigrams used as features

Prediagnosis

month

No. of

PID

patients Precision Recall F1 AUROC AUPRC

0 5,205 90.71 88.27 89.47 0.96073 0.96529

1 3,883 89.57 86.34 87.93 0.95312 0.95504

2 3,690 87.80 89.70 88.74 0.95556 0.95629

3 3,532 89.02 82.72 85.76 0.94079 0.94441

6 3,186 89.46 88.05 88.75 0.96265 0.96619

9 2,959 89.08 88.47 88.78 0.96463 0.96970

12 2,757 89.96 88.00 88.97 0.95935 0.96210

15 2,560 87.95 85.55 86.73 0.93701 0.93061

18 2,403 87.73 80.42 83.91 0.93969 0.94347

21 2,280 92.75 84.21 88.28 0.94868 0.95000

24 2,145 89.22 85.05 87.08 0.95163 0.95269

27 2,017 89.13 81.59 85.19 0.94490 0.95241

30 1,890 90.59 81.48 85.79 0.93900 0.94273

33 1,784 87.43 85.96 86.69 0.94868 0.95529

36 1,681 89.10 82.74 85.80 0.94668 0.95258

AUROC, Area under receiver operator curve; PID, primary immune disorder.
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undertaken via clinical immunology domain expertise and the
computational approach via data extraction from real-world EHR
free text. Our system is capable of early IEI diagnosis using only
clinical-note free text compared to time of ultimate diagnosis
among a cohort of subjects with verified IEI.

With this work, we present the first ML approach for early
diagnosis of IEI via NLP. Thus, our approach is novel in scope
as well as methodology: we investigate performance across a
sliding diagnostic window. Our system shows temporal fidelity,
with disease recognition 36 months before clinical IEI diag-
nosis. This is highly relevant because clinicians seek to make
early and precise diagnoses in persons with IEI, but to date,
such prediction has not been demonstrated by any artificial
intelligence system.

In previous work, we have shown the utility of using structured
data for identifying IEI risk (eg diagnosis codes, problem lists),
and we expect those efforts to synergize well with this NLP
approach. Toward a multimodal approach for IEI patient finding,
use of the written natural language leverages a much richer
information source and is complementary with other vetted
systems. In this way, we bring successes in enabling diagnosis
for other clinical domains to the space of clinical
immunology.30-32 We also allow for leveraging clinical-note
text written in the language of health care providers in the ways
that they describe clinical concepts of relevance for IEI. For
example, capturing relevant clinical concepts such as ‘‘recurrent
pneumonia’’ or ‘‘unusual infection’’ is not easy via structured on-
tologies such as ICD codes. However, these concepts can be
readily identified by text analysis and are useful for discrimi-
nating between common conditions and those that might herald
an IEI. Our findings suggest that sufficient information exists
within clinical notes to make an early diagnosis, meaning that dis-
ease can be detected by a predictionmodel long before a diagnosis
would be made using current clinical workflows.
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Our NLP system has the capacity to use 1- or 2-word features
extracted from real-world IEI subjects before diagnosis (Table II).
Despite model and feature simplicity, the performance is remark-
ably high and allows for sufficiently robust performance by our
classifier across the 36 months leading up to diagnosis (Fig 1).
Table IV shows generally stable NLP classifier performance
across all metrics over the time epochs studied. Of note, precision
is consistently higher than recall, which may reflect real-world
heterogeneity of the IEI patient diagnostic odyssey. Our work
shows that many IEI patients have evident signs heralding their
disease in their clinicians’ notes, while others have no such signal
and are indistinguishable from controls. This observation may
reflect differing signal strengths from patient to patient and
from one IEI subtype to another, along with other factors. Howev-
er, because we used a large and diverse IEI cohort that was
controlled for age, sex, and number of clinical notes (a proxy
for health system engagement), we expect that the performance
metrics will be sufficiently stable in other health systems. These
factors were important considerations for training our model
and are reflected in the immunologic diversity shown in
Appendix B in the Online Repository.

It is important to note that our approach focused on training an
NLP system on EHR text from patients with verified IEI before
their diagnosis was made. This allowed us to use clinician de-
scriptions about IEI subjects during very early stages of clinical
evaluations, when the underlying condition was not known. The
observation that many IEI diseases were mentioned well before
diagnosis suggests that IEI patients were experiencing immune-
related symptoms years before their official diagnosis. This
finding also motivates the potential for both more advanced
NLP information extraction, which aims to remove false positive
concept matches, and feature selection methods that (semi)auto-
matically identify IEI-related terms and use those exclusively
for model features. We expect that these and other descriptors
can be used as heralding elements for IEI, which may be broadly
applicable across health care institutions and geographic regions.
Through this and future work, we have probed and will continue
to probe the skilled narratives clinicians create as theywork to un-
derstand the nebulous, unclear trajectories of the disease of pa-
tients when they initially seek care for IEI. Ultimately, we are
building systems capable of augmenting human intuition and
ascribing risk within clinical environments.

We expect that this initial proof of concept will lead to
improved outcomes for patients with IEI. As we carefully build
computational systems that precisely synthesize multimodal
EHR data for improving diagnosis and outcomes, we will
improve diagnostic sensitivity, thereby mitigating delayed
diagnosis among persons with IEI. Given that diagnostic delays
remain amajor obstacle leading to suboptimal outcomes and that
early diagnosis is linked to reduced morbidity and more precise
therapies, these efforts advance the field in important
ways.4,33,34

Our work has some notable limitations. First, our NLP system
was constructed from clinical-note text taken from a single US
center that uses the English language. Thus, performance in other
centers or where other languages are used is unknown and will
require model validation and tuning. In addition, we did not
augment text inputs with other structured or genomic data that
could improve performance broadly. Last, our approach involves
only 1:1 case–control matching, whichwas essential formodeling
a rare disease but which is not reflective of real-world clinical
encounters.

The next steps in our work will include advanced model
development, such as the aforementioned transformer-based
models, focusing on approaches that could be more predictably
generalizable and have less bias. Experiments are needed to
assess the precision and recall/sensitivity of the model when
deployed en masse, which will require and include substan-
tially more control patients to evaluate. We also plan to
incorporate structured EHR data elements into a multimodal
classification system for more comprehensive utilization of all
portions of a patient’s clinical record. Last, our prior work in
building probabilistic models will inform future efforts relating
to causal investigations about how and why certain clinical
events are associated with one another within distinct IEI
disorders.11
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Clinical implication: Use of structured and unstructured health
record data together may greatly improve diagnostic rates for
undiagnosed IEI patients.
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