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The effect of chronic intermittent hypobaric hypoxia (CIHH) on bone fracture healing is not
elucidated. The present study aimed to investigate the role of CIHH on bone fracture
healing and the mechanism. The Sprague-Dawley rats were randomly divided into the
CIHH group and control group and monitored for 2, 4, or 8 weeks after femoral fracture
surgery. Bone healing efficiency was significantly increased in the CIHH group as
evidenced by higher high-density bone volume fractions, higher bone mineral density,
higher maximum force, and higher stiffness. Histologically, the CIHH group exhibited
superior bone formation, endochondral ossification, and angiogenic ability compared with
the control group. The expression of HIF-1a and its downstream signaling proteins VEGF,
SDF-1/CXCR4 axis were increased by the CIHH treatment. Moreover, the expression of
RUNX2, osterix, and type I collagen in the callus tissues were also up-regulated in the
CIHH group. In conclusion, our study demonstrated that CIHH treatment improves
fracture healing, increases bone mineral density, and increases bone strength via the
activation of HIF-1a and bone production-related genes.

Keywords: chronic intermittent hypobaric hypoxia, bone fracture healing, hypoxia-inducible factor-1a, mechanical
properties, bone mass, callus angiogenesis, bone formation
INTRODUCTION

Bone fracture is a common clinical disease, including traumatic fracture, pathologic fracture, and
periprosthetic fracture. Although surgery can effectively treat the bone fracture, about 10% of
fractures have impaired healing. Non-union or delayed union of fracture is still a serious public
health concern (1).
Abbreviations: CIHH, chronic intermittent hypobaric hypoxia; BV, high-density bone volume; TV, total bone volume; BV/
TV, the volume fractions; BMD, bone mineral density; HIF-1a, Hypoxia-inducible factor-1a; VEGF, vascular endothelial
growth factor; RUNX2, runt-related transcription factor.
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Fracture healing is a complex physiological process, in which
callus formation is a critical step for successful fracture healing
(2). The overall stability of the fixation of the fracture also affects
fracture healing, the more-extensive cartilage tissue formation,
the lower stability, and more bone tissues, the higher stability (3).
Moreover, angiogenesis will be increased when fractures cannot
be stably fixed (4, 5). There are several strategies to enhance
fracture healing clinically (6). Commonly, it can be divided into
the biophysical and biological strategy. The biophysical strategy
includes electromagnetic fields and low-intensity pulsed
ultrasonography (6). The biological strategy includes autologous
bone marrow, peptide signaling molecules, and morphogenetic
factors treatment (bone morphogenetic proteins and Wnt
proteins) (6). Among them, bone morphogenetic proteins
(BMPs) are the most widely studied candidate for enhancing
bone repair, especially BMP-2 and BMP-7. Besides, bone
morphogenetic protein 2 (BMP-2) and bone morphogenetic
protein 7 (BMP-7) are the only FDA-approved therapies to
promote fracture healing (7). However, BMP-2 treatment did
not significantly reduce the fracture healing time of fracture
patients and did not substantially promote the healing of open
fractures (8, 9). Compared with autologous bone transplantation,
treatment with BMP-7 did not significantly improve fracture
healing (6). Also, it can cause local complications as well as
serious side effects (10). Therefore, safe and effective treatment
after fracture remains to be developed.

The environment has been recognized to affect the fate of bone
cells, including the proliferation, differentiation, mobilization of
bone progenitor cells, and the activation of mature bone cells (11,
12). Chronic intermittent hypobaric hypoxia (CIHH) is a
treatment with moderate hypoxia simulating high altitude
interrupted by normoxia. Studies have demonstrated that CIHH
has beneficial effects on multiple organs or tissues of the body,
such as the heart, brain, liver, and kidney (13–15). For example,
CIHH protects heart, brain, and skeletal muscle against ischemia/
reperfusion injury through enhancement of antioxidation,
induction of heat shock proteins, an increase of coronary flow
and myocardial capillary angiogenesis, activation of adenosine
triphosphate (ATP)-sensitive potassium channels, and inhibition
of mitochondrial permeability transition pores (16–21). Also,
CIHH protects the kidneys of diabetic rats and the livers of rats
with nonalcoholic fatty liver disease (22, 23). Besides, CIHH
treatment decreases the arterial blood pressure in renal vascular
hypertension and metabolic syndrome rats (24–26). Besides,
CIHH treatment has anti-arthritis, anti-aplastic anemia,
anxiolytic- and anti-depressant like effects in mice and rats (27–
29). More interesting, someone reported that CIHH promotes the
healing of the drilled-hole bone defect in mice (30), or has positive
effects on bone mineral density in rats (31). These shreds of
evidence prompted us that CIHH may promote bone
fracture healing.

In the present study, the rats were exposed to CIHH
conditions or normal environment for 8 weeks post-fracture,
then the radiography, micro-CT assessment, biomechanical
testing, immunohistochemistry, and molecular biology
techniques were employed to investigate the effect of CIHH on
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fracture healing and the underlying mechanism. Our data
indicated that CIHH treatment accelerates fracture healing via
the activation of HIF-1a associated signaling pathways.
MATERIALS AND METHODS

Animals and CIHH Treatment
Adult male Sprague-Dawley rats were provided by Liaoning
Changsheng Biotechnology Co., Lot. (Shenyang, Liaoning,
China) with the permission number: SCXK, Liao 2015-0001.
All experiments were reviewed and approved by the Ethics
Committee of Hebei Medical University and carried out in
compliance with the Regulatory Guideline on the Use of
Experimental Animals (China, 2011).

Fracture Model and CIHH Treatment
The femoral fracture model was established as previously
reported (32). In brief, an incision was made on the lateral
aspect of the right thigh after anesthesia with Chloral hydrate
(350 mg/kg). After the fascia, muscle, and periosteum were
separated, the midshaft femoral fracture was made with a saw,
and then fixed with a 1 mm Kirshner wire. Analgesia was given
by subcutaneous injections of buprenorphine (50 mg/kg of body
weight) 2 hours after surgery and once a day for three
consecutive days. All surgical procedures were performed
under strict aseptic conditions.

The rats were randomly divided into CIHH treatment
(CIHH) and control groups after bone fracture surgery. As
previously described (33, 34), the rats in the CIHH group were
exposed to a hypobaric hypoxia chamber (Pressure: 50 kPa,
oxygen concentration: 10%-11%, 22°C ± 1°C) for 6 continuous
hours (from 10:100 to 16:00) every day, and the rest time was
kept in normal conditions. The control rats were housed under
normal conditions. All the rats had free access to water and food.

Rats were sacrificed with over anesthesia at 2, 4, and 8 weeks
post-fracture, respectively. A total of 1 cm tissues around the
proximal and distal to the fracture site were collected for further
analysis. For each treatment group, 6 rats were assigned to the X-
radiography and micro-CT Assessment, 6 rats were assigned to
the three-point bending test, 18 rats were assigned to the western
blot and Real-time PCR analysis (6 in each time point), and 18
rats were assigned to the histological analysis (6 in each
time point).

X-Radiography and Micro-CT Assessment
The femoral bones were photographed by a softex X-ray
apparatus (Softex CSM-2; Softex, Tokyo, Japan) at week 2,
week 4, and week 8 post-fracture. Femora were scanned by a
micro-CT system (Bruker-microCT, SkyScan 1176, Kontich,
Antwerpen, Belgium) at 8 weeks post-fracture. The scan
protocol was set as follows: 18-mm isometric voxel size, 800
mA, and 80 kVp. Taking the fracture line as the midpoint
reference, a total of 200 slices between the proximal and distal
were analyzed. The callus was manually drawn as a region of
interest, then the bone parameters of high-density bone volume
February 2021 | Volume 11 | Article 582670
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(BV), total bone volume (TV), the volume fractions (BV/TV),
and bone mineral density (BMD) were analyzed with CTAn
software version 1.13 (Bruker-microCT). The three-dimensional
representative images were generated by CTXox software version
3.3 (Bruker-microCT).

Three-Point Bending Test
A three-point bending test was performed using a material
testing machine (Bose 3200, Eden Prairie, MN, USA). The
three bearings of the load consisted of a femoral head. After
checking the position of the femur was correct, the roller stamp
was driven at a speed of 5 mm/min. The pressure was monitored
every 0.001 mm until fracture. We were able to analyze the
elasticity, maximum force, braking force, and yield strength.

Histological Analysis
For hematoxylin-eosin (HE) staining, the bone callus samples
were decalcified and embedded in paraffin. Then the samples
were serially sectioned into 5-mm thickness. Next, the slices were
stained with HE dye liquor. For Safranin O staining, the sections
were p stained with Safranin O for 2 min (Solarbio, Beijing,
China). Then the samples were treated in 95% ethanol for 3 s,
treated twice in 100% ethanol for 2 min each, dewaxed twice in
xylene for 10 min each. Lastly, these samples were mounted in
neutral balsam (Sinopharm, Shanghai, China) and observed
using a light microscope (Olympus, Tokyo, Japan).

Immunohistochemistry (IHC)
Paraffin-embedded sections were mounted on slides, dewaxed, and
dehydrated. After washing, slides were incubated with primary
antibodies against platelet endothelial cell adhesion molecule 1
(PECAM-1/CD31, Affinity, Changzhou, Jiangsu, China),
runt-related transcription factor (RUNX2, Affinity, Changzhou,
Jiangsu, China), osterix (Affinity, Changzhou, Jiangsu, China), and
type I collagen (Affinity, Changzhou, Jiangsu, China) overnight
at 4°C, respectively. After washing with PBS, slides were incubated
with a horseradish peroxidase-conjugated secondary antibody
(Thermo Fisher, Cambridge, MA, USA) for 60 min at 37°C.
Then these slides were stained with DAB (Solarbio, Beijing, China)
and counterstained with hematoxylin (Solarbio, Beijing, China).

Western Blot Analysis
The proteins from the callus tissues were extracted by using lysis
buffer (Beyotime, Shanghai, China). Then the protein was
quantified by the BCA assay kit (Beyotime, Shanghai, China).
After that, an equal amount of proteins was electrophoresed on
SDS-PAGE and then transferred onto PVDF membranes
(Thermo Fisher, Cambridge, MA, USA). Next, the membranes
were immuno-blotted with Hypoxia-inducible factor-1a (HIF-
1a) rabbit antibody (1: 500 dilution, Catalog No.: AF1009,
Affinity, Changzhou, Jiangsu, China), vascular endothelial
growth factor (VEGF) rabbit antibody (1: 500 dilution, Catalog
No.: bs-1313R, Bioss, Beijing, China), Runx2 rabbit antibody (1:
500 dilution, Catalog No.: AF5186, Affinity), Osterix (1: 400
dilution, Catalog No.: DF7731, Affinity), Type I collagen
antibody (1: 1000 dilution, Catalog No.: AF7001, Affinity),
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SDF-1a rabbit antibody (1: 500 dilution, Catalog No.: AF5166,
Affinity), CXCR4 antibody (1: 1000 dilution, Catalog No.:
A12534, ABclonal, Wuhan, China), or b-actin mouse antibody
(1: 2000 dilution, Catalog No.:60008-1-Ig, proteintech, Wuhan,
Hubei, China). The membranes were washed three times and
incubated with goat HRP-conjugated secondary antibodies
(proteintech, Wuhan, Hubei, China). The specific bands were
developed with the ECL system (7 Sea biotech, Shanghai, China).
b-actin was used as the control of HIF-1a and VEGF.

Real-Time PCR
The fracture callus was collected and the total RNA was extracted
by the RNApure high purity and rapid total RNA extraction kit
(Bioteke Corporation, Beijing, China). The cDNA was
synthesized by the M-MLV reverse transcriptase (Takara,
Beijing, China) in the presence of RNase inhibitor (Takara) as
per the user’s manual. The quantitative real-time PCR reaction
system includes 200 ng cDNA, forward primer, and reverse
primer 0.2 mg for each, 25 ml TaKaRa Taq™ HS Perfect Mix
(Takara). The PCR was carried out on Exicycler 96 amplifier
(Bioneer, Daejeon, Korea). The relative mRNA level was
calculated using the 2-DDCt method. The primers were as
follows: HIF-1a (Forward: 5’-CTACTATGTCGCTTTCTTGG-
3’, Reverse: 5’-GTTTCTGCTGCCTTGTATGG-3’); VEGF
(Forward: 5’-CGGACAGACAGACAGACACC-3’, Reverse: 5’-
AGCCCAGAAGTTGGACGAAA-3’); RUNX2 (Forward: 5’-
CCATAACGGTCTTCACAAATC-3’, Reverse: 5’-GAGGC
GGTCAGAGAACAAACT-3’); Osterix (Forward: 5’-AAAAG
GAGGCACAAAGAAGC-3’, Reverse: 5’-GGGAAAGGG
TGGGTAGTCAT-3’); COL1A1 (Forward: 5’-TCCTGCCGA
TGTCGCTATCC-3’, Reverse: 5’-TCGTGCAGCCATCCA
CAAGC-3 ’); SDF-1a (Forward: 5 ’- GCATCAGTGAC
GGTAAGC-3’, Reverse: 5’- GAAGGGCACAGTTTGGAG-3’);
CXCR4 (Forward: 5’- GGCAATGGGTTGGTAATC-3’, Reverse:
5’- GACAATGGCAAGGTAGCG-3’), b-actin (Forward: 5’-
GGAGATTACTGCCCTGGCTCCTAGC-3’, Reverse: 5’-
GGCCGGACTCATCGTACTCCTGCTT-3’).

Statistical Analysis
Data are expressed as the mean d± S.D. Statistical analyses were
carried out by using Graphpad Prism 8 (GraphPad Software Inc.,
San Diego, CA, USA). The difference between groups was
analyzed by Student’s t-test or ANOVA analysis. Differences
were considered statistically significant when P < 0.05.
RESULTS

Radiographic Analysis and Fracture
Healing Score
Radiographic images showed that the speed of fracture healing
was faster in CIHH rats than control rats at weeks 2, 4, and 8
post-fracture (Figure 1A). Compared with control rats, the callus
amount was significantly increased in CIHH rats at week 4, and
the remodeling of fracture healing was almost finished in CIHH
rats. Moreover, normal bone appeared at the fracture site in the
February 2021 | Volume 11 | Article 582670
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CIHH rats at week 8. The radiographic scoring of fracture
healing was shown in Figure 1B. The average fracture healing
score was 1.7 ± 0.5 in CIHH rats, significantly higher than 0.8 ±
0.4 in control rats at week 2 post-fracture (<0.05), and 3.2 ± 0.8 in
CIHH rats, much higher than 1.3 ± 1.0 in control rats at week 4
(P<0.01). Although there was no statistical difference in fracture
healing score between the two groups at week 8, the score was 4.6
± 0.5 in CIHH rats, still higher than 3.8 ± 0.4 in the control group
(P>0.05). The results revealed that CIHH treatment can increase
callus production and accelerate bone fracture healing.

Bone Mass and Mechanical Properties
of Fracture Calluses
Micro-CT scanning showed that the fracture line was clearly
visible, some bone cortex is discontinuous, and the fracture end
was partially hardened in the control group. On the contrary, the
CIHH group exhibited a closed fracture line and healed well
(Figure 2A). Further, the high-density bone volume (BV), total
bone volume (TV), the volume fractions (BV/TV), and bone
mineral density (BMD) were also measured by micro-CT, and
the results were shown in Table 1. The TV had no statistical
Frontiers in Endocrinology | www.frontiersin.org 4
difference between the CIHH rats (38.6 ± 6.7 mm3) and control
rats (36.2 ± 3.9 mm3) (P>0.05). The BV was 24.9 ± 3.1 mm3 in
CIHH rats, much higher than 18.3 ± 1.1 mm3 in control rats
(P<0.001), and BV/TV was 65.8 ± 12.5% in CIHH rats,
significantly higher than 50.1 ± 3.8% in control rats (P<0.05).
Moreover, the BMD was significantly increased in CIHH rats,
about 4.2% higher than control rats (P<0.05). In this study, only
week 8 groups were subjected to a three-point bending test as the
fractured femurs at weeks 2 and 4 were too weak to test. The
maximum stress was 83.6 ± 12.6 N in CIHH rats, markedly
greater than 41.4 ± 3.1 N in control rats (P<0.001, Figure 2B).
Although there was no statistical difference of stiffness between
the two groups, the stiffness was 105.9 ± 32.1 in CIHH rats, still
greater than 84.3 ± 15.0 in the control group (P>0.05, Figure 2C).
These results suggested that CIHH treatment could increase the
amount of highly mineralized bone and improve fracture healing.

Histological Evaluation of Fracture
The representative histological sections of fracture sites were
shown in Figure 3. At week 4 post-fracture, the control group
exhibited the domination of callus hyperplasia along with the
A

B

FIGURE 1 | Radiographic analysis and fracture healing score. (A) Representative radiographs. (B) Fracture healing score. n=6, Mean ± SD, *p < 0.05, **p < 0.01.
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appearance of the woven bone, whereas a larger woven bone was
developed in the CIHH group. At week 8 post-fracture, a thicker
callus was formed and more woven bone was observed in control
rats, while the woven bone was predominated and nearly united
in the CIHH rats (Figure 3A). Safranin O staining showed that
less cartilage tissue was observed in fracture calluses in CIHH
rats compared with control rats at weeks 4 and 8 post-fracture
(Figure 3B), indicating a better endochondral ossification
process in the CIHH group.

Angiogenesis During Fracture Healing
The main mechanism by which cells respond to hypoxia is
through the stabilization of hypoxia-inducible factor-alpha
(HIF-a) proteins. Fracture healing involves angiogenesis, and
vascular endothelial growth factor (VEGF) is related to HIF-1a
(35, 36). In our study, we found that the protein expression levels
of HIF-1a and VEGF were enhanced in CIHH rats at week 2 and
week 4 when compared to the control rats (Figure 4A); however,
these levels were almost the same as the control rats at week 8
post-fracture. In addition, we investigated the mRNA expression
levels of HIF-1a and VEGF, and the data pointed toward the
same trend. HIF-1a mRNA expression in CIHH rats was about
twice as high as control rats at week 2 and week 4 (P<0.001)
(Figure 4B). VEGF mRNA expression in CIHH rats was 83.0%
higher than control rats at week 2 (P<0.05) and 62.6% higher
Frontiers in Endocrinology | www.frontiersin.org 5
than control rats at week 4 (P<0.001) (Figure 4C). Moreover, to
observe the blood vessels and endothelial cells around the woven
bone, we performed the IHC analysis of the vascular specific
marker platelet endothelial cell adhesion molecule 1 (PECAM-1;
CD31). We found that the levels of CD31 were markedly
increased by CIHH treatment at weeks 2, 4, and 8 (Figure
4D). These data suggested that CIHH treatment induced an
early increase in neovascularization.

The Expression of SDF-1 and CXCR4 Axis
at Fracture Sites
The SDF-1/CXCR4 axis was reported to be regulated by the
HIF-a and plays pivotal roles during progenitor homing,
hematopoiesis, neovascularization, and wound healing (37).
Thus, the expression of SDF-1 and CXCR4 at the fracture sites
was also detected. As shown in Figures 5A–C, the protein and
mRNA levels of SDF-1 and CXCR4 in the CIHH group were all
higher in the control group at week 2, week 4, and week 8. These
results demonstrated that the SDF-1/CXCR4 axis may be
involved in CIHH induced fracture healing.

Bone Formation
According to the report, active osteoblasts and collagen
formation were significantly increased at week 2 post-fracture
(38), so we examined the levels of related factors in the callus at
week 2 post-fracture. Runt-related transcription factor (RUNX2)
and osterix are biochemical markers of osteoblastic
differentiation and bone formation. COL1A1 gene encodes the
alpha1 chain of type I collagen. The western blot results exhibited
that the protein levels of RUNX2, osterix, and type I collagen
were all increased by the CIHH treatment (Figure 6A). The
mRNA expression of RUNX2 in CIHH rats was about twice as
high as that in control rats (P<0.01, Figure 6B), the mRNA
A B

C

FIGURE 2 | Bone mass and mechanical properties of fracture calluses. (A) Micro-CT images of rat femora at week 8. (B) Maximum force. (C) Stiffness. n=6,
Mean ± SD, ***p < 0.001.
TABLE 1 | The parameters of the bone microstructure at the fracture callus area
(n=6, mean ± SD).

TV (mm3) BV (mm3) BV/TV (%) BMD (g/cm3)

Control 36.20 ± 3.86 18.29 ± 1.13 50.08 ± 3.82 0.95 ± 0.03
CIHH 38.59 ± 6.71 24.85 ± 3.13 65.77 ± 12.46 0.99 ± 0.01
P value > 0.05 < 0.001 < 0.05 < 0.05
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expression of osterix in CIHH rats was about three times higher
than that in control rats (P<0.01, Figure 6D), the mRNA
expression of COL1A1 in CIHH rats was about twice as high
as that in control rats (P<0.01, Figure 6F). These changes were
further confirmed by immunohistochemical (Figures 6C, E, G).
These findings suggested that CIHH treatment could promote
osteoblastic differentiation and bone formation by the up-
regulation of RUNX2, osterix, and type I collagen.
DISCUSSION

Fracture healing is a long and complex process, including initial
inflammatory response, the formation of fibrocartilage,
mineralization of callus, and bone remodeling (39). When a
Frontiers in Endocrinology | www.frontiersin.org 6
fracture occurs, the blood is interrupted at the fracture site,
resulting in acute hypoxia and necrosis of the adjacent bone
tissues (40). In the early stages of fracture healing, hypoxia could
induce cartilage callus formation. HIF-1a is a master regulator of
oxygen homeostasis, and its expression was induced by hypoxia
(41). Reports claimed that increased expression of HIF-1a is
observed in the early stage of bone regeneration (42, 43),
suggesting that the expression level of HIF-1a is associated
with fracture healing (40, 44). Our results revealed that CIHH
treatment might promote fracture healing through up-regulating
HIF-1a.

Angiogenesis is essential for fracture healing (45). VEGF,
as the angiogenesis-related transcription and growth factor, is
the key factor of angiogenesis (46). Significant reduction
in angiogenesis and bone formation was observed in mice
lacking HIF-1a, and the administration of VEGF receptor
A

B

FIGURE 3 | Histological evaluation of fracture. (A) HE staining of fracture callus sections. (B) Safranine O staining of fracture callus sections. Magnification, ×40;
scale bar = 500 µm. The typical images from 6 repeats were shown. wb, woven bone; cc, cartilaginous callus; ca, cartilage area.
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antagonists can offset the angiogenesis induced by HIF-1a (47).
These suggest that VEGF is one of the downstream proteins
regulated by HIF-1a (48). According to reports, mice with VEGF
deficiency exhibited reduced bone mass and reduced osteoblast
(49), and VEGF has a direct effect on osteoprogenitor cells to
enhance fracture healing (50). Also, CD31 is concentrated at
endothelial cell borders, commonly used as the marker of blood
vessels and endothelium (51). As the mediator of adhesion
molecules and signal transduction, CD31 can enhance blood
vessel formation and cell motility (52). Our research showed that
CIHH may indirectly promote fracture healing by regulating
angiogenesis via HIF-1a/VEGF.
Frontiers in Endocrinology | www.frontiersin.org 7
SDF-1 is a member of the pro-inflammatory CXC chemokine
family and plays a crucial role in cell growth, development, and
differentiation via the activation of CXCR4 (53). The expression
of SDF-1 and CXCR4 was significantly up-regulated in the
damaged bone surrounding tissues during fracture healing
(37). The SDF-1 could recruit mesenchymal stem cells and
participate in endochondral bone repair (54). Knockdown of
HIF-1a repressed mesenchymal stem cell migration by the
blocking of the SDF-1/CXCR4 signaling (55). In the present
study, the expression of SDF-1 and CXCR4 was increased
along with the HIF-1a at the callosum region of the CIHH
treatment rats, indicating that CIHH may contribute to the bone
A

B

D

C

FIGURE 4 | Angiogenesis. (A) Western blot images of HIF-1a, VEGF, and b-actin in the callus area. (B) Quantitative real-time PCR of the callus HIF-1a.
(C) Quantitative real-time PCR of the callus VEGF. (D) Immunohistochemistry of CD31 within the woven bone. Magnification, ×200, scale bar = 100 µm. The typical
CD31-positive capillaries were indicated by arrows. n=6, Mean ± SD, ***p < 0.01.
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A

B C

FIGURE 5 | The expression of SDF-1 and CXCR4 axis at fracture sites. (A) Western blot images of SDF-1, CXCR4, and b-actin in the callus area. (B) Quantitative
real-time PCR of the callus SDF-1a. (C) Quantitative real-time PCR of the callus CXCR4. n=6, Mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001.
A

B

D E

F G

C

FIGURE 6 | Bone formation. Protein levels of RUNX2, ostcrix, Type I collagen (A). mRNA expression level of RUNX2 (B), osterix (D), and COL1A1 (F) of the callus
ares. Immunohistochemistry of RUNX2 (C), osterix (E), and type I collagen (G) within the callus area. Magnification, ×200, scale bar = 100 µm. The typical positive
stained cells or regions were indicated by arrows. n=6, Mean ± SD, **p < 0.01.
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formation by HIF-1a mediated activation of the SDF-1/
CXCR4 signaling.

It is well known that bone development and remodeling
depend on osteoblast activity. Studies have demonstrated that
RUNX2 plays a key role in mammalian osteoblast development,
differentiation, and bone formation (56, 57). Mice with RUNX2
deficiency showed a complete lack of bone formation (58). In
addition, increased adipogenic differentiation and the loss of
cartilage ossification were observed in Runx2-deficient mice (59).
In contrast, overexpression of RUNX2 could promote osteogenic
differentiation and enhance the rate of new bone formation (60,
61). Osterix is a transcription factor necessary for mammalian
bone formation. Osterix of vertebrates is mainly expressed in
osteoblasts and plays a decisive role in the later period of
osteoblast differentiation (62). In osterix null mice, the
cartilage develops normally, but no bone formation occurs
(63). Oh et al. found that osterix is the key regulator in
chondrocyte differentiation and bone growth (63). Moreover,
some researchers found that osterix null mice could express
RUNX2, while RUNX2/Cbfa1 null mice could not express
osterix (62). Nishio et al. further proved that osterix acts
downstream of RUNX2 to control the differentiation of
osteoblasts (64). Therefore, RUNX2 and osterix are important
osteogenic factors and regulate the development and
differentiation of osteoblasts. Type I collagen is associated with
bone structure and strength, accounting for 20% of the bone
matrix. COL1A1 and COL1A2 are the encoding genes of type
I collagen (65). Studies demonstrated that COL1A1 is linked
to osteoporosis by regulating bone mineral density (66–68),
and mutations in the COL1A1 gene can cause osteogenesis
imperfecta (65, 69, 70). Furthermore, researchers found that
osterix can induce the expression of COL1A1 (71). As expected,
our data showed that CIHH treatment could increase the
expression of RUNX2, osterix, and type I collagen. These
suggested that CIHH could accelerate the program of
osteoblastic differentiation and promote fracture healing.
Frontiers in Endocrinology | www.frontiersin.org 9
In conclusion, CIHH treatment was able to enhance fracture
healing, as proved by increasing bone formation, bone mass, and
bone strength. Further, the mechanism by which CIHH promoted
bone repair involved enhancing the expression of HIF-1a
associated signaling pathways. These results support the
therapeutic potential of CIHH to enhance open fracture healing.
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