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Buffering the impacts of extreme 
climate variability in the highly 
engineered Tigris Euphrates river 
system
Karem Abdelmohsen1,2, Mohamed Sultan  1*, Himanshu Save3, Abotalib Z. Abotalib1,4, 
Eugene Yan5 & Khaled H. Zahran2

More extreme and prolonged floods and droughts, commonly attributed to global warming, are 
affecting the livelihood of major sectors of the world’s population in many basins worldwide. While 
these events could introduce devastating socioeconomic impacts, highly engineered systems 
are better prepared for modulating these extreme climatic variabilities. Herein, we provide 
methodologies to assess the effectiveness of reservoirs in managing extreme floods and droughts and 
modulating their impacts in data-scarce river basins. Our analysis of multiple satellite missions and 
global land surface models over the Tigris-Euphrates Watershed (TEW; 30 dams; storage capacity: 
250 km3), showed a prolonged (2007–2018) and intense drought (Average Annual Precipitation 
[AAP]: < 400 km3) with no parallels in the past 100 years (AAP during 1920–2020: 538 km3) followed 
by 1-in-100-year extensive precipitation event (726 km3) and an impressive recovery (113 ± 11 km3) 
in 2019 amounting to 50% of losses endured during drought years. Dam reservoirs captured water 
equivalent to 40% of those losses in that year. Additional studies are required to investigate whether 
similar highly engineered watersheds with multi-year, high storage capacity can potentially modulate 
the impact of projected global warming-related increases in the frequency and intensity of extreme 
rainfall and drought events in the twenty-first century.

The response of hydrologic systems to global warming has been a major topic of research and debate by the sci-
entific community over the past two decades1–4. Under global warming conditions, the global long-term trends 
in average precipitation show an increase of 7%/°C in atmospheric capacity to hold water associated with 2%/°C 
increase in global mean precipitation5.

Analysis of multiple global and regional climate models2,6 shows a projected decrease in light to moderate 
events (0.1 mm/h < PPT ≤ 2.0 mm/h) and an increase in intensity and frequency of heavy precipitation (PPT) 
(2 mm/h < PPT ≤ 10 mm/h) and very heavy PPT (> 10 mm/h) events. The projected increase in heavy and very 
heavy precipitation events will undoubtedly increase flood risks on a global scale7. Flooding events between 
1980 and 2016 left behind more than 225,000 fatalities and economic losses exceeding $1.6 trillion8, and those 
losses are expected to increase by up to a factor of 20 by the end of the twenty-first century if no action is taken 
to reverse the course9. Global flood risk projections from climate models reveal significant increases in flood 
frequency by the end of the twenty-first century in Southeast Asia, the Indian Subcontinent, eastern Africa, and 
the northern half of the Andes, as well as the highlands in Iran and Turkey, the source areas of the Tigris and 
Euphrates rivers10.

In contrast, precipitation over other regions will remain unchanged or decline significantly1,11,12. Climatic 
projections show a decrease, or no significant change, in drought frequency over the northern high latitudes, 
eastern Australia, and eastern Eurasia12,13, whereas the southwestern US and the Rocky Mountain14, north and 
central Africa15, the Sahel zone16, Amazonia, and Northeast Brazil will witness a reduction in precipitation by 
up to 40%17. Projections of river discharge extremes (up to the year 2100) using simulated daily river discharge 
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derived from high-resolution general circulation models (between the years 1901 and 2000) indicated that under 
global warming conditions, the frequency and intensity of droughts is expected to increase globally12.

The projected intensification of flooding and drought events in the twenty-first century could occur within 
the same region. It was suggested that a + 2 °C global warming will produce extreme floods and severe and 
extended droughts in western and southern Europe including Spain, France, Italy, Greece, the Balkans, the south 
of the UK, and Ireland18. Similarly, the Niger, Ganges, and Congo River basins could witness increases in both 
flood and drought frequencies12. More than ever, there is a need to regulate and manage the projected extreme 
flooding and drought events.

Dams mitigate the destructive impacts of floods, store excess water in wet seasons/periods, and regulate its 
consumption during dry seasons/years19. At present, some 58,000 large dams (dam height > 15 m) regulate the 
flow in more than 50% of the Earth’s river systems20,21. Recent flood modeling studies have shown that dams 
reduce the exposure of the world’s population to floods by as much as 20.6%22. The role of dams in drought 
mitigation and sustenance of water supplies through storage and controlled distribution has been recognized 
in ancient and historical periods, and is more so in modern times23 (see Supplementary Notes). The perfor-
mance of reservoirs under climate variability has been widely examined using various modeling approaches such 
as General Circulation Models24, Community Earth System Model Large Ensemble25, data-driven behavioral 
modeling26, Ensemble Forecast Operations27, and sociohydrological models28. The application of the majority of 
these models require intensive data on reservoir characteristics as well as historical flow conditions. Such data 
are not available for many of the river basins worldwide where water sharing rights among riparian countries 
are contested and sharing data is not honored. The lack of agreed-upon arrangements between riparian coun-
tries for managing water shares and reservoir operation schemes (e.g., Nile River29; Yaluzangbu-Brahmaputra 
River30; Tigris-Euphrates basins31) calls for unconventional methods to examine the reservoir performance 
under a changing climate.

Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) solutions, 
together with data from other satellites (e.g., Global Precipitation Measurement (GPM) mission, Tropical Rainfall 
Measuring Mission (TRMM), Sentinel-1, and Landsat) and in-situ data (GPS, geochemical, and hydraulic head 
data) have been used widely to monitor spatial and temporal variations in water storage in response to climate 
change and anthropogenic activities32. Many of those applications were devoted to monitoring basin-scale flood 
potential (e.g., Missouri River basin33; Ganges–Brahmaputra Delta34; Yangtze River basin35; Red River basin36; 
Mackenzie River basin37; Liao River basin38, and the Nile River basin39,40).

With few exceptions41–43, investigating the impact of dams and associated artificial reservoirs, hereafter 
referred to as reservoirs, on water storage received less attention, primarily due to the coarse resolution of 
GRACE data (spatial resolution of ~ 400 km) and the relatively small size of reservoirs35. Even fewer studies 
targeted multiple small reservoirs (< 40 km3) within a basin (Tigris-Euphrates Basin44; Jinsha River Basin45). 
Given the projected increase in the frequency of extreme rainfall and drought events under climate change2,6, 
the large cumulative storage capacity of reservoirs worldwide (7000 to 8300 km3)21, and the widespread occur-
rence of data-scarce river basins in almost all continents it is now necessary, more than ever, to develop robust 
procedures to examine the role dams and their reservoirs could play in buffering the impact of climate variability 
(i.e., extreme flood and droughts) on the basin scale in data-scarce river basins.

Examples of data scarce basins include the Vrbas River basin in Europe46, the Blue Nile River and Wami 
River basins in north and central Africa47,48, the Lower Jordan River, the Kharaa River, and Cau River basins 
in western, central, and southeast Asia, respectively49–51, and the Fragata River and the Upper Paraguay River 
basins in South America52,53.

In this study we address this issue using the Tigris-Euphrates watershed (TEW) as our test site and GRACE 
solutions and radar altimetry as our prime datasets. We selected the TEW as a test site for the following reasons: 
(1) it is a highly engineered system (30 dams; total storage capacity: 250 km3); (2) the watershed witnessed a 
severe drought (2007 to 2018) and an impressive recovery in 2019 during the GRACE and GRACE-FO opera-
tional period.

Geological, hydrological, and climatological setting of the TEW.  The TEW covers an area of 
1 × 106 km2 in Turkey, Syria, Iraq, Iran, and Kuwait54. The two main rivers within the watershed—the Euphrates 
River, the longest in west Asia (length: 2800 km), and the Tigris River (length: 1900 km) originate from the high-
lands of Turkey, Iran, and Syria54. The two rivers (Fig. 1) flow downstream towards the alluvial plain in central 
Iraq, merge together near Basra, and feed the marshlands in southern Iraq before discharging in the Arabian 
Gulf (Fig. 2). Approximately, 60% of the river flow within the watershed is carried by the Euphrates and the 
remaining 40% by the Tigris55. The flow originates as snowfall over the highlands during the wet winter season 
(November–April), snow accumulations melt in the spring, feed the river systems, recharge the aquifers, and 
sustain the livelihood of large sectors of the population, especially those downstream54,56. The average monthly 
temperature of the TEW ranges from 6 to 16 °C in the wet season and much higher temperatures (up to 43 °C) 
during the dry summers (May–October), causing  evaporation and minimal infiltration of precipitation and 
recharge to aquifers during these summer periods57,58. 

The precipitation over the highlands varies considerably from one year to the next, causing large variations 
in the Tigris and Euphrates river discharge and drought and flooding conditions across the watershed. The 
annual discharge of the Euphrates was 16.8 km3 in 1961, 43.4 km3 in 1963, and 53.5 km3 in 196955. A similar 
pattern was reported for the Tigris; the discharge was 7.9 km3, 31 km3, and 34.3 km3 in years 1961, 1963, and 
1969, respectively55,59. Historical records report extreme drought conditions in years 1929 and 1930, when the 
Euphrates River flow dropped down to 10.7 km3/year. The high floods of the Euphrates destroyed the entire city 
of Nineveh in 612 B.C.E., and in 1896, the Tigris River rose by up to 3 m in one night, destroyed embankments, 
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and flooded large sectors of Baghdad60. This large variability in precipitation and river discharge42–44 was miti-
gated to a large extent by aggressive engineering programs involving construction of many major dams over the 
Tigris and Euphrates rivers starting in mid-1970s and extending into the twenty-first century.

The largest of the constructed dams along the Euphrates are the Ataturk in Turkey (area: 817 km2; storage 
capacity 48.7 km3), the Keban in Turkey (area: 675 km2; storage capacity: 31 km3), and the Raazza in Iraq (area: 
1810 km2; storage capacity: 26 km3). The largest reservoirs on the Tigris are Karakaya (area: 268 km2; storage 
capacity: 9.5 km3) in Turkey and Tharthar (area: 2170 km2; storage capacity: 72.8 km3) and Mosul (area: 380 km2; 
storage capacity: 11.1 km3) in Iraq58 (Fig. 1).

The TEW climate is continental subtropical in the northern upstream regions and highlands and arid to 
semiarid in the southern downstream regions61. The climatic variability described above over the TEW and 
over large sections of Europe and the Middle East in general is largely related to, or correlated with, the North 
Atlantic Oscillation (NAO), Mediterranean Oscillation Index (MOI), El Nino Southern Oscillation (ENSO)61, 
or the sea surface temperature (SST) anomalies that represent the intensity of these climatic oscillations62 (see 
Supplementary Notes).

We accomplish the following over the study area: (1) identify the wet and dry periods from the Global Pre-
cipitation Climatology Centre (GPCC), a monthly combined satellite-gauge precipitation dataset (1920–2020), 
and from the non-seasonal terrestrial water storage (TWS) from GRACETWS and GRACE-FOTWS datasets, here-
after referred to as GRACETWS, over the period 2001–2021; and (2) develop innovative procedures that utilize 
multi-mission satellite radar altimetry (e.g., TOPEX/Poseidon, Envisat, and Jason-1/2/3) and multi-sensor data 

Figure 1.   Location map of the TEW. Figure shows the spatial variations in elevation in m.a.m.s.l across the 
TEW and the distribution of stream networks extracted from Shuttle Radar Topography Mission (SRTM) 
data using ArcGIS 10.8 hydrological tools (https://​www.​arcgis.​com/). Also shown are the distribution of 
Tigris and Euphrates rivers and the source areas (Taurus and Zagros Mountains), to the north and east, the 
deserts to the west (Western Desert) and south (Southern Desert), and the central Mesopotamian Plain. Also 
shown, the groundwater flow directions67,93, the main reservoirs (blue circle), lakes (red circle). Also shown 
are time series of surface water level variations (2003–2020) from radar altimetry (Global Reservoir and Lake 
Monitoring (GRLM) database; available at https://​www.​pecad.​fas.​usda.​gov/​crope​xplor​er/​globa​lrese​rvoir/) over 
the TEW lakes (e.g., Hammar 4 in Iraq) and reservoirs (Karkheh in Iran, Mosul and Tharthar in Iraq, Karakaya 
and Ataturk in Turkey, and Assad in Syria) showing a significant rise in water levels following the extreme 
precipitation event in 2019.

https://www.arcgis.com/
https://www.pecad.fas.usda.gov/cropexplorer/globalreservoir/
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(Landsat 5, 7, and 8) to construct extended surface water level data over the TEW, fill data gaps in the radar 
altimetry time series, and use these methods to measure with accuracy the temporal variations in surface water 
storage (SWS) over the individual TEW reservoirs and lakes. Satellite-based observations were adopted given 
the paucity, and in some cases, the absence of direct water level measurements and stage storage curves over the 
TEW reservoirs and lakes. Finally, we demonstrate an impressive recovery of the system following a prolonged 
(2007–2018) drought by an extreme precipitation (1 in 100 years) event in 2019 enabled largely by the impound-
ment of a large portion of the runoff within the reservoirs.

Results
Temporal variations in GRACETWS.  The non-seasonal GRACE terrestrial water storage time series over 
the TEW (Fig. 3 and Table 1) shows significant variations throughout the investigated period (2003 to 2020). 
Five phases were identified over the past two decades. The watershed witnessed positive (average GRACETWS: 
91 km3) and near-steady GRACETWS values (5.6 ± 4 mm/4.2 year; 6.3 ± 5 km3/4.2 year) in years 2003 through 
2007 (Phase I) followed by a sharp decline and significant losses in GRACETWS (−  130 ± 4  mm/1.8  year; − 1
44 ± 5  km3/1.8  year) in years 2007–2009 (Phase II). The period from 2009 to 2014 (Phase III) is character-
ized by negative (average GRACETWs: − 26 ± 7  km3) and near-steady GRACETWS values (2.8 ± 6  mm/5.1  year; 
3.1 ± 7 km3/5.1 year), followed (2014–2018; Phase IV) by a second decline in GRACETWS and additional losses 
(− 57 ± 7 mm/4.2 year; − 63 ± 8 km3/4.2 year) to the system. This continuous and long-term depletion of the sys-

Figure 2.   The areal extent of the Mesopotamian marshes before and after the 2019 extreme precipitation 
event in years 2017 and 2020, respectively. Comparison between the areal extent of the Mesopotamian marshes 
(Al-Huwaizah, Central, and Al-Hammar) in southern Iraq using false-color composites generated from 30 m 
multispectral Landsat 8 data (https://​www.​usgs.​gov/) using ArcGIS 10.8 Spatial analyst tools (https://​www.​
arcgis.​com/) before and after the extreme 2019 precipitation event.

https://www.usgs.gov/
https://www.arcgis.com/
https://www.arcgis.com/
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tem throughout periods II, III, and IV was reversed in 2019 by an impressive recovery of the Tigris-Euphrates 
hydrologic system, as evidenced by the increase in GRACETWS by as much as 101 mm or 113 km3 in a single year 
(2019). Our analysis has shown that by 2018 (the end of phase IV), the system had lost a total of 204 km3 largely 
during phases II and IV, but recovered 50% of those losses in 2019 and retained these gains in 2020, an observa-
tion that could signal the beginning of a positive and near-steady Phase V.

Temporal variations in Average Annual Precipitation (AAP).  We examined the AAP and monthly 
precipitation from GPCC data over the TEW to investigate whether the observed interannual variations in 
GRACETWS during phases I through V could be related to temporal variations in precipitation throughout the 
GRACE and GRACE-FO period (2003–2020), and to examine whether the patterns of precipitation during this 
period deviated from those in the previous years (1920–2000).

Examination of the precipitation during the wet and dry seasons reveals that the former (avg: 237 mm/year) 
far exceeds the latter (avg: 48 mm/year) (Fig. 4a). Most of the precipitation in the dry summer season ends up 
as losses to evaporation given the high summer temperatures and the limited precipitation during the sum-
mers. In contrast, minimal losses to evaporation occur during the wet winter and spring seasons during which 
accumulation and melting of snow occurs54,57,58. Thus, it is the wet winter and snow melting seasons that drive 
the TEW hydrologic system54,56.

A comparison between the GRACETWS and the seasonal precipitation (wet season) represented by AAP 
datasets throughout the periods covered by phases I through V reveals high correspondence (Fig. 3). The figure 
shows a severe decline in GRACETWS values in phase II (− 144 ± 5 km3/1.8 year; − 80 km3/year) and a moderate 
decline in Phase IV (− 63 ± 8 km3/4.2 year; − 15 km3/year). Similar patterns were observed for precipitation, 
where the AAP of 534 km3 in Phase I was reduced to 330 km3 in Phase II, a 38% reduction, and the AAP of 

Figure 3.   Comparisons between the time series of the TWSGRACE, SWSALT, GWSGRACE, 
(SMS + SWE + CWS)GLDAS, and seasonal precipitation. Time series were derived over the TEW for each of the 
investigated time periods (Phases I–V). The comparisons are made in units of monthly variations in water mass 
averaged over the TEW.

Table 1.   Partitioning of TWSGRACE over TEW. TWSGRACE, SWSALT, (SMS + SWE + CWS)GLDAS, and GWSGRACE 
trends over the TEW for each of the investigated time periods (Phases I–V). GRACE observations, GLDAS 
outputs, and radar altimetry measurements were used to estimate the partitioning of TWS in GWS. a ΔTWS: 
Change in terrestrial water storage. b ΔSWS: Change in surface water storage over the 13 main reservoirs and 
lakes. c Δ(SMS + SWE + CW): Change in soil moisture storage + snow water equivalent + canopy water. d ΔGWS: 
Change in groundwater storage.

Phase Years

ΔTWSa ΔSWSb Δ(SMS + SWE + CW)c ΔGWSd

(mm/year) (km3) (mm/year) (km3) (mm/year) (km3) (mm/year) (km3)

Phase I 4.2 5.7 ± 4 6.3 ± 5 1.7 ± 0.4 1.9 ± 0.5 1.1 ± 6 1.17 ± 7 2.9 ± 7 3.2 ± 9

Phase II 1.8 − 130 ± 4 − 144 ± 5 − 33.5 ± 3 − 37 ± 3.4 − 52.6 ± 4 − 58.5 ± 5 − 43.8 ± 6 − 48.5 ± 8

Phase III 5.1 2.8 ± 6 3.1 ± 7 14.5 ± 0.4 16 ± 0.5 5.6 ± 4 6.2 ± 5 − 17.2 ± 7 − 19.1 ± 9

Phase IV 4.2 − 57 ± 7 − 63 ± 8 − 3.3 ± 0.7 − 3.7 ± 0.8 − 2.53 ± 4 − 2.8 ± 4 − 51.1 ± 8 − 56.5 ± 9

Phase V 1.2 101 ± 9 113 ± 11 39 ± 3.7 43 ± 4 12.7 ± 8 14 ± 9 49.3 ± 13 56 ± 15
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Phase III (451 km3) was reduced to 411 km3, a 12% reduction in Phase IV. A significant increase in GRACETWS 
(113 ± 11 km3/2.2 year; 51 km3/year) in Phase V correlated with a dramatic increase (70%) in AAP (Phase IV: 
411 km3; Phase V: 697 km3) during the same period. This increase in precipitation in Phase V is largely due to 
extreme precipitation in the spring of year 2019.

The frequency of recurrence of the 2019 extreme precipitation event and droughts over the study area was 
investigated by examining the long-term (1920–2020) GPCC precipitation record (Fig. 4a). Inspection of Fig. 4a 
reveals that the 2019 AAP (653 mm; 726 km3) is the highest during the GRACE and the GRACE-FO periods; it 
exceeded the AAP (388 mm) in the remaining years (2003 to 2018) by over 68%. Not only was 2019 an anoma-
lous year throughout the GRACE and GRACE-FO mission years, but it was the highest in a century. A similar 
yet slightly smaller AAP (628 mm; 699 km3) was reported in 1986, making the precipitation in 2019 a 1 in 100-
year event. Examination of the precipitation variability index (Fig. 4b) reveals a prolonged 12-year drought that 
extended from 2007 to 2018, the longest throughout the past 100 years. The extreme precipitation events in 1969 
and 2019 display the highest precipitation variability index (δ: + 2.7 and + 2.8, respectively).

Temporal variations in lakes and reservoirs area and surface water levels.  The anomalous and 
extreme precipitation event in 2019 must have had an impact on the watershed’s surface water systems, namely 
its natural lakes, reservoirs behind dams, and marshes. Figure 2 shows the variations in the area covered by the 
Al-Huwaizah, Central, and Al-Hammar marshes in Iraq, where the surface area increased from 4238 km2 in 
2017 to 6530 km2 in 2020, an increase of 54%. Not only did the area of the marshes increase, but the area covered 
by surface water within the marshes, hereafter referred to as lakes, and the surface water levels of these water 
bodies, increased as well.

Figure 4.   Precipitation and variability index (δ) time series derived from GPCC data (1920–2020). (a) 
Comparison between precipitation during wet seasons (winter and spring: November–April; blue columns) 
and dry season (summer: May–October; red columns) showing much higher precipitation rates during the wet 
seasons. (b) Use of variability index (δ) time series to identify the drought (− δ) and wet (+ δ) periods; the figure 
shows a severe and prolonged drought (2007–2018; highlighted in yellow) and the wettest years (highest index 
values) in 1969 and 2019.
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Figure 1 shows the variations in surface water level from radar altimetry over several lakes and reservoirs 
within the watershed. The Hammar 4 Lake (Iraq) rose by 2 m, the Karkheh reservoir (Iran) by 16 m, the Mosul 
and Tharthar reservoirs (Iraq) by 12 and 15 m, respectively, the Karakaya and Ataturk reservoirs (Turkey) by 11 
and 8 m, respectively, and the Assad reservoir (Syria) by 4 m.

The temporal and spatial variations in SWS from radar altimetry data (SWSALT) were estimated over the 
TEW; these variations are largely controlled by storage in reservoirs compared to lakes; the contributions to 
these variations are 93 to 7% in favor of the former (reservoirs). The total contribution from both rivers to the 
SWS in the TEW was found to be small compared to that from the reservoirs (< 6% SWSALT). As such, and 
given the discontinuous and limited radar data over the Tigris and Euphrates, their contributions to the SWS 
were ignored. The estimated SWSALT was compared to the variations in GRACETWS and in groundwater storage 
(GRACEGWS) throughout the five phases (Fig. 3). Figure 3 shows two significant features. First, the variations 
in SWSALT within the individual phases and between the phases are modest compared to those observed in the 
GRACETWS and GRACEGWS time series. This is to be expected given that the construction of dams and their 
reservoirs is intended in the first place to modulate the interannual variations in precipitation and runoff, making 
the SWSALT less sensitive to interannual climatic variabilities compared to GRACETWS and GRACEGWS. Visual 
inspection of Fig. 3 shows small interannual variations within the SWSALT time series compared to those of the 
GRACETWS and GRACEGWS series, as evidenced by the smaller standard deviation of in SWSALT across the entire 
period covered by Phases I through V compared to GRACETWS and GRACEGWS (standard deviation: SWSALT 
14 km3; GRACETWS 61 km3; GRACEGWS 39 km3) for the same period.

In watersheds lacking reservoirs, most, but not all, of the runoff ends up as losses from the watershed water 
budget that are carried out of the system by river networks. In our case that would have been the discharge of the 
TEW into the Gulf prior to 1950, when the system had virtually no storage capacity to capture any of the runoff, 
which amounted to 80 km3 on the average54,58. With the progressive construction of major dams that started 
in the 1970s and extended into the twenty-first century, large portions of the runoff carried by the TEW river 
network were being intercepted by, and impounded behind, the dams in reservoirs. In 2019, the TEW received a 
1 in 100-year extreme precipitation event, and by that time the total storage capacity of the system had increased 
to 250 km3 and was capable of capturing large proportions of precipitation and runoff. The precipitation in 2019 
resulted in a dramatic increase in storage across the watershed, a gain of 113 ± 11 km3 in GRACETWS, about 38% 
of which (43 km3) was captured in the reservoirs.

Temporal variation in groundwater storage and recharge from lakes.  The time series of ground-
water storage (GWS) over the TEW (Fig. 3) was calculated using GRACETWS and Global Land Data Assimilation 
System (GLDAS)-derived soil moisture storage (SMS), snow water equivalent (SWE), and canopy water storage 
(CWS) and radar altimetry-derived SWS. Inspection of Fig. 3 and Table 1 reveal positive (average GRACEGWS: 
52 ± 9 km3) and near-steady GRACEGWS values (trend: 3 ± 7 mm/4.2 year, 3 ± 9 km3/4.2 year) during Phase I, fol-
lowed by a decline (trend: − 43.8 ± 6 mm/1.8 year) and significant losses in GRACEGWS (− 48 ± 8 km3/1.8 year). 
The period from 2009 to 2014 (Phase III) is characterized by negative (average GRACEGWS: − 5 km3) and near-
steady GRACEGWS values (− 17 ± 7 mm/5.1 years; − 19 ± 9 km3/5.1 years), and the following 4 years (2014–2018; 
Phase IV) by a second decline in GRACEGWS and additional losses (− 51 ± 8 mm/4.2 year; − 56 ± 9 km3/4.2 year) 
to the system (Table 1). Phase V (2018–2020) is characterized by marked recovery in GWS with a total increase 
of 56 ± 15 km3/year that compensated for 45% of the total GWS losses during the dry period (2007–2018).

Potential climatic drivers.  Previous work demonstrated that the climatic variability over the TEW and 
over large sections of Europe and the Middle East is largely related to, or correlated with, the NAO, MOI, 
(ENSO61,63, or the SST anomalies that represent the intensity of these climatic oscillations. We correlated the 
temporal variations of these indices with the AAP to examine which of these indices and parameters corre-
lated best with the identified extreme precipitation and drought events (see Supplementary Fig. S1). During the 
extreme precipitation event of 2019 (AAP: 726 km3), the NAO oscillation index (− 1.7) and its SST-based index 
(− 0.3) were low, whereas during the drought years (2007 to 2018), the SST-based indices of both the SAO and 
NAO were high (average: SAO: 0.4; NAO: 0.4) (see Supplementary Fig. S1). Additional rigorous statistical analy-
ses should be conducted to unravel the complexity of the interactions between these oscillations and parameters 
and their impacts on precipitation over the TEW.

Summary and discussion
The projected increase in the frequency and intensity of extreme rainfall and drought events in the twenty-first 
century due to climate variability associated with global warming will impact many of the major world’s water-
sheds. We may already be observing these effects over the TEW; the watershed witnessed a prolonged (2007 to 
2018) and intense drought (AAP < 400 km3) that had no parallels over the past 100 years and a 1 in a 100-year 
extreme precipitation event (AAP: 653 mm; 726 km3) in 2019 that ended the drought.

While these climate change-related events will introduce devastating socioeconomic impacts on many of 
the world’s watersheds and their populations, many of the highly engineered watersheds (e.g. Mississippi in 
North America, storage capacity: 250 km3; Paraná in central South America, storage capacity: 65.8 km3)22, one 
of which is the TEW, will be spared. The historical records of the TEW reveal high variability of flow in both the 
Tigris and Euphrates that caused flooding events across the watershed and disrupted irrigation practices55,58. 
The threat of floods has been minimized with the control of river flow by regulating the discharge from dams in 
Turkey (average annual discharge (AAD): 48 km3/year) and Iraq (AAD: 26.5 km3/year), and to a lesser extent 
by the Syrian (AAD: 3.2 km3/year) and Iranian (AAD: 4.7 km3/year) dams58,64.
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In 2019, the TEW received a 1 in 100-year precipitation event that would have caused extreme flooding 
events if the TEW dams were not in place, and much of the runoff from this wet year would have been lost as 
river discharge in the Gulf. Instead, some 43 km3 of the runoff were apparently captured in the lakes and res-
ervoirs (Fig. 3). This added reservoir storage can be used to maintain adequate stream flow in the TEW river 
network for years to come, especially the years of low precipitation. The relatively high AAP in Phase I (534 km3) 
compared to phases II (330 m3), III (451 km3), and IV (411 km3) was reflected in the positive and high average 
annual variations in SWSALT values (179 km3) in Phase I compared to negative variations in phases II (− 53 km3), 
III (− 43 km3), and IV (− 139 km3). The observed drop in SWSALT in these three phases (II, III, and IV) is here 
interpreted to indicate the release of impounded reservoir waters to compensate at least in part for the reduced 
river flow during these dry years. We suggest that the TEW dams modulated some, but not all, the impacts of 
the prolonged drought that started in 2007 and ended in 2018; similarly, the impounded SWSALT in 2019 will be 
effective in reducing the impacts of dry years in upcoming years.

Not only do the dams impound excess runoff within their reservoirs and add to the watershed’s SWS budget, 
but they can be significant sources of recharge to the underlying aquifers. The more porous, fractured, or karstic 
the reservoir bedrock, the larger the discharge from the reservoir and the recharge to the underlying aquifer. 
One would expect high rates of infiltration and discharge from reservoirs constructed over karstified or frac-
tured bedrocks32. Examples include Mosul reservoir (maximum storage capacity: 11.1 km3) in northwest Iraq, 
whose bedrock is formed of karstic gypsum and limestone of the Fatha Formation of Middle Miocene age65, and 
Raazza reservoir (maximum storage capacity: 26 km3) in Iraq’s Western Desert, a reservoir floored by highly 
fractured karstic Miocene carbonates of the Dammam formation with high transmissivity and permeability for 
groundwater flow66,67.

Our findings suggest that the highly engineered TEW watershed is better prepared to deal with the projected 
increase in the frequency and intensity of extreme rainfall and drought events in the twenty-first century. During 
the extreme rainfall events, the TEW system captures excess runoff, increase the surface and groundwater storage 
of the watershed, and minimize flooding events. The system modulates water shortages during prolonged and 
intense droughts through managed release of the captured excess waters.

While highly engineered watersheds could modulate the projected climate change-related extreme floods 
and droughts in the twenty-first century, we should not lose sight of the negative impacts associated with the 
development of such highly engineered systems. Construction of high capacity dams on transboundary rivers 
can cause disputes over water rights between the river basin riparian countries, especially during the filling peri-
ods, which may lead to severe socioeconomic instabilities (e.g., the Tigris-Euphrates river basin68 and the Nile 
River basin69). Dams impound river flow, create artificial reservoirs, and increase surface water area and losses 
to evaporation; the global dam-related evaporative losses were estimated at 350 km3 in 201070. Dams alter the 
natural flow of streams, which in turn modify ecological processes, reduce biodiversity (e.g., nutrient cycling71), 
modify river sediment transport72, and cause biotic changes in downstream ecosystems73,74. The achievement 
of water supply and flood control objectives can produce unsteady flow regimes along river stretches proximal 
to dams, which could interfere with the implementation of other significant objectives (e.g., navigation and 
recreation75). Moreover, the over-reliance on impounded reservoir waters could increase the basin vulnerability 
to droughts on the long-run76.

The paradox of building dams, benefits versus drawbacks, is an old one that has been, and will continue to 
be debated, by researchers from different disciplines and angles. Here we suggest that additional studies are 
needed to investigate whether similar highly engineered watersheds with multi-year, high storage capacity can 
potentially modulate the impact of projected global warming-related increases in the frequency and intensity 
of extreme rainfall and drought events in the twenty-first century. This could be attained by conducting studies 
similar to the one adopted in this study, especially in data scarce regions. In data rich watersheds, one or more of 
the following approaches could be adopted: (1) examining paired river basins that have experienced similar flood 
and drought events with and without highly engineered systems or reservoirs, (2) modeling a river system with 
and without reservoirs, and (3) modeling several highly engineered river systems, and testing their performance 
under multiple streamflow regimes. If findings similar to those reported over the TEW were observed, then an 
additional factor that should be considered, the added capability of highly engineered river system in buffering 
the impacts of the projected climate extremes in the twenty-first century.

Methods
We adopted a four-fold methodology throughout the investigated period. We first extracted the temporal and 
spatial variation in GRACETWS monthly solutions over the watershed (Task I) and those for the precipitation data 
from the Global Precipitation Climatology Centre (GPCC) were used to identify extreme events and to examine 
the degree to which the TWS signal was impacted by the identified extreme precipitation events (Task II). Then 
we extracted the temporal variations in surface water level and in the volumes of the main reservoirs and lakes 
(SWS) to examine the degree to which they modulate the impacts of climate variabilities (Task III) and to enable 
the estimation of the variations in GWS using the estimated SWS and outputs of land surface models (Task IV).

GRACETWS.  Three communal GRACE mascon solutions were utilized and reported relative to a 2004–2009 
mean baseline. The first is the GRACE CSR-RL06M solutions provided by the University of Texas Center for 
Space Research (UT-CSR); the data provided are oversampled on an equiangular grid of size (0.25° × 0.25°)77. 
No post-processing and/or filtering or application of empirical scaling factors was applied78. The second is the 
mascon solutions from the Jet Propulsion Laboratory (JPL-RL06M), and the third is the spherical harmonic 
solution Rl06 version 4 from CSR (CSR-Rl06SH). The GRACE CSR-M solutions were derived using Tikhonov 
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regularization with an L-ribbon approach to compute the regularization parameter and were resolved on an 
equal area geodesic grid of roughly 1° at the equator.

The seasonal variations in the GRACETWS time series were removed by adopting the following steps: (1) filling 
in the missing months of data using linear interpolation (gap-filled time series), (2) simultaneously fitting annual 
cycle components (sine and cosine) of the GRACETWS time series, and (3) removing the seasonal cycle from the 
non-gap-filled time series43,79. The non-seasonal GRACETWS time series were used to identify the periods during 
which the TEW experienced gains, losses, or maintained steady state conditions. The breakpoints between the 
investigated periods were identified using the regime shift detection (RSD) method80.

Precipitation (GPCC).  The precipitation throughout a period of 100 years (1920–2020) over the TEW was 
derived from GPCC monthly satellite-gauge (51 rain gauge stations over the TEW) combined precipitation data-
set. The full data monthly product with a spatial resolution of 2.5° is available through the GPCC server hosted 
by the Deutscher Wetterdienst (DWD), Offenbach, Germany81. The precipitation time series was reported in 
two ways: (1) the average monthly precipitation (2003–2020) over the TEW, and (2) the seasonal precipitation 
(1920–2020) by aggregating the monthly precipitation events that occurred during the wet season (Novem-
ber–April) and dry season (May–October) (Fig. 4). The wet season hereafter refers to the winter months when 
snow accumulates and the spring months when most of the accumulated snow melts, whereas the dry season 
refers to the summer months where minimal precipitation occurs. Seasonal precipitation hereafter refers to the 
summation of monthly precipitation during the wet season that extends from November of a particular year to 
April of the following year. Thus, the seasonal precipitation of 2019 refers to the summation of precipitation dur-
ing the months of November and December in 2018 and the months of January through April of 2019. The dry 
season extends from May to October. In this respect, the AAP for a particular period hereafter refers to the total 
seasonal precipitation throughout the investigated period averaged over the TEW area. The GRACETWS and the 
GPCC time series were correlated to examine whether extreme seasonal precipitation events could have given 
rise to anomalously high GRACETWS values over the TEW.

The precipitation variability index (δ) was calculated using Eq. (1) to differentiate between the drought years 
(characterized by negative − δ values) and wet years (characterized by + δ values)82. A prolonged drought will 
be noted if a series of negative δ values were observed for consecutive years, and vice versa for a wet period, a 
series positive δ values.

where δi is the precipitation variability index for a year (i), Pi the seasonal precipitation for a year (i), and µ and σ 
are the average and the standard deviation of the seasonal precipitation throughout the 1920–2020 time period, 
respectively. A prolonged drought will be noted if a series of negative δ values were observed for consecutive 
years, and vice versa for a wet period, a series positive δ values. The GRACETWS and the GPCC time series were 
correlated to examine whether extreme seasonal precipitation events could have given rise to anomalously high 
GRACETWS values over the TEW.

The potential climatic drivers for the AAP were investigated by comparing the monthly AAP to: (1) the MOI, 
(2) the ENSO index, (3) SST anomaly (SST-based index of SAO), (4) the NAO index, and (5) SST anomaly (SST-
based index of NAO83). All climatic indices are presented as May–July anomalies.

Surface water storage.  We quantified the temporal variations in SWSALT across the TEW by measuring 
the variations in surface water elevation and in the areal extent of the main reservoirs and the natural lakes 
within the watershed. These reservoirs and lakes, 13 in number, include the Ataturk, Karakaya, and Keban reser-
voirs and Van Lake in Turkey; the Assad reservoir in Syria; the Tharthar, Mosul, and Raazza reservoirs and the 
Hammar 1, Hammar 2, Hammar 3, and Hammar 4 lakes in Iraq; and the Karkheh reservoir in Iran (Fig. 1). The 
maximum holding capacity of the investigated reservoirs (8 reservoirs) is 222 km3, which represents some 90% 
of the total holding capacity (250 km3) of all the dams within the watershed58.

The surface water levels time series was extracted from two main surface water data centers: (1) the Data-
base for Hydrological Time Series of Inland Waters (DAHITI), which provides time series of water levels from 
multi-mission satellite radar altimetry84, and (2) the US Department of Agriculture Foreign Agricultural Service 
(USDAFAS) GRLM. The variations in surface water levels were estimated with respect to the temporal mean 
of the entire period (2003–2020). The monthly variations in the areal extent of the reservoirs and lakes were 
extracted from the Global Surface Water Explorer dataset (spatial resolution: 30 m)85 that was generated from 
multiple Landsat mission datasets (Landsat 5, 7, and 8), and in which each pixel was classified as a water or 
non-water pixel.

The following steps were implemented to estimate the temporal variations in the SWSALT for each of the 
investigated reservoirs and lakes. Variations in monthly surface water levels and in the areal extent of the reser-
voirs and lakes were extracted from radar altimetry and the Global Surface Water Explorer datasets, respectively. 
Because there were gaps in radar altimetry data over a few of the investigated reservoirs and lakes, linear regres-
sion relationships were derived where needed between surface water levels and areal extent of the individual 
reservoirs and lakes (Eq. 2)86, which were then used to estimate water levels for the months where radar altimetry 
data was absent.

where, WL(t) is the surface water level at time (t), AE is the areal extent of the reservoir or lake, and a and b are 
the slope and intercept, respectively.

(1)δi = (Pi − µ)/σ ,

(2)WL(t) = AE × a+ b,
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The monthly time series for water levels and areal extent of the investigated reservoirs and lakes were then 
used to estimate the temporal variations in water volume for the investigated reservoirs and lakes, which were 
then summed up and the seasonal variations removed87 to extract non-seasonal SWSALT time series over the 
TEW in units of km3/month. The estimated SWSALT time series was used to calculate the rise or drop in surface 
water level for a particular year by subtracting from it the surface water level of the preceding year and using the 
peak surface water levels for each of the two consecutive years.

GRACE groundwater storage.  GRACETWS and outputs of the Global Land Data Assimilation System 
(GLDAS-2.1) NOAH-3.3 model were used to derive the variations in the groundwater storage compartment88. 
The NOAH-3.3 model provides a sum of soil moisture storage (SMS), canopy water storage (CWS) and 
snow water equivalent (SWE) but doesn’t account for SWS. The non-seasonal GRACE groundwater storage 
(GRACEGWS) time series was calculated by subtracting the simulated GLDAS storages (SMS, CWS, and SWE) 
and the SWSALT values from GRACE TWS (Eqs. 3 and 4)89 and subsequent removal of the seasonal variations in 
the GRACEGWS. Similar (within 5%) values for GRACEGWS were obtained if the seasonal cycle was removed from 
the GRACETWS and the GLDAS storages prior to subtracting the latter from the former.

Uncertainty estimation.  For GRACETWS, the CSR-M-RL06 solutions were selected as the primary dataset 
for extracting trends over the investigated periods79, where the standard deviation between the three selected 
solutions (CSR-RL06M, JPL-RL06M, and CSR-Rl06SH) represents the uncertainty in the reported trend value90.

Errors associated with the calculated water mass trends for SWSALT were estimated using procedures described 
in Ref.91: (1) the residuals (R1) were calculated after removing the components of trend; (2) a 13 month moving 
average was applied to the calculated residuals (R1) to remove the remnant signal (e.g. interannual signal) and 
the residuals (R2) were estimated; (3) the standard deviation of R2 represented the upper limits of uncertainty 
(error in the monthly measurements) in time series; (4) Monte Carlo simulation techniques were performed by 
fitting trends and seasonal terms for many synthetic monthly datasets (n = 10,000), each with values chosen from 
a population of Gaussian-distributed numbers with standard deviation values similar to that of the examined 
population.

Errors in GLDAS combined component (SMS + SWE + CWS)GLDAS simulations were calculated as the stand-
ard deviation between the three GLDAS version 2.1 land surface models (variable infiltration capacity (VIC), 
catchment land surface model (CLSM), and NOAH-3.3 simulations)92.

Finally, the standard deviation of the generated synthetic trends was interpreted as the trend error 
for the calculated water mass trends (e.g., SWSALT and (SMS + SWE + CWS)GLDAS). The trend errors in 
GRACEGWS (σGWS) were calculated by adding, in quadrature, trend errors related to GRACETWS, SWSALT and 
(SMS + SWE + CWS)GLDAS trends (Eq. 5).

Landsat images.  The Landsat 8 satellite was launched in February 2013 to collect (spatial resolution: 
15–100 m; scene size: 183 km east–west; 170 km north–south), temporal (revisit time: 16 days) global images in 
the visible, near-infrared, short-wave infrared, and thermal infrared wavelength regions 57. The temporal and 
spatial variations of Al-Huwaizah, Central, and Al-Hammar marshlands watershed were extracted from 30 m 
multispectral Landsat 8 data acquired in years 2017 and 2020.

DEM from Shuttle Radar Topography Mission.  A DEM from the SRTM covering the entire TEW was 
used to delineate the stream network and watershed boundaries using ArcGIS 10.8 hydrological tools.

Data availability
All data needed to evaluate the findings are provided in the manuscript and additional relevant datasets could 
be requested from the first author. The Global Reservoir and Lake Monitoring Database (GRLM; available 
at https://​www.​pecad.​fas.​usda.​gov/​crope​xplor​er/​globa​lrese​rvoir/). The Global Surface Water Explorer dataset 
(spatial resolution: 30 m; available at http://​global-​surfa​ce-​water.​appsp​ot.​com).
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