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Abstract

The identification of cerebral microinfarctions with magnetic resonance imaging (MRI) and histological methods
remains challenging in aging and dementia. Here, we matched pathological changes in the microvasculature of
cortical cerebral microinfarcts to MRI signals using single 100 μm-thick histological sections scanned with ultra-high-
resolution 11.7 T MRI. Histologically, microinfarcts were located in superficial or deep cortical layers or transcortically,
compatible with the pattern of layer-specific arteriolar blood supply of the cerebral cortex. Contrary to acute
microinfarcts, at chronic stages the core region of microinfarcts showed pallor with extracellular accumulation of
lipofuscin and depletion of neurons, a dense meshwork of collagen 4-positive microvessels with numerous string
vessels, CD68-positive macrophages and glial fibrillary acidic protein (GFAP)-positive astrocytes. In MRI scans, cortical
microinfarcts at chronic stages, called chronic cortical microinfarcts here, gave hypointense signals in T1-weighted
and hyperintense signals in T2-weighted images when thinning of the tissue and cavitation and/or prominent iron
accumulation were present. Iron accumulation in chronic microinfarcts, histologically verified with Prussian blue
staining, also produced strong hypointense T2*-weighted signals. In summary, the microinfarct core was occupied
by a dense microvascular meshwork with string vessels, which was invaded by macrophages and astroglia and
contained various degrees of iron accumulation. While postmortem ultra-high-resolution single-section imaging
improved MRI-histological matching and the structural characterization of chronic cortical cerebral microinfarcts,
miniscule microinfarcts without thinning or iron accumulation could not be detected with certainty in the MRI
scans. Moreover, string vessels at the infarct margin indicate disturbances in the microcirculation in and around
microinfarcts, which might be exploitable in the diagnostics of cortical cerebral microinfarcts with MRI in vivo.

Keywords: Post-mortem magnetic resonance imaging, Histological matching, Microbleeds, String vessels, Cerebral
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Introduction
Cerebral microinfarcts are found in the brains of elderly,
in cognitive impairment and dementia of vascular origin,
and in patients with various neurodegenerative diseases
such as Alzheimer’s or Parkinson’s disease [2, 12, 52].
Despite growing evidence for the contribution of cortical
cerebral microinfarcts to the development of cognitive
deficits and dementia, their identification in conven-
tional magnetic resonance imaging (MRI) remains chal-
lenging [9, 21, 26, 29, 42]. Owing to their small size,
cortical microinfarcts often remain below the detection
limit of the image resolution in conventional MRI at 1.5
T and 3 T, although the detection rate of microinfarcts
was improved in vivo with 7 T MRI [28, 45, 48]. Further-
more, the large size of the human brain makes the histo-
logical sampling and detection of cerebral microinfarcts
difficult in routine paraffin sections [12, 48].
Postmortem magnetic resonance imaging (MRI) can help

to overcome the obstacles encountered in the detection of
structural changes in the brain with in vivo MRI, because it
allows the use of higher field strengths and longer acquisi-
tion times with a better image resolution and enhanced
signal-to-noise ratio [19, 36, 41]. Although the detection of
cortical cerebral microinfarcts could be improved using
postmortem 7T MRI, artefacts still caused false positive re-
sults and some histologically verified microinfarcts remained
undetectable in MRI scans even upon re-evaluation of the
images [46, 49]. Currently it is unknown whether these cor-
tical cerebral microinfarcts escaped detection and produced
false negative results in MRI scans due to problems associ-
ated with technical limitations in image resolution at 7 T or
MRI-histological matching [1, 37], or whether there is a
subset of microinfarcts that produces a different MRI signal
pattern.
The aim of this study, therefore, was to correlate struc-

tural changes in cortical cerebral microinfarcts at both MRI
and histological level. For this purpose, we first performed a
thorough analysis of morphological features of cortical
cerebral microinfarcts by focusing on their shape and loca-
tion, their iron load, and patterns of microvascular anomal-
ities in thick brain sections. To overcome challenges that
result from histological matching of microinfarcts to MRI
scans [1], in a next step we developed a new ultra-high-
resolution postmortem MRI technique by imaging single
thick histological sections with proven microinfarcts with
MRI at 11.7 T. Using this approach, we then compared MR
signals produced by microinfarcts directly to morphological
correlates of microinfarcts by staining the MR-imaged sec-
tions with various histological techniques. For a general
histopathological characterization of microinfarcts, sections
were stained with methods recently developed in our la-
boratory that visualize extracellular lipofuscin granules indi-
cative of neuronal cell death, aldehyde fuchsine-positive
macrophages, and alterations in the capillary network of

microinfarcts [8]. MRI signals obtained in microinfarcts
were further correlated with iron histochemistry and other
histological alterations in MRI-scanned and adjacent
sections. Microvascular changes and glial pathology were
visualized using double-label immunohistochemistry for
collagen together with markers of the vascular endothe-
lium, astroglia or macrophages [22].

Material and methods
Subjects and neuropathological evaluation of the brain
Tissue from autopsy cases preserved at the Ulm University
Tissue Bank underwent routine neuropathological exam-
ination. Thick brain sections used for diagnostics were
screened for microinfarcts. Ten cases with cortical cere-
bral microinfarctions (5 females and 5 males, age range
69–89 years) were randomly selected for the study (for
details: Table 1). Cases in the study cohort studied had
Alzheimer’s disease (AD)-related argyrophilic neurofibril-
lary changes (NFT) at limbic stage 3 or less except case 8
(89 year old female with mixed dementia at NFT stage 4,
MMSE 15/30, CDR 1.0) and varying degrees of extracellu-
lar Aβ deposition at cortical amyloid stages 0 (three cases)
to A-C (seven cases) [6]. Staging of neuronal alpha-
synuclein pathology [7] indicated Parkinson’s disease (PD)
stage 0 in all cases except in case 10 (74 year old female at
Parkinson’s stage 4). None of the cases were diagnosed
with other tauopathies or alpha-synucleinopathies. This
retrospective study was conducted in compliance with the
university ethics committee guidelines as well as German
federal and state law governing human tissue usage and in
accordance with the Declaration of Helsinki. Informed
written permission was obtained from all patients and/or
their next of kin for autopsy.

Histological processing and diagnostics
Brains were fixed in a 4% solution of formaldehyde and cut
in approximately 1 cm thick coronal slices. Tissue slices
containing frontal, mid-hemispheric, occipital and cerebellar
blocks as well as blocks of the brainstem (rostral medulla,
pontine-mesencephalic junction and midbrain) were em-
bedded in polyethylene glycol (PEG 1000, Merck, Carl Roth
Ltd., Karlsruhe, Germany). In addition, multiple coronal
hemispheric blocks were available in 2 cases (Table 1). Sev-
eral 100 μm thick consecutive sections were cut from each
block with the aid of a sliding microtome (Jung, Heidelberg,
Germany). Alzheimer-related neurofibrillary changes and
extracellular deposits of Aβ peptide were visualized with
advanced silver staining methods [6, 23] and immunohis-
tochemistry with the mouse anti-phospho-tau (Ser202,
Thr205) antibody (1.2000, clone AT8, Fisher Scientific
GmbH, Schwerte, Germany) and mouse anti-β-amyloid
(Aβ) 17–24 antibody (1:5000, clone 4G8, BioLegend, Ko-
blenz, Germany). Alpha-synuclein pathology was detected
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with the anti-syn-1 antibody (1:2000, clone number 42;
BD Biosciences, CA, USA).
For screening of microinfarcts, sections obtained from

each coronal block were stained with the pigment Nissl
stain (PN) using aldehyde fuchsine and Darrow red [4]
in all cases. Additional sections stained with a modified
hematoxylin eosin (H&E) procedure [22] were available
in 8 cases (sections from all blocks in cases 1 & 5; 12
sections in the other 6 cases), and iron accumulation
was visualized with Prussian blue staining [35] in 5 cases
(16 sections). Free-floating sections adjacent to sections
with proven microinfarcts were selected for MRI scan-
ning and further histological analysis.

Single section ultra-high resolution MR imaging
Magnetic resonance (MR) images were taken at room
temperature on an 11.7 T, horizontal bore (160mm diam-
eter) dedicated small animal system (BioSpec 117/16, Bruker
Biospin, Ettlingen, Germany) equipped with BGA9 shielded
gradients. The signal was recorded with a 72mm quadra-
ture volume transmit/receive resonator. Before imaging, the
100 μm-thick brain sections were stretched on glass object
slides and coverslipped in a 0.9% NaCl saline solution by
paying attention to minimize trapping of air bubbles (Fig. 1).
Next, object slides with the sections were sealed tightly to
prevent penetration of air or external solutions to the zone
around the sections or to cavitated areas within the sections.
The sealed object slides were placed in a custom-built Plexi-
glas chamber. The chamber was degased and filled with
Fomblin (Sigma, St Louis, MO, USA). The samples were
placed in the iso-center of the magnet. Multi-contrast three-

dimensional (3D) data was obtained, including: T1-weighted
(TR= 500, TE = 11.5), T2-weighted (TR = 3500, TE = 45)
and proton density (PD, TR= 2000, TE = 8.5) single spin
echo images with one signal average (NSA= 1) as well as
gradient echo T2*-weighted images (TR = 24, TE = 12, flip
angle =30°) with NSA= 16. Spatial resolution was as
100x110x200μm3. The single section ultra-high-resolution
MRI technique was first established by scanning 3 sections
without microinfarcts. In a next step, 10 sections with
microinfarcts from 5 cases were imaged with the MRI scan-
ner. In one case (case 4), two neighboring sections from the
same microinfarct were imaged. In another case (case 1),
one of the sections was imaged twice, confirming the repro-
ducibility of MRI signals produced by the same microinfarct
(for details: Table 1).

Immunohistochemistry (ICH)
Sections imaged with MRI and adjacent sections (free-float-
ing, 100 μm thick) were first treated with 10% methanol
and 3% concentrated H2O2 in Tris-buffered saline (TBS)
and then with bovine serum albumin (BSA). Antigen re-
trieval was performed using Tris-EDTA buffer at pH 9.0 or
citrate buffer at pH 6.0 for 1/2 h at 100 °C or pretreatment
with 1.3 μg/ml proteinase K for 10–15 min at 37 °C
(Invitrogen, Darmstadt, Germany). The sections were
incubated with primary antibodies (12–48 h, 4 °C)
against collagen 4 (COLL4; 1:5000, rabbit, Abcam,
Cambridge, UK), CD68 (1:2000, mouse, DAKO, Glostrup,
Denmark) or glial fibrillary acidic protein (GFAP; 1:1000,
rabbit, Abcam, Cambridge, UK) and a secondary biotinyl-
ated antibody (1:200; 2 h, room temperature, Vector

Fig. 1 Procedure used to scan individual free-floating 100 μm thick sections with ultra-high-resolution MRI. The part of the section containing the
microinfarct was dissected from the hemisphere section, coverslipped with saline, and imaged in a custom-made Plexiglas chamber in the MRI
scanner. After completion of the scans, the section was processed for histological staining

Yilmazer-Hanke et al. Acta Neuropathologica Communications            (2020) 8:33 Page 4 of 18



Laboratories, Burlingame, CA, USA). Alternatively, sec-
tions were incubated for 48 h with Ulex europaeus lectin
(UEA-l; 1: 800, biotin-coupled, GeneTex, Irvine, CA,
USA). Immunohistochemical reactions or lectin binding
were visualized with an avidin-biotin-peroxidase complex
(ABC Vectastain, Vector Laboratories, Burlingame, CA,
USA) and 3,3′-diaminobenzidine tetrahydrochloride
(DAB; Sigma Taufkirchen, Germany). For double-label
immunohistochemistry, sections were washed with TBS at
95 °C for 5min, and the procedure was repeated using the
next primary and secondary antibody. Subsequently, a
blue chromogen (Vector SK-4700 peroxidase substrate kit,
Linaris, Doffenheim; Germany) was used to visualize the
reaction product. Omission of the lectin or primary
antibody resulted in lack of staining.
The Coll4-positive microvasculature was evaluated in

all microinfarcts, which had been identified in neighbor-
ing PN and H&E stained sections (see Table 1). In
addition, histological characteristics of microinfarcts
were studied using double-label-IHC for Coll4 and
GFAP (9 sections, in 6 cases), for Coll4 and CD68 (14
sections, in 6 cases), for Coll4 and Aβ (8 sections, in 7
cases) and for Coll4 and UEA-l (8 sections, 4 cases).
MRI-scanned sections were stained using Coll4-/UEA-
double-labeling (n = 5), H&E (n = 2), Prussian blue
(n = 1), and Coll4-/CD68-double-label-IHC (n = 2).

Image acquisition and processing
Dicom images were viewed with the software RadiAnt
DICOM Viewer (version 4.6.5) and Image J (version v1.52j)
and exported in tiff-format. Brightness and contrast of im-
ages were optimized with the GNU Image Manipulation
Program (GIMP - version 2.8.16) and Adobe Photoshop
(version 10.0). The tissue object was segmented and pre-
sented on a black background for an optimal comparability
of the different scan sequence contrasts. To visualize the
microinfarct zone in selected areas and insets, images were
re-scaled by cubic interpolation. Enlarged images were
smoothened using Gaussian blurring and/or despeckling.
Microphotographs of histological sections were taken with
a digital camera (Jenoptik Progres Gryphax® Prokyon, Jena,
Thüringen, Germany) using an AX10 microscope (Zeiss,
Jena, Germany). For the detection of lipofuscin autofluores-
cence, sections were imaged with the aid of a LED fluores-
cence lamp and narrow selective green H bandpass filter
set (F46–801, AHF Analysetechnik, Tübingen, Germany).
In IHC-stained sections, either single images were taken or
z-stacks were obtained with bright field microscopy. Images
were processed with the software Adobe Photoshop (ver-
sion 10.0) to optimize light and contrast conditions as well
as color temperature, hue and saturation. Multiple single
images and z-stacks were stitched to visualize larger areas
or merged in the z-dimension as needed.

Results
Chronic cortical cerebral microinfarcts contained
extracellular pigment granules
Cortical cerebral microinfarcts were found in cases with and
without cortical Aβ deposits, hence, also in the absence of
cerebral amyloid angiopathy (CAA) (Table 1). Microinfarcts
could be easily detected by screening the cerebral cortex in
PN-stained sections [8]. The PN stain also helped to distin-
guish (sub)acute microinfarcts from microinfarcts at chronic
stages. The latter microinfarcts, which were now called
chronic cortical cerebral microinfarcts here, stood out in the
PN stain through tissue pallor and lipofuscin pigment accu-
mulation (Fig. 2a, c and e; Fig. 3a-b). In all chronic microin-
farcts studied, lipofuscin granules formed disorganized
aggregates outside the cytoplasm of Darrow red-stained
neurons or other cells (Fig. 2c1 and e1). The disorganized
lipofuscin granules were located in areas with neuronal cell
loss showing pallor. Hence, they resembled extraneuronal
lipofuscin remnants typically found in areas with extended
neuronal cell loss in other neurological diseases (e.g., [5, 8,
16, 54]). The extracellular lipofuscin aggregates in microin-
farcts could be clearly distinguished from intraneuronal lipo-
fuscin granules (Fig. 2e2, see also [44]) or the purplish,
cytoplasmic aldehyde fuchsine staining seen in macrophages
that clustered in the microinfarct core (Fig. 2a1, see also
[8]). In the H&E stain adapted to thick sections, chronic
microinfarcts also displayed pallor and tissue thinning (Fig. 4
and Supplementary file S1). However, pallor was mild com-
pared to the PN stain in small cortical infarcts with minor
tissue thinning, making it difficult to detect the microinfarc-
tion zone (Supplementary file S1). (Sub)acute ischemic cor-
tical cerebral microinfarcts, by contrast, only exhibited
pallor of the Nissl substance in the absence of extracellular
lipofuscin accumulation (Fig. 5a, case 5, died shortly after
admission to hospital).

Chronic microinfarcts contained a dense microvascular
meshwork with string vessels
A dense meshwork of Coll4-positive microvessels was
found in all microinfarcts that fulfilled the criteria of
chronic microinfarcts in the PN stain as described above.
The dense microvascular meshwork covered the heart of
the microinfarction zone with tissue pallor, which con-
tained extracellular lipofuscin aggregates (Fig. 2a2, c1 and
e1) and/or macrophages (Fig. 2a1 and e1; see also [8]). The
dense microvascular meshwork also occupied the “cavi-
tated” zone of chronic microinfarcts with puckering and
cavitation (Figs. 4c and 10e). Chronic microinfarcts further
exhibited many Coll4-positive string vessels, which corres-
pond to thin connective tissue strands that are formed by
collapsed basement scaffolds connected to the capillary net-
work [10, 22]. Especially, the microinfarction zone covered
with the dense microvascular meshwork contained numer-
ous Coll4-positive string vessels. Moreover, string vessels
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Fig. 2 Localization of chronic microinfarcts in different cortical layers with cell loss in the pigment Nissl (PN) stain and microvascular changes
shown with collagen 4 (Coll4)-immunohistochemistry in two adjacent thick brain sections. a, c, e Microinfarcts are located at deep cortical layers,
often extending to the juxtacortical white matter (a-b; superior frontal microinfarct, case 6), at superficial cortical layers (e-f; anterolateral superior
frontal microinfarct, case 6) or transcortically (c-d; parietooccipital microinfarct, case 4). The core of the microinfarction zone (MI) exhibits pallor in
the PN stain due loss of Darrow red-stained neurons (boundaries of the MI indicated by black arrow heads). The MI core further contains aldehyde
fuchsine-stained microglial cells (inset a1; asterisk in inset e1; also see Braak et al., 2018) and, as a result of cell loss, extracellular lipofuscin granules
(insets a2 and c1; open arrow head in inset e1) that are easily distinguishable from intracellular lipofuscin granules seen in surviving Darrow red-
positive neurons outside the MI zone (open arrow in inset e2). b, d, f In the MI core, chronic microinfarcts display a dense Coll4-immunoreactive
microvascular meshwork (b double-labeled for Campbell-Switzer, CS) with numerous string vessels (black arrows in insets b1 and d1). String vessels
also decorate the zone surrounding the MI core (black arrows in f; black arrow in inset f1). Scale bars: 1000 μm (a-d) and 2000 μm (e-f)
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Fig. 3 Chronic cortical cerebral microinfarct invaded by CD68-expressing macrophages with a phagocytic phenotype and glial fibrillary acid
(GFAP)-expressing astrocytes. Example of cavitated cortical cerebral microinfarct with puckering that is located superficially (a, c and e; superior
frontal, M1 motor cortex) and a second microinfarct occupying mid cortical layers (a, c and e; medial side of middle frontal gyrus) from the same
case (case 1). a-b The PN stain shows cell loss in both microinfarcts (a, b) and cavitation in the superficial microinfarct that partially extends to
deeper cortical layers (a). c-d Relationship of CD68--immunoreactive macrophages and changes in the microvasculature in the core region of the
MI (c, d). e-f GFAP-positive astroglial cells infiltrate both the core and marginal zone of the MI and are not restricted to the zone with the dense
Coll4-immunoreactive microvascular meshwork. Moreover, both the core and periphery of the MI are covered with numerous string vessels
(insets d1 and f1–2). Scale bars: 2000 μm (a), 800 μm (b-d, f) and 400 μm (e)
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were observed in the marginal zone of microinfarcts, which
surrounded the area with the dense microvascular mesh-
work (Figs. 2 and 3). In double-labeled sections, Coll4-
positive string vessels often lacked staining with the lectin
UEA-l (see Fig. 10), which indicated endothelial cell dam-
age, since UEA-l binds to the glycocalyx on the luminal
surface of vascular endothelial cells [22]. The dense micro-
vascular meshwork with string vessels was also found in a
cortical microinfarct with heavy iron accumulation,
although this case exhibited diffuse cortical Aβ deposits
and no CAA (Fig. 6c-f). Such microvascular changes were
absent in (sub)acute ischemic cortical cerebral microin-
farcts (Fig. 5).

Chronic microinfarcts are infiltrated by CD68- and GFAP-
positive cells
In all chronic cortical cerebral microinfarcts studied, the
core of the infarction zone was invaded by numerous
CD68-positive macrophages, which coincided with the

area covered by the dense microvascular meshwork (Fig.
3c-d). The infarction zone of all chronic microinfarcts
also contained a prominent astrocytic scar (Fig. 3e-f).
Both cell types were not limited to the area with the
highest microvascular density. They also covered the
margin of microinfarcts and some cells extended to the
neuropil surrounding the microinfarct. Moreover, astro-
cytes surrounding microinfarcts with cavitation appeared
larger than astrocytes in microinfarcts with minor
thinning of the tissue (Fig. 3e).

Cortical cerebral microinfarctions occur in different
cortical layers
The size and location of the microinfarcts was determined
using corresponding PN-stained and Coll4-labeled sec-
tions. The area that showed overlap of tissue pallor in the
PN stain (Fig. 2a, c and e) and a dense Coll4-positive
microvascular meshwork was defined as the microinfarc-
tion zone (Fig. 2b, d and f). Microinfarcts ranged from

Fig. 4 Modified H&E stain (case 5) showing a chronic cortical cerebral microinfarct with comparatively large tissue thinning and cavitation in the occipital
lobe, which extends from mid-cortical layers to the juxtacortical zone (a-b). In a neighboring section double-labeled for Coll4 and beta-amyloid (Aβ), the
same microinfarct displayed a dense microvascular meshwork with numerous string vessels (arrow heads) and parenchymal Aβ deposits (arrow) (c). The
inset (c’) in the H&E-stained section (h) corresponds approximately to the same area as in (c). Scale bars: 500 μm (a) and 200 μm (b-c)

Fig. 5 Subacute superficial cortical cerebral microinfarct (case 5) with pallor in the PN stain (a). At higher magnification, neuronal somata show
reduced Darrow red (Nissl) staining, but no extracellular lipofuscin granules are visible (a1 and a2). Also, no string vessels or other obvious
changes are evident in the microvascular network visualized with IHC using antibodies against Coll4 (b and inset b1). Scale bars: 500 μm (a-b)

Yilmazer-Hanke et al. Acta Neuropathologica Communications            (2020) 8:33 Page 8 of 18



200 μm to 2000 μm in width and/or length and were iden-
tified in all layers of the cerebral cortex (Supplementary
file S2). Superficial and deep cortical microinfarcts were
often broader, whereas transcortical microinfarcts were
usually narrow. Superficial cortical microinfarcts

frequently led to an indentation of the cortical surface.
Deep infarctions with a juxtacortical position extended to
the adjacent white matter (Fig. 2). Microinfarct locations
were compatible with the layer-specific blood supply of
the cerebral cortex by arterioles classified as A1 to A6 type

Fig. 6 Morphological characteristics of a superficial cortical microinfarct shown in three adjacent thick sections from a case with diffuse
parenchymal Aβ deposits (case 8). a-b The microinfarction zone shows pallor and altered microvessels in the modified H&E stain. c-d
Microvascular changes in this case consist of a dense microvascular meshwork with a high density of string vessel as seen in cases without Aβ
deposits. e-f Prussian blue staining shows iron accumulation in the core of the microinfarction zone. Scale bars: 250 μm (a, c and e) and 100 μm
(b, d and f)
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arterioles by Duvernoy and colleagues [17]. Moreover,
some transcortical microinfarctions bifurcated in deeper
cortical layers indicating that both the main arteriolar
branch and its side branches were affected (Fig. 2c). Thus,
a disturbance in the circulation in A1–4 arterioles (e.g.,
through hypoperfusion, occlusion or thromboembolic
closure) might lead to microinfarcts in superficial and
middle cortical layers, whereas a cessation of the circula-
tion in A4–6 arterioles could lead to microinfarcts in deep
cortical and juxtacortical layers, and a full disruption of
A5 arterioles to transcortical microinfarcts (Fig. 7).

Variability of single section ultra-high resolution MRI
signal intensities among microinfarcts
Altogether 6 histologically verified microinfarcts were
identified in 5 MRI-scanned sections (Table 1). The
microinfarct area, which showed pallor in the PN stain
and was covered by a dense microvascular meshwork in
the histological sections, produced hypointense T1- and
PD-weighted MRI signals and hyperintense T2-weighted
MRI signals. Moreover, in T2*-weighted gradient echo

images, a hypointense signal with a blooming effect was
seen in microinfarct zone, which probably originated from
paramagnetic signals produced by iron aggregates. How-
ever, the intensity of MRI signals produced by the chronic
cortical cerebral microinfarcts varied considerably, al-
though in histological sections all microinfarcts exhibited
similar pathological features, such as a dense Coll4-
positive microvascular meshwork with string vessels, loss
of Nissl-stained neurons, and extracellular lipofuscin gran-
ules. The intensity of T1-weighted and PD-weighted MRI
signals of microinfarcts ranged from low (Fig. 8; Supple-
mentary files S3 and S4) to strong (Figs. 9 and 10). A
stronger T1- or T2-weighted hypo-/hyperintense signal
correlated with tissue thinning and cavitation (Fig. 10). In
some microinfarcts, the rim of the microinfarction zone
gave a slightly hyperintense MRI signal in PD-weighted
images (Fig. 10c, Supplementary file S3). Furthermore, the
intensity of T2*-weighted MRI signals correlated more
with the level of iron accumulation in the microinfarct
core rather than the density of parenchymal diffuse or
cored Aβ plaques. In T2*-weighted images, microinfarcts

Fig. 7 Diagram showing the blood supply of the cerebral cortex by A1 – A6 type arterioles according to Duvernoy et al. [17] and putative
microinfarction zones resulting from the occlusion of these arterioles. According to this diagram, occlusion of A1 – A3 arterioles leads to
superficial cortical microinfarcts, whereas the closure of deeper portions of type A4 – A6 arterioles give rise to deep cortical microinfarcts. When
A4 – A5 arterioles are affected more superficially, this may cause a columnar microinfarct encompassing both superficial and deep cortical layers.
Microinfarcts at juxtacortical positions may result from occlusion of deep branches of A5 – A6 arterioles, which supply the transition zone
between the deep cortical layer and the underlying subcortical white matter
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Fig. 8 Postmortem ultra-high-resolution MRI of a 100 μm thick section scanned at 11.7 T followed by post-imaging histological staining (case 2).
a The microinfarct (asterisk) could not be identified in the T2*-weighted image, and the microinfarction zone showed very little iron deposition as
indicated by Prussian blue staining in an adjacent section (not shown). However, microvessels appeared enlarged due to the blooming effect,
probably induced by susceptibility effects of iron magnetism in erythrocytes (see inset a1). b Proton density (PD) image sequence reflecting the
proton (water) content in the tissue also failed to visualize this microinfarct (see asterisk and inset b1). c In the T2-weighted image, a slightly
enhanced hyperintense signal was observed at the superficial part of the infarction zone (white arrow in inset c1). d The superficial zone of the
microinfarct (see asterisk) also gave a slightly hypointense signal in the T1-weighted image (area indicated by black arrows in inset d1). e-f The
MRI-scanned section showed a microinfarct with characteristic changes in the microvasculature as seen in double-labeling for Coll4 and UEA-l
lectin, which visualizes the endothelial glycocalyx, but the microinfarct area covered by the dense microvascular meshwork could not be
distinguished well from the surrounding tissue based on MRI signals [see in frame f in (e) and the enlarged inset in (f)]. Arrow heads (a-d) points
to an artefact resulting from an overlay of two flee-floating ends of the section. Scale bars: 3 mm (e) and 500 μm (f)
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Fig. 9 Thick brain section (case 8) first scanned with 11.7 T MRI and then double-labeled for Coll4 and UEA-l (a-j), whereas adjacent sections were
stained with iron histochemistry (k; Prussian blue stain) and double-label immunohistochemistry for Coll4 and Aβ (l). a, f T2-weighted image does
not show changes in the signal intensity in the microinfarct area (dotted arrow) despite the strong hyperintense signal produced by saline in a
tear nearby and around the section. b, g The same microinfarct (dotted arrow) gave a hypointense T1-weighted signal. c, h In the PD-weighted
image, the microinfarct gave a reduced and its margin a hyperintense proton signal. d-e and i-j The hypointense microinfarct zone with a
blooming effect in the T2*-weighted image (d, i) contained a dense microvascular meshwork (e, j). k-l Microinfarct area giving a hypointense T2*
signal (white arrows) showed iron deposition in the adjacent section (black arrows) independently from the diffuse Aβ deposition in superficial
cortical layers, although larger iron aggregates in deep cortical layers (asterisk in k) may be localized in cored Aβ plaques (hashtag in l). ctx cortex;
wm white matter. Scale bars: 2 mm (e), 500 μm (j) and 400 μm (k-l)
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Fig. 10 Images from a 100 μm-thick brain section with a superficial cavitated microinfarct in the motor cortex (case 1). The section was first
scanned with 11.7 T MRI (a-d) and then double-labeled for Coll4 and UEA-l (e) after capturing autofluorescence (f). a The cavity of the
microinfarct gave a hyperintense signal in the T2-weighted image. b The T1-weighted MRI signal was hypointense in the microinfarct cavity and
in tissue areas that showed thinning. c The PD-weighted image exhibited a hypointense signal in the core and a slightly hyperintense signal in
the rim of the microinfarct cavity. d In the T2*-weighted image, large vessels and the microbleed in the cavity produced magnified hypointense
signals (blooming effect). e The microinfarct cavity contained damaged microvessels and the rim of the cavity was rich in Coll4-positive string
vessels that lacked UEA-l staining. f Autofluorescence (AF) of the tissue was reduced in the microinfarct cavity and in areas with tissue thinning
around the cavity. Betz cells could also be identified based on their autofluorescence (arrow in inset d1). Scale bars: 500 μm (e-f)
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with a low iron load produced a low signal contrast (Fig.
8, Supplementary file S3). In microinfarcts with iron accu-
mulation, the intensity of the hypointense T2*-weighted
MRI signal was higher in microinfarcts with a higher iron
load when compared to microinfarcts with low iron accu-
mulation, as can be seen in two different microinfarcts
from the same case (Fig. 9 and Supplementary file S4).

Discussion
The microvasculature at the infarction zone of chronic cor-
tical cerebral microinfarcts showed unique pathologic fea-
tures that seemed to be largely independent of their location
in different layers of the cerebral cortex. Common to all
chronic microinfarcts identified in this study was tissue pal-
lor with loss of neurons and lipofuscin pigment accumula-
tion that was accompanied by a dense microvascular
meshwork. The microvascular meshwork in the microin-
farct core and the microinfarct margin contained a high
density of string vessels that lacked expression of the endo-
thelial marker UEA-l. In addition, the microinfarct core was
infiltrated by activated CD68-positive macrophages and
GFAP-positive astrocytes, whereas astrocytes often extended
to the microinfarct periphery. Nevertheless, chronic cortical
cerebral microinfarcts also showed some variability, espe-
cially with regard to their size and shape and the degree of
iron accumulation in the microinfarct core, which impacted
their detectability in postmortem ultra-high-resolution MRI.
These features of chronic cortical microinfarcts are

consistent with findings obtained in thin paraffin sections
stained for IHC and/or H&E, which displayed pallor due to
reduced eosinophilic staining of the neuropil and loss of
neurons, astrogliosis, activated microglial cells, and occa-
sionally cystic formations [12, 15, 26]. (Sub)acute cortical
cerebral infarcts did not exhibit these pathological changes
or a dense microvascular meshwork, thereby supporting the
chronic nature of the microinfarcts imaged here [13, 33, 34].
Therefore, these microinfarcts were summarized as
“chronic” microinfarcts now, although the observed patholo-
gies may represent different phases of microinfarcts. In
patients with stroke, where the sequence of pathological
events in infarcts could be established based on the time-
point of injury, three phases were described: (1) Acute neur-
onal injury with cytoplasmic vacuolation, eosinophilia (red
neurons), and ghost cell formation together with edematous
spongiosis, (2) necrosis and organization, which was charac-
terized initially by (a) acute inflammation with neutrophils,
and later by (b) chronic inflammation with macrophages
and perivascular cuffing, and finally (3) chronic resorption
with macrophages, pallor, spongiosis and/or cavitation.
Phases 2 and 3 also exhibited various degrees of axonal
spheroids, gemistocytes, and neovascularization [34].
Larger and/or cavitated cortical cerebral microinfarcts

were detectable in histological sections in the PN stain,
Coll4-IHC, iron histochemistry and H&E staining adapted

to thick brain sections. However, smaller microinfarcts with
minor tissue thinning in the absence of cavitation or puck-
ering were often barely noticeable in thick H&E-stained
sections. Therefore, thick brain sections stained for PN
stain and Coll4-IHC were screened for a more reliable iden-
tification and characterization of the latter microinfarcts.
Microinfarcts are common in patients with mild cognitive
impairment and dementia, but current estimates of their
numbers in the human brain are largely based on the ex-
trapolation of findings obtained in standard paraffin sec-
tions [12, 48]. Therefore, the insights gained here into the
organization of smaller cortical cerebral microinfarcts pro-
vide a basis for a more systematic investigation of cortical
microinfarcts in larger patient cohorts. Our analyses of
thick brain sections further allowed the reliable detection of
comparatively small iron depositions in microinfarcts, al-
though factors that influenced iron accumulation in chronic
microinfarcts remained elusive. At chronic phases of micro-
infarcts, activated macrophages can persist in the core of
the infarction zone, as shown here and by others [42, 50],
where they may engulf extracellular lipofuscin aggregates
resulting from neuronal cell death [8] or take up iron in re-
sponse to neuroinflammatory processes [39]. Moreover, the
microinfarct zone containing iron accumulation coincided
with the zone infiltrated by activated microglial cells and a
dense microvascular meshwork. Inasmuch as these cortical
microinfarcts might have originally evolved from ischemic
[2, 32] or hemorrhagic infarcts, a major source of iron in
microbleeds is hemoglobin and its degradation products,
which lead to transformation of macrophages into hemosi-
derophages [18, 31].
On postmortem MR images obtained with a field strength

of 1 Tesla (T), only 25% of cortical microinfarcts were de-
tected correctly and 25% were thought to be artifacts,
whereas 33% of the histologically verified microinfarcts were
not visible [19]. The detection rate of cortical microinfarcts
was also improved considerably by imaging at 7 T in
comparison to 3T, which was confirmed histologically
through subsequent serial sectioning. Therefore, technical
limitations, such as field strength, image resolution, pulse-
sequence parameters and MRI-histological matching were
considered to be the major sources for obtaining false nega-
tive results [15, 25, 47, 49]. However, our analyses with a
field strength of 11.7 T now showed that there is also some
variability in the histopathological features of cortical cere-
bral microinfarcts, including not only their size and shape,
the cortical layer in which they occur, thinning, and cavita-
tion, but also the degree of iron accumulation, which influ-
enced MRI signals and the detectability of microinfarcts in
this study. While microinfarcts produced hypointense MRI
signals in T1-weighted, and to some extend also in PD-
weighted images, hyperintense T2 signals were more vari-
able. Moreover, the T1 signal strength was more prominent
when thinning of tissue or cavitation was evident, and
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strong T2 signals were also observed in microinfarcts with
cavitation. These MRI signal intensities and contrasts pro-
duced by cavitated and non-cavitated cortical cerebral
microinfarcts at 11.7 T in T1-, T2, PD- and T2*-weighted
sequences were consistent with data obtained at 7 T in pre-
vious MRI-histological correlation studies [15, 46, 49]. How-
ever, MRI signals of smaller and narrower microinfarcts
with less tissue thinning could be also imaged and histologi-
cally studied here with 11.7 T MRI, although the MRI sig-
nals produced by these microinfarcts with lower field
strengths or in vivo MRI scans remains to be determined.
Iron accumulation, histologically confirmed with Prussian
blue staining, was the likely source of changes in susceptibil-
ity detected in chronic microinfarcts in our T2*-weighted
MR images. In clinical studies, T2*-weighted MRI sequences
are commonly used to detect microbleeds in patients with
CAA [53]. Of note, several cases here suffered from cerebro-
vascular diseases resulting in stroke and most of the individ-
uals either lacked extracellular Aβ aggregates or they
displayed mainly parenchymal Aβ deposits.
A major obstacle in analyses of structural correlates of

MRI signals is the identification of the spatial correspond-
ence of a lesion between the MR images and histological
sections, commonly referred to as MRI-histological match-
ing [1, 37]. Moreover, histological sections often show de-
formations that occur during resection, handling and
histological processing of the tissue, making the registration
of tissue-derived histological images to the MR images ne-
cessary. During registration, deformations in histological
images are removed with algorithms used for remodeling
and transformation of the images with the goal to improve
the spatial correspondence between MRI scans and histo-
logical images [24, 37]. By imaging free-floating thick brain
sections with a field strength of 11.7 T, we could not only
obtain MR images with ultra-high resolution here, but also
circumvent problems associated with MRI-histological
matching and image registration. Furthermore, we could
achieve a direct correlation between the MRI signals ac-
quired and histological changes in the microinfarction zone
including smaller iron deposits and string vessels that are
difficult to detect in standard paraffin sections. Neverthe-
less, ultra-high-resolution imaging of 100 μm thick brain
sections might result in a reduced MRI signal-to-noise ratio
despite the use of high field strengths. Postmortem formalin
fixation also alters MRI signals [36], potentially affecting
the detection of structural changes in the density of micro-
vessels, macrophages or astrocytes, especially in T1- and
T2-weighted and PD images.
The blood supply of the cerebral cortex is provided by

branches of major cerebral arteries that are located in the
subarachnoid space. Arterioles arising from these branches
enter gyri and sulci in a perpendicular fashion and give rise
to branches that supply specific layers of the cerebral cortex.
Duvernoy et al. [17] have classified cortical arterioles from

A1-A6 based on the depth of the cortical layer they reach,
which correlates well with the locations of the microinfarcts
observed here. Thus, hypoperfusion or bleeding in the zones
supplied by A1-A5 type arterioles or their branches is per-
fectly suited to cause circumscribed infarctions in the super-
ficial and deep layers of the cerebral cortex. Because A5 type
arterioles run through the cortex and reach the subcortical
white matter, their occlusion may result in transcortical
microinfarctions. Moreover, portions of A5 and A6 arteri-
oles that reach the subcortical white matter form multiple
anastomoses (Duvernoy at al., 1981). This may explain the
confinement of microinfarcts to deep cortical and juxtacorti-
cal locations, and the sparing of the deeper subcortical white
matter, when juxtacortical arteriolar branches are affected.
Rupture or occlusion of these arterioles could be caused by
CAA or atherosclerosis of leptomeningeal vessels and their
arteriolar branches that supply the cerebral cortex [31, 43].
Other causes of cortical cerebral microinfarcts include
thrombotic microembolisms originating from the heart (e.g.,
endocarditis) or plaques in cerebral arteries, lipid microem-
bolisms following major surgeries, hereditary forms of small
vessel disease such as CADASIL, leukoencephalopathy, and
radiation therapy [11, 25].
A common feature of the chronic cortical cerebral

microinfarcts seen here was the presence of a dense
microvascular meshwork with string vessels in the infarc-
tion zone. String vessels are known to emerge during the
course of vascular regression, which is tightly regulated dur-
ing angiogenesis and neovascularization [30, 38, 51]. Devel-
opment of string vessels can be also mediated by a loss of
factors that promote endothelial cell survival and angiogen-
esis such as vascular endothelial growth factor (VEGF) [3,
10, 40]. In our cases, Coll4-positive string vessels at micro-
infarcts and their periphery lacked UEA-l expression indi-
cating endothelial recession, which is associated with
cessation of blood perfusion in the vessels affected [10, 22,
55]. Thus, the presence of string vessels pointed to distur-
bances in the microcirculation in and around cortical cere-
bral microinfarcts, which may explain the comparatively
strong MRI signals obtained from relatively small cortical
microinfarcts in vivo [27, 28, 32]. Thus, advanced tech-
niques that detect changes in cerebral perfusion [20] and/
or axonal disorganization [14] may further enhance the
visualization of chronic cortical cerebral microinfarcts with
in vivo MRI, especially when combined with techniques
that use local perturbations of the MR phase to enhance
T2* contrast, e.g., 3D T2*-weighted imaging with postpro-
cessing susceptibility-weighted imaging [25], to distinguish
microbleeds from calcifications.

Conclusions
Our results indicate that chronic cortical cerebral micro-
infarctions occur at superficial, middle and deep layers
of the cortex, and they can extend throughout all
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cortical layers, which is consistent with the pattern of
blood supply provided by different types of cortical arte-
rioles. Ultra-high resolution MRI performed in single
sections permits the characterization of MRI signal con-
trast in small chronic cortical cerebral microinfarcts with
minor thinning. Together with recent improvements in
the resolution of imaging techniques in vivo, the know-
ledge of the location, shape and MRI signal contrast of
cortical cerebral microinfarcts and patterns of iron accu-
mulation may aid in the development of new analytical
tools for their identification with imaging. Moreover,
cortical cerebral microinfarcts at chronic stages exhibit a
high vessel density with numerous string vessels in and
near the microinfarct, which may alter the pattern of
blood flow in the infarction zone. Such changes in the
microcirculation in the microinfarction zone might be
detectable with advanced imaging techniques, making it
possible to identify cortical cerebral microinfarcts in liv-
ing patients.
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1186/s40478-020-00900-1.

Additional file 1: Figure S1. A chronic cortical cerebral microinfarct in
the superior frontal gyrus with minor tissue thinning that is located in
mid-cortical layers (case 6) is shown in two neighboring 100 μm-thick
brain sections stained with the pigment Nissl (PN) (a) and modified H&E
stains (b-c). In thick brain sections, the boundaries of the pale microin-
farct are clearly evident in the PN stain, but the paleness of the microin-
farction zone is more difficult to discern in the modified H&E stain. The
inset (c) shows an enlaged area from (b) with various cell types and ves-
sels (arrow) in the core of the microinfarct stained with H&E. Scale bars:
400 μm (a-b) and 150 μm (c).

Additional file 2.

Additional file 3: Figure S3. The insets of MR images from Fig. 8 are
presented here again (a-d) together with an autofluorescence image (AF)
taken from the same 100 μm-thick section after the MRI scan (i). The
microinfarct was also visualized in neighboring sections using single-
labeling for Coll4 (e), Prussian blue staining (f), double-labeling for Coll4
and beta amyloid (Aβ) (g) and the pigment Nissl (PN) stain (h).

Additional file 4: Figure S4. MRI scans and histology of a second
microinfarct from the same imaged (a-j) and same adjacent sections
(case 8) shown in Fig. 8 (k, l). Although this microinfarct also contains a
dense Coll4- and UEA-l-positive microvascular meshwork (e, j) and cor-
tical Aβ deposit (diffuse superficially, cored in deep layers; l), its signal in
T1-, T2- and PD-weighted images is difficult to detect (a-c and f-h). How-
ever, the T2*-weighted hypointense signal produced by the microinfarc-
tion zone is comparatively weak (d, i), which correlates well with the
lower degree of iron accumulation at the microinfarction area (k) com-
pared to the other microinfarct. Scale bars: 2 mm (e) and 500 μm (j-l).
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