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Navigation by anomalous random 
walks on complex networks
Tongfeng Weng1, Jie Zhang2, Moein Khajehnejad1, Michael Small3,4, Rui Zheng1 & Pan Hui1

Anomalous random walks having long-range jumps are a critical branch of dynamical processes 
on networks, which can model a number of search and transport processes. However, traditional 
measurements based on mean first passage time are not useful as they fail to characterize the cost 
associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to 
characterize anomalous random walks that represents the expected traverse distance taken by walkers 
searching from source node to target node, and we provide a procedure for calculating the MFTD 
between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed 
approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying 
network structure. Moreover, applying our framework to the famous PageRank search, we show how to 
inform the optimality of the PageRank search. The framework for analyzing anomalous random walks 
on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion 
processes, and provides a unified scheme to characterize search and transport processes on networks.

Complex networks are ubiquitous in the real world ranging from sociology to biology and technology1. Going 
beyond the interesting topological properties, quantifying the impact of structural organization of networks on 
transport processes has become one of the most important topics. As a paradigmatic transport process, random 
walks on complex networks have been intensively studied2–6. A variety of measurements including mean first pas-
sage time (MFPT)2, first passage time4, and average trapping time6 have been proposed, providing a comprehen-
sive characterization of random walks on networks. Moreover, these studies also facilitate our understanding of 
diverse dynamical processes on networks including epidemic spreading7, synchronization8, and transportation9.

However, for random walks, the walker is confined only to the neighbourhood of a node in each jump, which 
cannot model some real situations10, and also impedes search and transport efficiency on networks4. This limi-
tation is circumvented by the natural of Lévy walks model11,12. Recently, intensive attention has been devoted to 
anomalous random walks on networks, such as Lévy walks13–15, traditional web surfing16, and even electric sig-
nals transmitted in brain networks10. One striking feature of anomalous random walks is having the long-range 
hopping (i.e., the walker can hop to far away nodes not directly connected to its current position). In fact, the 
occurrence of long-range hopping is frequently encountered in our life. For example, we usually communicate 
with people socially close to us, but also occasionally with those that are unconnected14. Analogously, when 
doing web surfing, one usually proceeds by following the hyperlinks but casually may open a new tab to look for 
the related topic10. Although it is widely agreed that anomalous random walks represent an important branch of 
search and transport processes on networks, how to characterize anomalous random walks and specifically, how 
to uncover the interplay between their dynamics and the underlying network structure has not been addressed. 
Traditional measurements like the mean first passage time neglect the difference between the cost associated 
with the nearest-neighbor jump and the long-range hopping, therefore cannot properly characterize anomalous 
random walks on networks.

In this paper, we propose the mean first traverse distance that represents the expected traverse distance 
required by a walker moving from a source node to a target node. Importantly, this allows the cost associated with 
hopping to be taken into account in the characterization of anomalous random walks; this therefore overcomes 
the problems of traditional measurements adopted in general random walks. We obtain analytically the MFTD 
and the global MFTD on arbitrary networks. Results on Lévy walks demonstrate that these measurements can 
effectively characterize the relationship between network structure and anomalous random walks. Moreover, 
when applied to the PageRank search, we show how to inform the optimality of the PageRank search. The new 
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metric enables effective characterization of dynamics of anomalous random walks on networks, which promises 
more efficient search and transport processes on networks.

Results
The MFTD of anomalous random walks. We start from an undirected network consisting of N nodes. 
The connectivity of nodes is fully described by a symmetric adjacency matrix A, whose entry aij =  1 (0) if nodes i 
and j are (not) connected. For anomalous random walks, at each time step, the walker jumps from current node i 
to node j with a nonzero transition probability pij regardless of the connection profile of node i. Take Lévy walks 
on networks for example, the transition probability is defined as = ∑α α− −p d d/ij ij k ik , where α is the tuning expo-
nent lying in the interval 0 ≤  α <  ∞  and dij is the shortest path length between nodes i and j13. To characterize 
anomalous random walks, we propose the concept of a MFTD lij, which is the expected distance taken by a walker 
to first reach node j starting from node i. Intuitively, the traverse distance in a one-step jump is shorter for a 
walker when nodes are directly connected, while this distance tends to be larger for indirectly linked nodes. 
Inspired by the empirical findings that the lengths of links usually obey a power law distribution17, we adopt the 
power function = βc dij ij  to describe the effective distance of one-step jump, where β named the cost exponent is 
a nonnegative value. In this situation, if the first step of the walk is to node j, the expected traverse distance 
required is βdij ; if it is to some other node k, the expected traverse distance becomes lkj plus βdik for the previous step 
already taken. Thus, we have
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Using the Markov chains theory18,19, the MFTD lij of a anomalous random walk (see appendices) becomes
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where wk is the kth component of the stationary distribution of the anomalous random walk, Tij is the MFPT from 
node i to node j, and zij is an element of the fundamental matrix Z =  (I −  P +  W)−1. Specifically, when β =  0, the 
effective distances of one-step jumps are same (i.e., cij =  1). In this situation, it is easy to verify that the MFTD lij 
reduces to the MFPT Tij, which means that our paradigm can incorporate the commonly used MFPT as a special 
case. To further evaluate the search efficiency of an anomalous walker, we calculate the global MFTD 〈 L〉  by aver-
aging Eq. (2) over all pairs of source and target nodes, that is,
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Substituting Eq. (2) into Eq. (3), we have
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where 〈 T〉  is the average of MFPTs over all pairs of nodes in the networks (see appendices). Here, 〈 L〉  quantifies 
the ability of the anomalous walker to search and transport at the global scale on the network. In this context, 
smaller 〈 L〉  represents a more effective way of achieving mobility. In the following we will demonstrate how these 
measurements can effectively characterize diverse anomalous random walks on networks.

The MFTD scheme for characterizing Lévy walks. We first address a specific anomalous random walk —  
Lévy walks on networks. A Lévy walk exerts a power-law transition probability with the distance given by 
= ∑α α− −p d d/ij ij k ik . Clearly, the tuning exponent α plays an important role in controlling the trade off between 

short-range and long-range jumping in one step, which in turn fully determines the behaviors of the Lévy walk. 
Specially, when α is very small, the walker visits all nodes with approximately equivalent probability. In contrast, 
the walker can only possibly hop to the nearest neighbors at an extremely large α. In this context, the Lévy walk 
degenerates to the generic random walk2. Using the balance condition, the stationary distribution of the Lévy 
walk can be expressed as
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∑
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Inserting the above equation and the transition probability into Eq. (2) yields
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A similar calculation applied to Eq. (4), the global MFTD 〈 L〉  of Lévy walks reads
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To test the validity of Eq. (7), we report both the numerical and theoretical results of the global MFTD for Lévy 
walks taking place in the planar Sierpiński gasket20 and the (1, 2)-flower model21. These two networks are typical 
hierarchical nets having the same number of nodes and edges but exhibiting apparently distinct structural organ-
izations, which can favor us to explore how the network structure directly influences the behavior of a Lévy walk. 
To achieve the numerical results, we compute the traverse distance required for a walker to travel from a source 
node to a target node chosen randomly and average over the ensemble of 50,000 independent runs for each test. 
Figure 1 shows an excellent agreement between numerics and Eq. (7) for the different cost exponents β. In par-
ticular, when β =  0, the minimum of 〈 L〉  occurs at α =  0 regardless of the network structures, which reproduces 
the previous results based on the MFPT22. However, this result is unreasonable in practice without considering 
the distinct costs induced by the nearest-neighborhood jumps and the long-range hops. In contrast, we find that 
when β >  0, the profiles of different network organizations show clearly distinct behaviors. Specially, the profiles 
of the planar Sierpiński gasket display a clear minimum in the medium range α, which minimizes the search dis-
tance, (i.e., the global mean first traverse distance). However, such behavior is absent for the (1, 2)-flower model 
for β >  0, where they present a clearly monotonous tendency, see Fig. 1(b). Such difference can be intuitively 
explained when referring to their topological properties. Specifically, the Sierpiński gasket is a fractal network 
without the “small-world” property20, see its topological structure in Fig. 1(a). In contrast, the (1, 2)-flower net-
work has the “small-world” feature and the “scale-free” characteristics21, as shown in Fig. 1(b). Meanwhile, we 
also notice that, when α is large, the transition probability of the Lévy walk degenerates to a generic random walk. 
Hence, all curves approach a fixed value for α >  9, see in Fig. 1(a) and (b), as expected.

To further demonstrate the difference induced by network structure, we observe the size effect on the global 
MFTD 〈 L〉  of the planar Sierpiński gasket and the (1, 2)-flower model. We find that the profiles of each network 
present the same tendency for different network sizes N, see Fig. 2(a) and (b). Interestingly, the result presented 
in Fig. 2(a) clearly shows the presence of a minimum 〈 L〉  for different network sizes at the same exponent α =  2.8. 
The way in which 〈 L〉  scales with network size N on the planar Sierpiński gasket seems to follow rather different 
behaviors depending on the tuning exponent α. Specially, when α ≠  2.8, the global MFTD 〈 L〉  follows a power 
law with network size N, see Fig. 2(c). This is supported by observing the almost invariant values of the successive 
slopes δs obtained from ln〈 L〉  versus lnN, as shown in the inset of Fig. 2(c). Conversely, for α =  2.8, the successive 
slopes δs present a clearly decreasing tendency. However, for the (1, 2)-flower model, the 〈 L〉  follows approxi-
mately a power law with network size N, see in Fig. 2(d). Note that here we choose the cost exponent β =  1 for 
convenience. However, such behavior of 〈 L〉  versus N is general for an arbitrary cost exponent β.

Clearly, from Eq. (7), the cost exponent β plays an important role in controlling the search efficiency for 
Lévy walks. In order to explore how the optimal search efficiency of a Lévy walk changes with respect to the cost 
exponent β, we investigate the interplay between β and α for various networks including three synthetic models 
(the Barabási-Albert (BA) model23, the planar Sierpiński gasket20, and the (u, v)-flower model21) and two real 
networks (the “Dolphin” network24 and an e-mail network25). Here, for a fair comparison, we calculate the meas-
urement logN〈 L〉  in the (α, β) plane for eliminating the size effect of networks. Generally, regions with smaller 
logN〈 L〉  indicate an efficient way of search and transport based on Lévy walks. Figure 3 shows contour maps of 
logN〈 L〉  in the (α, β) plane computed for these selected networks. Interestingly, we find that distinct network 
structures lead to different patterns in the corresponding (α, β) plane. Specifically, the (α, β) planes generated 
from networks having the “small-world” characteristics (such as the BA model and the (1, 2)-flower model), 

Figure 1. The global MFTD 〈 L〉  as a function of α, for Lévy walks on (a) the planar Sierpiński gasket and  
(b) the (1, 2) flower model with the same size N =  366 nodes and β =  0, 0.5, 1, respectively. Symbols represent 
the values of 〈 L〉  found numerically, while solid lines correspond to the theoretical prediction of Eq. (7). Error 
bars represent the mean first traverse distance 〈 L〉  over 20 tests and each test is averaged over the ensemble of 
50,000 independent runs.
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demonstrate an “estuary” pattern — implying that Lévy walks are not the optimal way to search when β >  0.4. In 
contrast, typical fractal networks without the “small-world” property (for example, the planar Sierpiński gasket 
and the (4, 5)-flower model), result in a striking “flame” in the (α, β) planes, suggesting that there exists an opti-
mal tuning exponent α, which minimizes the traverse distance for a broad range of cost exponents β. However, 
none of these patterns match the ones found in the Dolphin network and the e-mail network, whose (α, β) planes 
show “rippled” features, meaning that the optimal exponent α gradually increases with the cost exponent β. The 
(α, β) plane uncovers the relationship between network structure and the behavior of Lévy walks, which provides 
information to design more effective search strategies and transport mechanisms in different environments. Note 
that, for convenience, we choose the cost exponent in the range [0, 1.2] as this can highlight the effect of network 
structure on the transportation of the Lévy walks. Of course, the cost exponent can take other values outside 
this range. However, based on the Eq. (7), we find that the profiles of the Lévy walk present a clearly decreasing 
tendency independent of network structure for the large cost exponent β. In this situation, the Lévy walk is less 
efficient than the random walk for information diffusion and transportation. For this reason, we do not include 
the trivial results of the large cost exponents here.

Furthermore, we follow the spirit of the MFPT, and extract more statistics from the MFTD. Here, we introduce 
the average trapping distance (ATD) defined as follows:
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Clearly, the ATD Lj quantifies the mean of MFTD lmj to the trap node j taken over all starting points with the sta-
tionary distribution. Submitting the results of Eqs (5) and (6) into Eq. (8) yields (see appendices)
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where = ∑ α−K dj m jm  denotes the long-range degree of node j13 and the term zjj is independent of the cost expo-
nent β. Specifically, when α is small, the diagonal values of Z are almost the same. In this context, a clear scaling 
behavior emerges such that −~L Kj j

1 regardless of the underlying network structure. This is supported by  

Figure 2. The global MFTD 〈 L〉  as a function of α for Lévy walks on (a) the planar Sierpiński gasket and (b) the 
(1, 2) flower model over different network sizes N. The behaviors of 〈 L〉  versus N for different exponents α on 
the planar Sierpiński gasket (c) and the (1, 2) flower model (d). In the insets, we show the plots of the successive 
slopes δs obtained from ln〈 L〉  versus lnN. Note that here we set the cost exponent β =  1.
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observing the plots of lnLj vs lnKj shown in Fig. 4(a) and (b). With an increase of α, the slope of lnLj versus lnKj 
gradually decreases and finally asymptotically approaches to that of random walks as described in ref. 4. Results 
demonstrate the important role of α in shaping the ATD. Meanwhile, since the cost exponent β only influences 
the term ∑ ∑ β α−di j ij  based on Eq. (9), changing the cost exponent β will just shift vertically the curve of lnLj 
versus lnKj but does not affect their profile. This is supported by observing the profiles of lnLj versus lnKj, which 
present a similar tendency for different cost exponents β as illustrated in Fig. 4(c) and (d). We further find a linear 
relationship between lnLj and β, when fixing the tapping position j and the tuning exponent α, see the insets in 
Fig. 4(c) and (d). The results are consistent with our theoretical prediction of the relationship lnLj~Cβ, where C is 
a constant value related to the fractal dimension of a given network (see appendices).

Figure 3. The measurement logN〈 L〉  in the (α, β) parameter plane of (a) the BA model, (b) the (1, 2)-flower 
model, (c) planar Sierpiński gasket, (d) the (4, 5)-flower model, (e) the “Dolphin” network24, and (f) the e-mail 
network25.
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The optimal condition of the PageRank search based on the MFTD theory. We finally apply the 
MFTD theory to characterize the famous PageRank search16. The PageRank search is widely used to compute the 
relevance of web pages. The transition probability pij of the PageRank search is

µ µ= + −p
a
k N

(1 ) 1 ,
(10)ij

ij

i

where = ∑k ai l il is the degree of node i and μ is the damping factor lying in the range [0, 1]. Clearly, the damping 
factor μ together with the network size N plays an important role in controlling the preference of visiting neigh-
borhood or non-neighborhood nodes in one step, which in turn fully determines the behaviors of the PageRank 
search. To explore their effect on the behavior of the PageRank search, we study the global MFTD 〈 L〉  for the 
PageRank algorithm on the (1, 2)-flower network. The (1, 2)-flower model is a hierarchical net having the 
“small-world” feature and the “scale-free” characteristics, which are the common features of various “web-page” 
networks23. The result presented in Fig. 5(a) clearly shows the presence of a minimum 〈 L〉  for different network 
sizes. However, the value of μopt, where the minimum 〈 L〉  is achieved, increases gradually with the network size N 
as shown in the inset of Fig. 5(a). Such behavior is clearly distinct from that of a Lévy walk, where the optimal 
tuning exponent is independent of network size N. This unique behavior can be further tested by examining the 
form for 〈 L〉  vs N, see Fig. 5(b). The way in which 〈 L〉  scales with network size N seems to follow a power law 
behavior, which is supported by observing the almost invariant values of the successive slopes δs as shown in the 
inset of Fig. 5(b). These findings imply that the network size influences the optimal way of the PageRank search. 
Meanwhile, from the inset of Fig. 5(a), we also notice that the μopt relies on the cost exponent β and increases with 
increasing the cost exponent β. This characteristics shows more apparently in the (μ, β) planes as presented in 
Fig. 5(c) and (d), where the growth of μopt seems to follow the reverse “S” shaped line. This peculiar growth pat-
tern means that the μopt increases slowly for a smaller β and then increases rapidly in the median range of β. 
Finally it will approach to μopt ≈  1 for a large β. In this situation, the optimal PageRank search is the generic ran-
dom walk. Of course, this is an extreme case seldom occurring in practice.

Finally, we investigate the behavior for the PageRank search on two real networks (web-Stanford26 and 
Ego-Facebook27). The contour maps of the (μ, β) plane presented in Fig. 6(a) and (b) show a similar pattern, 

Figure 4. Plots of lnLj versus lnKj are presented for (a) the (1, 2)-flower model and (b) the BA model with 
network size N =  3282. The same plots with respect to different cost exponents β for (c) the (1, 2)-flower mode 
and (d) the BA model under the tuning exponent α =  3. In the inset, we show the plots of lnLj versus β for 
different trapping nodes j. Note that here the values of lnLj are calculated based on Eq. (8).
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where the growth of μopt possibly follow the reverse “S” shaped line. Interestingly, we notice the existence of the 
median range of β for which an optimal search is achieved at the value of μopt ≈  0.85. We highlight this special 
range in Fig. 6(c) and (d), where the global MFTD 〈 L〉  is near its minimum value around μ ≈  0.85. This is con-
sistent with the ad hoc damping factor of the PageRank search which is suggested to be chosen around 0.85. 
Although we could not provide a complete explanation of μ ≈  0.85 in practice, here we find a possible “rea-
sonable” range of the cost exponent for the PageRank search, which may be further confirmed in the future by 
computing the topological distance versus the distance in the metric space constructed through the hyperbolic 
mapping of the Internet28. Moreover, we notice that the minimum 〈 L〉  of the PageRank search is much smaller 
than that of generic random walks (i.e., μ =  1), which to some extent demonstrates the advantage of taking the 
PageRank search instead of generic random walks.

Discussion
In summary, we have introduced the concept of the MFTD, a measure that takes into account of the cost of jumps 
in anomalous random walks, and which therefore is particularly suited to capture the interplay between the diffu-
sion dynamics of anomalous random walks and underlying network structures. We obtain an exact expression for 
the MFTD and the global MFTD of anomalous random walks on complex networks. We show that our paradigm 
provides a unified scheme to characterize diffusion processes on networks, which incorporates the commonly 
used MFPT as a special case.

We demonstrate the effectiveness of these measures by applying them to Lévy walks and the PageRank 
search. Specially, we find that distinct network structures result in different patterns in the (α, β) planes, which 
explores the effect of the cost exponent β on behaviors of Lévy walks with respect to network structure. Moreover, 
we address how the tuning exponent α and the cost exponent β affect the trapping problem of Lévy walks. 
Specifically, we find that for a small value of α, the profiles present a uniformly linear scaling behavior regardless 
of network structure. Finally, when applied to the famous PageRank search, we explore the effect of network size 
and the cost exponent on the behavior of the PageRank search. In particular, we find that the growth of μopt seems 

Figure 5. A comprehensive analysis of the PageRank algorithm on the (1, 2) flower model: (a) The global 
MFTD 〈 L〉  as a function of μ over different network sizes N. In the inset, we show the plot of μopt versus N for 
different cost exponents β. (b) The behaviors of 〈 L〉  versus N for different exponents μ, where we show the the 
successive slopes δs obtained from ln〈 L〉  versus lnN in the inset. Note that here we set the cost exponent β =  0.7. 
The measurement logN〈 L〉  in the (μ, β) parameter plane for (c) N =  1095 and (d) N =  3282, where the reverse 
“S” shaped lines point out the position of μopt.
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to follow the reverse “S” shaped line with respect to the cost exponent. These findings will guide us how to design 
an optimal PageRank search in practice.

Our paradigm based on the MFTD is generic and can be applied to other anomalous random walks. However, 
the measurement of MFTD largely depends on an important factor — the cost exponent β. The obvious question 
we thus face is how to determine a “natural” value of the cost exponent β underlying networks. For an abstract 
network without any physical background, the cost exponent β can take any value in the interval [0, ∞ ). With 
respect to the efficiency of search and transport, we show the behaviors of anomalous random walks for some 
interesting ranges of the cost exponent β for convenience. In particular, we show the results of the cost exponent 
β lie in the interval [0, 1.2] for Lévy walks, while for the PageRank search, we present the cost exponent β lying 
in the range [0, 1.5]. For any real network, we believe that the cost exponent β can be estimated by computing 
the topological distance (i.e., the shortest path length) versus the distance in the metric space hidden behind 
an observable network as reported in refs 28–30. In this sense, as we believe, the cost exponent β is a physical 
parameter intrinsic to the real physical system, which links the topological distance and the distance in the hidden 
metric space.

Finally, to implement Lévy walks, we need to compute all shortest paths of a network which involves high 
computational costs especially for a large network. This issue has been already addressed in the previous litera-
tures13,14 and is not the main scope of this paper. Nonetheless, we think one can use several excellent algorithms 
such as the preprocessing algorithm31, which is one possible solution for this problem. For the “natural” value of 
the cost exponent for the PageRank search, this can be achieved by computing the shortest path length versus 
the distance in the metric space which is constructed by a hyperbolic map of various web networks28. The cost 
exponent explores the relative relation between the topological distance of the web network and the distance in 
the hidden metric space. We do not expect the cost exponents underlying different web networks to be exactly 
the same. However, the cost exponent obtained in this way will help us to deepen our understanding of not only 
the PageRank search but also the other behaviors taking place on the Internet, for example the Internet routing.

Figure 6. The measurement logN〈 L〉  in the (μ, β) parameter plane of (a) web-Stanford26 and (b) Ego-
Facebook27. The global MFTD 〈 L〉  as a function of the damping factor μ on (c) web-Stanford and (d) Ego-
Facebook with some special cost exponents for which μopt ≈  0.85. Note that the web-Stanford network used here 
is a subgraph extracted from the original one for computation convenience with N =  2004.
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