
GigaScience, 7, 2018, 1–17

doi: 10.1093/gigascience/giy023
Advance Access Publication Date: 13 March 2018
Technical Note

TECHNICAL NOTE

The Scientific Filesystem
Vanessa Sochat
1Stanford Research Computing Center and 2Stanford University School of Medicine, Stanford, CA 94025
∗Stanford Research Computing Center, Stanford University, Polya Hall, 255 Panama street, Stanford, CA 94025. E-mail: vsochat@stanford.edu

Abstract

Background: Here, we present the Scientific Filesystem (SCIF), an organizational format that supports exposure of
executables and metadata for discoverability of scientific applications. The format includes a known filesystem structure, a
definition for a set of environment variables describing it, and functions for generation of the variables and interaction with
the libraries, metadata, and executables located within. SCIF makes it easy to expose metadata, multiple environments,
installation steps, files, and entry points to render scientific applications consistent, modular, and discoverable. A SCIF can
be installed on a traditional host or in a container technology such as Docker or Singularity. We start by reviewing the
background and rationale for the SCIF, followed by an overview of the specification and the different levels of internal
modules (“apps”) that the organizational format affords. Finally, we demonstrate that SCIF is useful by implementing and
discussing several use cases that improve user interaction and understanding of scientific applications. SCIF is released
along with a client and integration in the Singularity 2.4 software to quickly install and interact with SCIF. When used
inside of a reproducible container, a SCIF is a recipe for reproducibility and introspection of the functions and users that it
serves. Results: We use SCIF to evaluate container software, provide metrics, serve scientific workflows, and execute a
primary function under different contexts. To encourage collaboration and sharing of applications, we developed tools
along with an open source, version-controlled, tested, and programmatically accessible web infrastructure. SCIF and
associated resources are available at https://sci-f.github.io. The ease of using SCIF, especially in the context of containers,
offers promise for scientists’ work to be self-documenting and programatically parseable for maximum reproducibility. SCIF
opens up an abstraction from underlying programming languages and packaging logic to work with scientific applications,
opening up new opportunities for scientific software development.

Keywords: filesystem; reproducibility; singularity; hpc; workflows; Linux containers; Docker; containers

Conclusions
� Software, environments, andmetadata for scientific applica-
tions are not easily exposed.

� Inspection and predictability of applications are essential for
scientific reproducibility

� SCIFmakes it easy to generatemodular, predictable, and pro-
grammatically understandable scientific applications.

Introduction

For quite some time, our unit of understanding computer sys-
tems has been based on the operating system. It is the level of
magnification atwhichwe operate (personal computers) and the
starting point for working with data, software, and services [1].
With the increasing need to define, utilize, inspect, and trans-
port scientific applications, we are faced with the dual need to
install said applications alongside a host while not being con-
fused or lost within it. The rising popularity of Linux contain-
ers [2–5] helped greatly to expose scientific applications, as a

Received: 30 October 2017; Revised: 9 February 2018; Accepted: 2 March 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
mailto:vsochat@stanford.edu
http://creativecommons.org/licenses/by/4.0/

2 Sochat

container could be specialized to perform1 task.While this prac-
tice affords reproducibility by way of providing encapsulated,
portable environments, in the same way that we cannot reliably
predict how to call a program on a colleague’s computer with-
out having outside knowledge, the contents of the containers
are not internallymodular or programmatically understandable.
Even with a new focus on using containers, the reproducibility
of an operating system does not guarantee its discoverability.
Whether installed on a host or within a container, it tends to
be the case that scientific applications, without special knowl-
edge from the creator, are akin to black boxes. For the scientific
community, this is a barrier to reproducibility.

If the goal is scientific reproducibility, we can start our discus-
sion with an example of a modern day best practice for repro-
ducibility: a scientific application installed alongside an operat-
ing system in a container. Howmight we interact with this black
box container? In the best case scenario, executing the container
will reveal instructions for usage via the container’s single, de-
fined entry point. If the container has more than 1 executable,
this model already falls short. An assessment of a container’s
ability to fully communicate its usage can start with a series of
simple questions. Can the executables for the analysis be pre-
dictably found? If a particular directory is mounted as a volume
from the host, is any important container content lost due to
overlay? Can we untangle the scientist’s contributions from the
base operating system? Without a consistent approach to en-
sure internal consistency and modularity, these questions are
not answered easily. The reason is because reproducibility does
not guarantee an ability to introspect or discover content. A def-
inition is needed to distinguish the scientific applications from
the host filesystemand to expose executables and environments
throughout the host’s life cycle [6]. Such a specificationmust ad-
dress the following issues:

� Installation of applications on a host filesystem is not con-
sistent to allow for comparison of applications generated by
different individuals.

� Traditional filesystems are not transparent. If I discover a host
with software installed and do not have any prior knowledge
ormetadata, a known functionmay be completely concealed.

� Scientific applications on a host are not programmatically un-
derstandable. I should be able to inspect a host, know exactly
the applications available to me, ask for help, and easily be
able to discover metadata and files.

� Installation of scientific applications on a host is not modu-
lar. We are not able to distinguish content, environment, and
metadata between applications.

The base of these problems can be reduced to the fact that
we are being forced to operate using an organization that no
longer makes sense given the problem at hand. Furthering re-
producible practices calls for optimized definition and modular
organization of applications and data, and this is a different set
of goals than structuring a base system per the Filesystem Hier-
archy Standard [7,8]. This goal is also not met by assigning one
software package via a shell such as a container, because there is
huge redundancy with regard to the duplicated filesystem, and
the added software is now hiding among it.

The above problems also hint that the generation of repro-
ducible scientific applications is not easy.When a scientist starts
to write a build specification1, he probably doesn’t know where
to install software, or perhaps that a help file should exist, or that

1 A specification file to describe the steps to construct the container.

metadata about the software should be easily accessible. To gen-
erate applications that integrate with external hosts, data, and
other applications, the generating software needs to easily cap-
ture this content automatically.

Based on these problems, it is clear that we need direction
and guidance on how to organizemultiple applications and data
on a host in a way that affords modularity, programmatic ac-
cessibility, transparency, and consistency. Here, we review the
rationale and use cases for the Scientific Filesystem (SCIF). We
first review the goals of the architecture, followed by integra-
tions and tools, and then the organizational standard itself.
To demonstrate utility, we describe several implemented use
cases in the context of containers for assessment of container
metrics and running scientific workflows. The document that
describes the specification for SCIF is openly available for cri-
tique and contribution at https://sci-f.github.io/, and the client
at https://vsoch.github.io/scif and contributions from the com-
munity are encouraged.

Goals

SCIF establishes an overall goal to make scientific applications
consistent, transparent, parseable, and modular. SCIF brings
modularity and exposure to otherwise hidden application con-
tent. In the following sections, we define a host as the operating
system running on a machine or the operating system inside a
container. We assert that for a host to conform to SCIF, it must:

� Be consistent to allow for comparison. I am able to easily dis-
cover relevant software and data for 1 or more applications
defined by the creator.

� Be transparent. If I discover a SCIF and do not have any
prior knowledge ormetadata, the important executables and
metadata are revealed to me.

� Make application contents easily available for introspec-
tion,meaning the application contents are programmatically
parseable.

� Provide application organization that is modular. Given a set
of SCIF apps from different sources, I can import different in-
stall routines and have assurance that environment variables
defined for each are sourced correctly for each and that as-
sociated content does not overwrite previous content. Each
software and data module must carry, minimally, a unique
name and install location in the system.

To be clear, this is not a specification for a container image2,
or a workflow manager [9–12], or a package manager [13,14]. Al-
though these goals match nicely with efforts for workflow and
image or package standardization [15], SCIF is not intended for
package management or running workflows and carries more
functionality than simple activation of environments or ensur-
ing reproducibility [16]. SCIF is a specification for modular or-
ganization of content, environment variables describing it, and
core functions to interact with it. As defined by the formal spec-
ification (https://sci-f.github.io/specification), a client is a con-
troller for a SCIF, either for a developer or user, and an inte-
gration is a third-party software or tool that understands the
SCIF structure and interacts with all or some portion of it. Any
client that implements SCIF to achieve the goals of consis-
tency, transparency, and modularity will provide an easy means
to adopt the organizational structure defined by the specifica-
tion and expose both functions and environment variables to

2 https://www.opencontainers.org/.

https://sci-f.github.io/
https://vsoch.github.io/scif
https://sci-f.github.io/specification
https://www.opencontainers.org/

The Scientific Filesystem 3

interact with it. Any technology that integrates with SCIF should
expect this organization and environment variables. For the in-
terested reader, the formal specification and resources are avail-
able at https://sci-f.github.io, and each of the specific goals in
context of the assertions is discussed in more detail in the fol-
lowing sections. For these goals, we introduce the idea of con-
tainer “apps,” or subfolders corresponding to an internal mod-
ule that conform to a predictable internal organization under
/scif/apps. We refer to the general “host” as reference to a com-
puter’s base operating system or the operating system of a con-
tainer running on it. For the example commands, we demon-
strate usage of our referenced client “scif” that implements
functions from the specification to interact with the SCIF filesys-
tem (/scif) and environment variables (starting with the prefix
“SCIF ”).

Consistency

Given the case of 2 hosts with the same software installed, it
should be the case that the software with some unique resource
identifier (commonly a name and version) and any included data
can be consistently found. To achieve this goal, SCIF defines a
new root folder, /scif, a name that should have minimal con-
flict with existing cluster resources. Under this folder are sep-
arate folders for each of the software modules, “apps,” under
/scif/apps, and data under /scif/data. Under these 2 folders is
where the subfolders for internally modular installed applica-
tions (apps) live. For example, a host with applications foo and
bar would have them installed as follows:

/scif
/apps

/bar
/foo

If 2 hosts both have foo installed, we would know to find the
installation under /scif/apps/foo. Data takes a similar approach.
We define a new root folder, /scif/data, with a similar subfolder
organization:

/scif
/data

/bar
/foo

A workflow that knows to execute the foo application would
also give the user guidance about where to mount to interact
with data, and these locations would not conflict with another
application. Although SCIF is not a workflow specification or
manager, the exposure of consistent data and executable loca-
tions makes it a powerful tool when paired with one.

Transparency

Arguably, if we discover a host and want to know about the in-
tended use of its applications, we don’t care somuch about what
the underlying operating system is. We would want to subtract
this base first and then glimpse at what remains. Given the con-
sistent organization above, we can easily distinguish the scien-
tific applications from the host with a simple function required
by the specification to list apps:

$ scif apps

bar
foo

We can predictably find and investigate a particular software
given that we now know the name. In the example below, we
demonstrate that executing the entry point to a SCIF in the con-
text of a particular application (foo) exposes important informa-
tion about foo via environment variables.

$ scif shell foo

$ echo$SCIF APPNAME
foo

$echo$SCIF APPROOT
/scif/apps/foo

$ ls $SCIF APPROOT
bin
lib
scif

The app can also be run, asking scif to call the defined exe-
cutable for the app:

$ [foo] executing /bin/bash
/scif/apps/hello − world − echo/scif/runscript

Thebest app is foo

The uniqueness of the base path /scif is important be-
cause of mounting. For hosts that do not support overlays
[17], the mount point must also exist on the host, and so the
primary folders for the Standard Container Integration For-
mat should not interfere with any that exist on the host (e.g.,
/opt). From a high level, we are introducing a simply format-
ted addition to the standard Linux File System Hierarchy, a
folder at the root that starts with /scif that makes an asser-
tion that the content under this base is exclusively relevant
to the purpose of the container, and not the base operating
system.

Parsability

Parsability comes down to programmatic accessibility. This
means that, for each software module installed, we need to be
able to do the following:

� Providemetadata.A softwaremodulemight have a version, a
link to further documentation, an author list, or other impor-
tantmetadata values that should be programmatically acces-
sible.

� Provide an entry point. Different software modules on a host
should each be able to define an entry point. In the context of
a container, this is incredibly salient because containers tra-
ditionally expose only one (the “runscript” for a Singularity
container, or the ENTRYPOINT and CMD for a Docker con-
tainer).

� Provide help. Given an entry point, or if a user wants to
understand an installed application, it should be the case
that a command can be issued to view documentation
provided for the software. For the developer, adding this
functionality should be no harder than writing a blob of
text.

SCIF accomplishes these goals by creating a metadata folder
to serve each software module installed. A client that imple-
ments a controller for SCIF handles the mapping of a single en-
try point (a call to the executable “scif” in the examples above)
to the respective installed applications.

https://sci-f.github.io

4 Sochat

Modularity

A host with distinct, predictable locations for software modules
and data is modular. The organization of these modules under
a common root ensures that each carries a unique name. Fur-
ther, while SCIF is not a package manager, this structure allows
for easy movement of modules, if necessary. If a module car-
ries with it complete information about installation and depen-
dencies, it could easily be installed on another SCIF. The user
does not need to look throughmixed commands of a single build
recipe (e.g., a Dockerfile or %post section in a Singularity recipe)
and figure out which installation commands are associated with
his software of interest.

Kinds of Modularity

Modularity can be understood as the level of dimensionality that
a user is instructed to operate, where the dimensionmight range
from a single executable to multiple calls that form 1 step in a
pipeline. For the purposes of this discussion, we again use an
example that starts with a good reproducible practice: using a
container to serve 1 or more scientific applications. For this sci-
entific container, we suggest 3 kinds of modularity.

Node. For those familiar with container technology, it is com-
monly the case that an entire container is considered a mod-
ule. An example is a container that performs the task of brain
image registration. If the container itself is considered the mod-
ule, the user would expect to provide an unregistered brain, call
the container as an executable, and produce a registered brain as
output. This container nodewould plug into higher-level orches-
tration tools that might include other neuroimaging preprocess-
ing steps. This representation is ideal given that the container is
expected to plug into a workflow manager and perform 1 task.

Internal. A second common scenario might be a single container
that holds executables to perform different steps of a pipeline,
perhaps so that the researcher can use the same container to
run steps in serial or perform multiple steps in parallel. This
containerwould comewithmultiple internalmodules, each per-
forming a series of commands for 1 step in the pipeline (e.g.,
for a container that performs variant calling, the step “map-
ping” might use internal commands from software bwa and
samtools). The user doesn’t need to know the specifics of the
steps but only how to call them.We call this level “internal mod-
ules” because without any formal structure for the contents of
containers, they are hidden, internal executables that must be
found or described manually.

Development. Containers can also serve modules that are repre-
sented at the ideal level for development. This means that the
smallest units of software are exposed, such as the executables
bwa and samtools. An improvement to this technology-oriented
modularity would be to add a degree of scientific-oriented mod-
ularity, meaning that these units are specialized and stated to
be intended for the scientific applications provided. It would be
likely that a researcher developing a scientific pipeline would
find this useful.

Given the different needs briefly explained above, it is clear
that there is no correct level of dimensionality to define a mod-
ule, but rather the level must be defined by the creator of the
scientific container depending on its intended purpose. The def-
inition of modularity then is variable and based on the needs of
the creator and user. SCIF allows us to do this. We can define
modules on the levels of single files or groups of software to per-
form a task. The metadata and organization of our preferences

are automatically generated to create a complete and program-
matically understandable software package.

Solutions for Modularity

Adiscussion ofmodularity in the context of explaining the ratio-
nale for SCIF would not be complete without mentioning other
solutions for achieving it. Several tools exist for managing en-
vironments including virtual environments [18], environment
modules [19], and tools for automated configuration of systems
[20,21]. While these tools are extensively used and adopted, SCIF
is unique in that it exposes to the user an easy ability to define all
interactionswith a scientific applicationwithout needing exten-
sive setup or command line knowledge. SCIF couples together
features of defining not just an environment but also metadata,
help documentation, entry points, tests, and files. In fact, SCIF
can be used in conjunction with these tools to enhance them.
For example, a SCIF on a shared cluster resource could have ap-
plications to manage loading sets of environment modules [19]
paired with an entry point of interest and a helpmessage for the
user. A SCIF installed in a container in the context of a global
comparison [22] would enhance the comparison by providing
grouping of content. A SCIF on a local machine might be used to
wrap common groupings of environments and commands and
perform sanity checks before proceeding. SCIF, thus, can greatly
enhance tools that already exist to manage modules, packages,
and general environments. One of the soft goals of SCIF is be
inclusive and work to enhance the many other good tools that
already exist.

Integrations and Tools

The following sections summarize how the SCIF fits nicely to
allow for integrations, including but not limited to methods
to generate reproducible containers, supporting tools for SCIF
apps, workflow managers, and metrics for comparison.

Container Bases

A scientist may choose to use containers to drive an analysis on
a high-performance computing cluster or to deploy a container
using a cloud provider service. For both of these use cases, we
can imagine that the provider of the resource would want to de-
velop an interface for the user to select software. It is often the
case that a user has preference for a different version of software
(e.g., for GPU, graphic processing units) to support an analysis or
a different host operating system. By providing different soft-
ware versions as SCIF apps with a selection of operating system
bases, the provider can easily create such a tool. A hypotheti-
cal interface might use the following logic to guide the user’s
choices and build a working container:

Operating System–> Libraryof Modules –> [user choice]
–> Container

The user would ask for a selection ofmodules (software), and
under the hood, the provider would choose the base image that
best caters to the needs of the user. If the user has no preference
for the operating system, the “Library ofModules” would instead
be the first decision point:

Libraryof Modules –> [user choice] –> Operating System
–> Container

The Scientific Filesystem 5

SCIF apps can easily plug into this kind of framework in that
the “Library of Modules” is a listing of apps developed at the re-
source. Given shared organizational rules across bases afforded
by SCIF, the only filter would be with regard to which software is
suited for each operating system base, and this can be achieved
by way of a label or derivation from a source container(s). In the
case of a software module wanting to support multiple different
hosts, the same rules would apply as they do now. Checks for the
host architecture would come first to the installation procedure.

Under this framework, shared “base” containers can be gen-
erated for re-use, and despite a modular generation, the result-
ing containers are reproducible, and the internal organization
of modules has a specific set of content that can be easily dis-
covered for assessment. In fact, an even simpler setup could be
achieved for a resource that didn’t want to use containers at all
by simply providing a library of SCIF apps to interact with.

Application Assessment

Assuming that a software or data module carries some kind of
signature by way of its content or metadata, the next logical
question is about the kinds of metrics that we can use for clas-
sification. Curation broadly encompasses the tasks of finding a
scientific application that serves some function. Curation of a set
of applications to derive structural and functional features can
allow for representation of an entire host such as a container.
Akin to the discussion on levels of modularity, we will start this
discussion by reviewing the different ways that we might use to
assess applications.

Manual Annotation
The obvious approach to curation is human-labeled organiza-
tion, meaning that a person looks at a software package, calls it
“biopython” in “python,” and then moves on. A user later might
search for any of these terms and find the application. This same
kind of curation might be slightly improved upon if it is done
automatically based on the scientists domain of work (e.g., “bi-
ology”) or a journal the scientist has published in. We could
even improve upon that by making associations of words in text
where the application is defined or cited and collecting enough
data to have some confidence of particular domains being asso-
ciated [23]. Manual annotation might work well for small, man-
ageable projects, and automated annotation might work given a
large enough source of data to learn from, but overall this met-
ric is unreliable. We cannot have certainty that every single con-
tainer has enough citations to make automated methods pos-
sible or, in the case of manual annotation, that there is enough
staffing to maintain it.

Functional Assessment
The second approach to assessing applications is functionally.
We can view software as a black box that performs some task
and assess the software based on comparing performance of
that task. If 2 versions of a Python module produce the same
output, despite subtle differences in the files (imagine the sim-
plest case where the spacing is different), a functional assess-
ment deems them identical. If we define a functional metric
(e.g., timing how long it takes for a “Hello World” script to run
implemented in different languages on the same host), we can
rank languages from fastest to slowest or derive summary statis-
tics. This kind of metric maps nicely to scientific disciplines for
which the goal is to produce some knowledge about the world.
However, understanding the reasons to explain the differences
in performance is not possible if we don’t have a basic under-

standing of the application content. Given interaction with a
container, in that containers are generally opaque, if we ask why
the results of a functional assessment might be different, we
cannot know.

Functional assessment also carries a nontrivial amount of
work for the common scientist. Different domains would be re-
quired to robustly identify the most relevant metrics and data
for this assessment. This kind of agreement is hard to come by.
Thus, again we face a manual bottleneck that would minimally
make functional assessment a slow process. This is not to say
that functional assessment should not be done or is not impor-
tant. It is paramount for scientists to understand the optimal
way to achieve some specific goal, sometimes regardless of the
costs. However, blind functional assessment does not reveal in-
sights to content.

Application Assessment
An enhancement to functional assessment would be having the
ability to associate different choices of software and protocol to
the differences in outcomes that we see. For example, knowing
the exact location of executables written in different program-
ming languages to produce an output of “Hello World,” we can
perform further comparisons on the contents or make the calls
language agnostic by doing a trace of system calls [24]. For this
kind of assessment to be possible, application organization and
accessibility are paramount.

Competitive Assessment
As another example, imagine that a single scientific container
provides 10 implementations of a sorting algorithm in Python.
Running any one of the algorithms, each a SCIF app, would occur
on the same input data and the same host. Given a predefined
metric to assess each result, we might programatically parse
over the Python scripts and compare imports and functions used
across sorting algorithms. This is the idea of a Competitive as-
sessment, which is a kind of functional assessment with 2 key
components:

� A function and output of interest and
� A metric of goodness to assess the output.

The assessment is collaborative in that a scientist wanting
to answer a specific scientific question would ask other scien-
tists to write SCIF apps. Each contribution is then assessed by
the predefined metric of goodness or assessed as the analysis
code changes over time [25]. All of this might occur collabora-
tively with version control (e.g., Github [26]) linked to a Contin-
uous Integration3. testing environment to run the contribution
and make the assessment. SCIF would make this possible.

Specification of SCIF

We now move into describing the specification itself
(https://sci-f.github.io/spec). The Scientific Filesystem is a
filesystem organization, a set of environment variables under
the namespace SCIF (prefix “SCIF ”) and functions for interac-
tion of the filesystem and variables. A client that implements
SCIF must provide means to install the organizational structure
and expose both the functions and environment variables.
An integration that uses SCIF can expect the filesystem or-
ganization and environment variables. To give rationale for
the development of SCIF, we start with a review of some basic
background about Linux Filesystems.

3 https://www.cirleci.com or https://www.travis-ci.org.

https://sci-f.github.io/spec
https://www.cirleci.com
https://www.travis-ci.org

6 Sochat

Traditional File Organization

File organization is likely to vary based on the host operating sys-
tem, but arguably most Linux operating systems are similar to
the Filesystem Hierarchy Standard (FHS) [7]. For this discussion,
we disregard the inclusion of packagemanagers, symbolic links,
and custom structures and focus on the core of FHS. We discuss
these locations in the context of how they do (or should) relate
to scientific applications. It was an assessment of this current
standard that led to the original development of SCIF.

Do Not Touch
Arguably, the following folders should not be touched by scien-
tific software:

� /boot: boot loader, kernel files
� /bin: system-wide command binaries (essential for OS)
� /etc: host-wide configuration files
� /lib: system-level libraries
� /root: root’s home4
� /usr: read-only user applications
� /opt: package software applications
� /sbin: system-specific binaries
� /sys: system, devices, kernel features

While these locations likely have libraries and functions
needed by the host to support software, it should not be the case
that a scientist installs his or her software under any of these
locations. The best contender here for scientific applications is
/opt; however, it is missing specification for an organization, can
be used for software that is not exclusive to a scientific applica-
tion, and is likely to already be used by individuals or centers for
a variety of software. While /usr could be a reasonable choice, it
is typically used as a place to install other (nonscientific) appli-
cations and libraries, and it would be challenging to distinguish
scientific applications from others. Further, the organization un-
der /usr places standard directories (e.g., /bin, /lib, /etc, /share)
on the first subfolder level and then allows for content frommul-
tiple applications in these subfolders. We could not have confi-
dence about the content associated with each application, and
in all of these locations, it would not be easy or intuitive to find
scientific applications hidden with what is already provided by
the host.

Variable and Working Locations
The following locations are considered working directories in
that they hold variables defined at runtime or intermediate files
that are expected to be purged at some point:

� /run: run time variables for running of programs
� /var: variables and logging
� /tmp: temporary location for users and programs
� /home: can be considered the user’s working space.5

Connections
Connections are devices and mount points. A host or scientific
container will arguably always need to be able to support mount
points that might be necessary from its host or resource, so it
would be important for a scientific application to not be kept in
these locations:

4 Unless you are using Docker, putting things here leads to trouble.
5 In that some container technologies (e.g., Singularity) mount the user’s

home by default, and permissions in this location are user-specific, it is
not advisable to assume stability in putting software here.

� /dev: essential devices
� /mnt: temporary mounts
� /srv: is for “site-specific data” served by the system. This
might be a logical mount for cluster resources

� /proc: connections between processes and resources and
hardware information

SCIF File Organization

SCIF defines a single root base at /scif that includes 2 subfolder
bases that can be known and consistently mounted across re-
search clusters. The base of /scif/apps is where scientific appli-
cations reside, and /scif/data is where the corresponding data
are found. These locationswere chosen to be independent of any
locations on traditional Linux filesystems for the sole purpose of
avoiding conflicts. The SCIF takes the following structure, and
we show the reader an example organization for a scientific ap-
plication “foo”:

� /scif: the root of the entire SCIF
� /scif/apps: the root for scientific applications, where each
subfolder is a single (modular) software application

� /scif/apps/foo: an example scientific application base, con-
tains files relevant or needed

� /scif/apps/foo/bin: contains binaries for foo that should be on
the $PATH

� /scif/apps/foo/lib: contains libraries for foo that should be on
the $LD˙LIBRARY˙PATH

� /scif/apps/foo/scif: foo’s metadata folder for labels, environ-
ment, runscript, and help

� /scif/data: the root for scientific applications’ data, where
each subfolder is intended for data belonging to a scientific
application

� /scif/data/foo: the data folder for foo, where foo’s inputs
and/or outputs can reliably be found

The above structure does not interfere with connections of
its host or variable and working locations, and can be created by
a SCIF client from a definition file.

Definition
A SCIF starts with a recipe to create it, which comes down to a
text file that defines 1 or more scientific applications. The scif
recipe is the primary method by which a user can define and
then generate a SCIF. The recipe consists of sections, where the
delineation of a section is determined by starting with a “%” and
then being followed by a scientific application name that the sec-
tion is relevant for.

% section foo

Sections are defined for installation procedures, labels, help,
environment, and defining entry points (Table 1).

An example “hello-world” application definition is shown
below, and these sections could appear in single text file
along with other applications. In the example, a script “hello-
world.sh” is written to the application’s root bin (see %appin-
stall), meaning that SCIF will add it automatically to the $PATH.
The entry point of the application is to run this script (see
%apprun) and environment variables active during interaction
with the application (%appenv), along with labels (%applabels)
and help (%apphelp). Not included in this recipe are sections
to write tests (%apptest) or add files (%appfiles) so that the

The Scientific Filesystem 7

Table 1. SCIF recipe sections

Section Description

%appinstall Commands executed relative to the
application root to install the application.
The writer of the recipe should expect the
commands to be executed in
$SCIF˙APPROOT and thus write final
outputs to $SCIF˙APPBIN located at
$SCIF˙APPROOT/bin

%apphelp Is written as a file called runscript.help in
the application’s metadata folder where a
client knows where to find it

%apprun The “runscript” in the application’s
metadata folder that is executed when
the user asks to run the software

%applabels Key value pairs to be written to a
labels.json file in the application’s
metadata folder

%appenv Application-specific environment
variables that are sourced when the
application is active

%apptest Tests specific to the application, with
present working directory assumed to be
the software module’s folder

%appfiles A list of files to add from the host (or
other location known to the integration
or client) to the application root

Sections for each scientific application in the SCIF definition include commands

to install dependencies, add files, and define environment variables, labels, and
help for the application.

application can be installed from the file alonewithout any extra
file dependencies.

%apprunhello − world/bin/bashhello − world.sh
%appinstall hello − world
echo “echo′ HelloWorld!′” >> $SCIFAPPBIN/hello − world.sh

%appenvhello − world
chmodu + x$SCIFAPPBIN/hello − world.sh
THEBESTAPP = $SCIFAPPNAME
exportTHEBESTAPP

%applabelshello − world
MAINTAINERVanessasaur
VERSION1.0

%apphelp
This is anexample “HelloWorld” application.Youcan

install it to a
Scientific Filesystem (scif)with the command :
scif install hello − world.scif

if youneed to install scif :
pipinstallscif

The recipe is a text file with extension ‘.scif,’ and can serve
as input to clients and integrations for SCIF. For example, a SCIF
client would install a SCIF using a recipe “hello-world.scif” with
the following command:

$ scif install hello − world.scif

This is the complete set of steps for defining and cre-
ating a SCIF. For the interested reader, quick start tuto-
rials are available (https://sci-f.github.io/tutorial-quick-start)

along with complete code for the hello world example
(https://github.com/sci-f/hello-world.scif) defined in the recipe
above.

Apps

Each installed scientific application has a subfolder under
/scif/apps for its content and associated executables. Interac-
tion with apps is driven by a predictable organization of file
contents, paired with a core set of environment variables. In-
teraction between the 2 is driven by the control commands im-
plemented by the client. In the following sections, we review the
environment namespace and commands.

Environment Namespace
Discovery of data and scientific application folders is driven by
way of environment variables. When the SCIF is interacted with
in context of a specific scientific application:

$ scif run foo

a set of environment variables about locations for the appli-
cation’s data and executables is exposed. Variables is also ex-
posed for these locations for other apps, and both sets of vari-
ables make it easy for the creator and user to reference loca-
tions without knowing the actual paths. Table 2 describes the
environment variables that can be used in build recipes and
are also available once the filesystem is built and interacted
with. It includes variables to describe the entire SCIF (global)
along with a specific app that is active. Present but inactive apps
use the same namespace as the active app but are appended
with an underscore and lowercase inactive app name (e.g.,
SCIF APPENV bar).

While SCIF is not a workflow manager, it follows naturally
that the creator of a SCIF app might use these internal variables
to have modules internally talk to 1 another. The user and cre-
ator do not need to know the structural specifics of the standard
but only how to reference them. For example, a specific environ-
ment could be sourced by referencing SCIF APPENV bar and all
defined environments discovered by way of searching for envi-
ronment variables that start with SCIF APPENV *.

Functions
Interaction with a SCIF is driven by a set of functions (see “Com-
mands” in https://sci-f.github.io/specification that are imple-
mented by a client described in the specification. Briefly, we will
demonstrate commands via interaction with the “hello-world”
example shown previously.

Applications. List the scientific applications installedwith a single
command. Here, we discover a single application called “hello-
world”:

$ scif apps
SCIF [app] [root]
1hello − world /scif/apps/hello − world

Help. After we see a listing of scientific applications, we might
want to ask for help for usage of the application.

$ scif helphello − world
This is anexample “HelloWorld” application.Youcan install

it to aScientific Filesystem (scif)with the command :
scif install hello − world.scif.

https://sci-f.github.io/tutorial-quick-start
https://github.com/sci-f/hello-world.scif
https://sci-f.github.io/specification

8 Sochat

Ta
b
le

2.
SC

IF
en

vi
ro

n
m
en

t
n
am

es
p
ac

e

V
ar
ia
bl
e

Le
ve

l
d
ef
au

lt
or

ex
am

p
le

D
es

cr
ip
ti
on

SC
IF

B
A
SE

gl
ob

al
/s
ci
f

T
h
e
ro

ot
lo
ca

ti
on

fo
r
SC

IF
SC

IF
D
A
TA

gl
ob

al
/s
ci
f/
d
at
a

T
h
e
ro

ot
lo
ca

ti
on

fo
r
ap

p
li
ca

ti
on

d
at
a

SC
IF

A
PP

S
gl
ob

al
/s
ci
f/
ap

p
s

T
h
e
ro

ot
lo
ca

ti
on

fo
r
in
st
al
le
d
ap

p
s

SC
IF

SH
EL

L
gl
ob

al
/b
in
/b
as

h
Sh

el
lt
o
u
se

fo
r
“s
h
el
l”

co
m
m
an

d
s

SC
IF

PY
SH

EL
L

gl
ob

al
ip
yt
h
on

Py
th

on
in
te
rp

re
te
r
to

u
se

fo
r
p
ys

h
el
lc

om
m
an

d
SC

IF
EN

T
RY

PO
IN

T
gl
ob

al
/b
in
/b
as

h
T
h
e
co

m
m
an

d
to

ru
n
gi
ve

n
n
o
ru

n
sc

ri
p
t
or

ap
p
d
efi

n
ed

SC
IF

EN
T
RY

FO
LD

ER
gl
ob

al
SC

IF
B
A
SE

T
h
e
en

tr
y
fo
ld
er

to
ru

n
th

e
en

tr
y
p
oi
n
t
co

m
m

an
d

SC
IF

M
ES

SA
G
EL

EV
EL

gl
ob

al
IN

FO
A

C
li
en

t
le
ve

lo
f
ve

rb
os

it
y

SC
IF

A
PP

N
A
M
E

ac
ti
ve

fo
o

T
h
e
n
am

e
of

th
e
ac

ti
ve

ap
p
li
ca

ti
on

SC
IF

A
PP

D
A
TA

ac
ti
ve

/s
ci
f/
d
at
a/
fo
o

T
h
e
d
at
a
ro

ot
fo
r
th

e
ac

ti
ve

ap
p
li
ca

ti
on

SC
IF

A
PP

R
O
O
T

ac
ti
ve

/s
ci
f/
ap

p
s/
fo
o

T
h
e
in
st
al
lr

oo
t
fo
r
th

e
ac

ti
ve

ap
p
li
ca

ti
on

SC
IF

A
PP

B
IN

ac
ti
ve

/s
ci
f/
ap

p
s/
fo
o/
bi
n

T
h
e
ap

p
li
ca

ti
on

bi
n
th

at
is

au
to
m
at
ic
al
ly

ad
d
ed

to
th

e
p
at
h
w
h
en

ac
ti
ve

SC
IF

A
PP

LI
B

ac
ti
ve

/s
ci
f/
ap

p
s/
fo
o/
li
b

T
h
e
ap

p
li
ca

ti
on

li
b
th

at
is

au
to
m
at
ic
al
ly

ad
d
ed

to
th

e
p
at
h
w
h
en

ac
ti
ve

SC
IF

A
PP

M
ET

A
ac

ti
ve

/s
ci
f/
ap

p
s/
fo
o/
sc

if
T
h
e
m

et
ad

at
a
fo
ld
er

SC
IF

A
PP

H
EL

P
ac

ti
ve

/s
ci
f/
ap

p
s/
fo
o/
ru

n
sc

ri
p
t.
h
el
p

A
te
xt

fi
le

w
it
h
h
el
p
to

p
ri
n
t
fo
r
th

e
u
se

r
to

th
e
te
rm

in
al

SC
IF

A
PP

T
ES

T
ac

ti
ve

/s
ci
f/
ap

p
s/
fo
o/
te
st
.s
h

A
te
st

sc
ri
p
t
fo
r
th

e
ap

p
li
ca

ti
on

SC
IF

A
PP

R
U
N

ac
ti
ve

/s
ci
f/
ap

p
s/
fo
o/
ru

n
sc

ri
p
t

T
h
e
co

m
m
an

d
s
to

ru
n
as

th
e
ap

p
li
ca

ti
on

en
tr
y
p
oi
n
t

SC
IF

A
PP

LA
B
EL

S
ac

ti
ve

/s
ci
f/
ap

p
s/
fo
o/
sc

if
/l
ab

el
s.
js
on

A
se

t
of

la
be

ls
to

d
es

cr
ib
e
th

e
ap

p
li
ca

ti
on

SC
IF

A
PP

EN
V

ac
ti
ve

/s
ci
f/
ap

p
s/
fo
o/
sc

if
/e
n
vi
ro

n
m
en

t.
sh

A
n
en

vi
ro

n
m
en

t
to

be
so

u
rc
ed

fo
r
th

e
ap

p
li
ca

ti
on

SC
IF

p
ro
vi
d
es

an
en

vi
ro

n
m
en

t
n
am

es
p
ac

e
th

at
is

av
ai
la
bl
e
d
u
ri
n
g
th

e
in
st
al
la
ti
on

of
th

e
sc

ie
n
ti
fi
c
ap

p
li
ca

ti
on

,a
lo
n
g
w
it
h
it
s
ex

ec
u
ti
on

.V
ar

ia
bl
es

ca
n
d
es

cr
ib
e
an

en
ti
re

SC
IF

(g
lo
ba

l)
or

an
ac

ti
ve

ap
p
li
ca

ti
on

(a
ct
iv
e)
.P

re
se

n
t
bu

t
n
ot

ac
ti
ve

ap
p
li
ca

ti
on

ar
e
re
p
re
se

n
te
d
w
it
h
th

e
ac

ti
ve

n
am

es
p
ac

e,
p
lu
s
an

u
n
d
er
sc

or
e
an

d
lo
w
er

ap
p
li
ca

ti
on

n
am

e
(e
.g
.,
SC

IF
A
PP

EN
V

ba
r)
.

The Scientific Filesystem 9

Run. Running a scientific application corresponds to executing
the commands defined in the %apprun section:

$ scif runhello − world
[hello − world] executing/bin/bash

/scif/apps/hello − world/scif/runscript
HelloWorld!

Exec. Execute a command in context of the app “hello world.”

$ scif exechello − world ls [e]SCIFAPPROOT
[hello − world] executing/bin/ls$SCIFAPPROOT
bin
lib
scif

Notice howwe replace the typical $ for the environment vari-
able with [e]. This is a strategy to ensure that environment vari-
ables do not get parsed on any host (and thus not passed to the
scientific application).

Inspect. Inspection of a scientific application will return a data
structure to see different sections defined for the application.

$ scif inspecthello − world
{
“hello − world” : {
“apprun” : [

“/bin/bashhello − world.sh”
],
“appinstall” : [
“echo ”echo ‘HelloWorld!′“ >>

$SCIFAPPBIN/hello − world.sh”,
“chmodu + x$SCIFAPPBIN/hello − world.sh”
],
“appenv” : [
“THEBESTAPP = $SCIFAPPNAME”,
“export THEBESTAPP”

],
“applabels” : [
“MAINTAINERVanessasaur”,
“VERSION1.0”

],
“apphelp” : [
“This is anexample “HelloWorld” application.You

can install it to a”,
“Scientific Filesystem (scif)with the command : ”,
“scif install hello − world.scif”,
“if youneed to install scif : ”,
“pip install scif”
]

}
}

Shell. A shell allows the user to interact with the scientific appli-
cation.

$ scif shell hello-world
[hello-world] executing /bin/bash
vanessa@vanessa-ThinkPad-T460s:/scif/apps/hello-world$ env

— grep SCIF
SCIF APPMETA=/scif/apps/hello-world/scif
SCIF DATA=/scif/data
SCIF APPHELP hello world=/scif/apps/hello-world/scif/runscript.

help

SCIF APPDATA=/scif/data/hello-world
THEBESTAPP=$SCIF APPNAME
SCIF APPENV=/scif/apps/hello-world/scif/environment.sh
SCIF APPROOT=/scif/apps/hello-world
SCIF APPRECIPE hello world=/scif/apps/hello-world/scif/hello-

world.scif
SCIF APPDATA hello world=/scif/data/hello-world
SCIF APPLABELS=/scif/apps/hello-world/scif/labels.json
SCIF APPRUN=/scif/apps/hello-world/scif/runscript
SCIF APPENV hello world=/scif/apps/hello-world/scif/

environment.sh
SCIF APPRUN hello world=/scif/apps/hello-world/scif/runscript
SCIF APPLABELS hello world=/scif/apps/hello-world/scif/labels.
json
SCIF APPHELP=/scif/apps/hello-world/scif/runscript.help
SCIF APPLIB hello world=/scif/apps/hello-world/lib
SCIF APPS=/scif/apps
SCIF APPMETA hello world=/scif/apps/hello-world/scif
SCIF APPNAME hello world=hello-world
SCIF APPBIN hello world=/scif/apps/hello-world/bin
SCIF APPLIB=/scif/apps/hello-world/lib
SCIF APPRECIPE=/scif/apps/hello-world/scif/hello-world.scif
SCIF MESSAGELEVEL=INFO
SCIF APPBIN=/scif/apps/hello-world/bin
SCIF APPNAME=hello-world
SCIF APPROOT hello world=/scif/apps/hello-world

In the example above, we look at the environment and see
the full $SCIF namespace. Notice that there are global vari-
ables for the SCIF (/SCIF DATA and SCIF APPS), along with
general variables to always identify the active application
(e.g., SCIF APPROOT) along with application-specific variables
that are active for all scientific applications installed (e.g.,
SCIF APPROOT hello world).
Pyshell. For development, the referenced SCIF client exposes an
interactive Python shell also for interaction with the SCIF.

$ scif pyshell
Found configurations for 1 scif apps
hello-world
[scif] /scif hello-world
Python 3.6.2 —Anaconda, Inc.— (default, Sep 22 2017, 02:03:08)
[GCC 7.2.0] on linux
Type “help”, “copyright”, “credits” or “license” for more

information.
(InteractiveConsole)
>>>

Data

SCIF does not enforce or state how the creator should use the
data folders but rather encourages the creator to use the orga-
nization so that a user can intuitively know that any data for
an application foo might go into /scif/data/foo and global data
for the entire SCIF be in /scif/data. The latter would mean that
another host could mount a host folder to /scif/data, and then
generate results there. Beyond the top level folder specific to an
application, the organization and format of data is up to the ap-
plication to decide.6

6 For example, when app “foo” is active, the environment variable
SCIF˙APPDATA references /scif/data/foo.

10 Sochat

Data Modularity
Akin to software modules, overlap in data modules is not al-
lowed byway of the unique app names afforded by folders under
a common directory. For example, let’s say we have an applica-
tion called “foo.”

� Users and developers would know that foo’s data would be
mounted or provided at /scif/data/foo.

� Importing of datasets within an app’s data folder that fol-
low some other specific format [27] would be allowed, e.g.,
/scif/data/foo/bar1 and /sci/data/foo/bar2.

� An application’s data would be traceable to the application
by way of its identifier. Thus, if I find /scif/data/foo, I would
expect to find related software under /scif/apps/foo.

Example Use Cases

SCIF is powerful in that it supportsmultiple general use cases for
scientific and systems evaluation and high-level introspection.
These use cases broadly fall in the areas of providing modular
software, systems and metric evaluation, and guided collabora-
tion to answer a scientific question. For all of these examples,
installation of the SCIF in the container simply means installing
the SCIF client and pointing it at a definition file.

pip install scif
scif install recipe.scif

This installation can happen on the host or in a container
technology, and then the entry point to the container technology
is the executable “scif” to provide the common interface to the
SCIF. To demonstrate this, for the following example use cases,
wewill show the same commands executed side by side for each
of 2 container technologies, Docker and Singularity, on the same
host.

Modular Software Evaluation

A common question pertains to evaluation of different solu-
tions toward a common goal. An individualmight ask “Howdoes
implementation A compare to implementation B as evaluated
by 1 or more metrics?” For a systems administrator, the metric
might pertain to running times, resource usage, or efficiency. A
researcher might be interested in looking at variability (or con-
sistency) of outputs. Importantly, it should be possible to give a
SCIF serving such a purpose to a third party that does not know
locations of executables, or environment variables to load, and
the tests run equivalently. To ensure reproducibility, the tests
might be distributed in a container. SCIF allows for this by way
of providingmodular software applications, each corresponding
to custom environments, libraries, and potentially files.

Method
To demonstrate this use case, we developed a container that
implements the most basic function for a program, a print to
the console, for each of 17 languages (R, awk, bash, c, cat, clisp,
cpp, csh, go, julia, octave, perl, python, ruby, rust, tcsh, zsh). The
container is designed as a means to collect a series of metrics
relative to timing and system resources for each language. The
metrics pertain to system resources provided by the time [28]
and strace [24] utilities. While it is necessary to define the ap-
plications installed at the point of creation, using SCIF means
that a subsequent user can run the evaluation across mod-

Figure 1. Assessing “read calls” across a range of different programming lan-
guage implementations of “HelloWorld” shows a surprising range of differences
and reflects common knowledge thatmore extensive programs (e.g., Octave) add
complexity to the seemingly simple command.

ules (languages) without any previous knowledge with a simple
for loop.

for app in $(./hello-world apps) # Singularity
do
./hello-world run $app

done

The above example shows a Singularity image called “hello-
world.” The general usage command is only slightly different
with a Docker container.

docker run vanessa/hello-world.scif apps
docker run vanessa/hello-world.scif run bash

Results
To demonstrate the value of using SCIF in containers, we col-
lected run time metrics for 19 SCIF apps, each of which printed
“Hello World” using a different programming language. While
it was necessary for the creator of the container to define the
different language entry points, the analysis is able to run in
entirety without knowing the languages. The resulting table
of features pertaining to times and features demonstrates a
wide span of differences between the seemingly identical calls.
For example, Fig. 1 shows the differences in “read calls,” or the
number of read commands to the filesystem issued when the
simple “Hello World” command was run.

Closer inspection reveals facts about the programs that are
common knowledge, such as shell programs having faster start
up times than more substantial programs (e.g., octave, R, or
Python). In fact, the basic differences between start times, reads
and writes, and memory usage across this simple execution are
surprising and give strong support for why scientific results can
vary depending on the underlying architecture. Also, they give
even stronger rationale for being able to assess the metadata
about the software to reveal cause for the observed differences.
Full results and additional analyses are available in this jupyter
notebook, and amore detailedwriteup is provided. The full anal-
ysis code and results are also provided.

https://sci-f.github.io/container.scif/
https://github.com/sci-f/container.scif/blob/master/logs/language-features.tsv
https://github.com/sci-f/container.scif/blob/master/logs/languages_metrics.ipynb
https://github.com/sci-f/container.scif/blob/master/logs/languages_metrics.ipynb
https://sci-f.github.io/apps/examples/applications/hello-world
https://github.com/sci-f/container.scif

The Scientific Filesystem 11

Diagnostic Metrics Evaluation

For this next use case, a scientist is interested in running a series
ofmetrics over an analysis of interest. The scientist defines each
metric as a SCIF application in a container build recipe along-
side a primary entry point and builds a container called “met-
rics.” Each installed SCIF app can be thought of as a particular
context to evoke an entry point of interest in the container, the
container’s primary runscript, and the apps themselves are rel-
atively agnostic to the entry point itself. Importantly, he can dis-
cover the metrics provided with the “scif apps” command

$./metrics
“Hello World!”

Docker
$ docker run vanessa/metrics.scif
“Hello World!”

$./metrics apps
custom
linter

parallel
strace

time
docker run vanessa/metrics.scif apps

and then run a namedmetric easily by simply executing the con-
tainer and specifying it.

$./metrics run time
$ docker run vanessa/metrics.scif run time

This particular container has several metrics to assess usage
and timing of different resources (time), a complete trace of the
call (strace), a static linter (linter), and a function to run the con-
tainer’s runscript in parallel (parallel). Each of these SCIF apps
serves as an example use case that is discussed in the following
sections.

Metric example 1: evaluate software across different metrics
A system administrator or researcher concerned about evalua-
tion of different software could add relevant metrics apps to the
software containers and then easily evaluate each 1 with the
equivalent command to the container. Importantly, since each
evaluation metric is a modular application, the container still
serves its intended purposes. As an example, here is a simple
app to return a table of system traces for a specific app “main,”
which is the primary runscript:

% apprun strace
exec strace -c -t scif run main

With a simple check, the definition can be edited to run a
system trace for a user-specified application:

% apprun strace
if [$# -eq 0]

then
exec strace -c -t scif run main

else
exec strace -c -t scif run “$@”

fi

The table returned assesses the runscript, and the interac-
tion with the user looks like the following (truncated):

$./metrics run strace
[strace] executing /bin/bash /scif/apps/strace/scif/runscript
strace: -t has no effect with -c
[main] executing /bin/bash /scif/apps/main/scif/runscript
Hello World!
% time seconds usecs/call calls errors syscall
—————- —————- —————- —————- —————-

—————-
100.00 0.000008 0 40 munmap
0.00 0.000000 0 707 read
0.00 0.000000 0 1 write
0.00 0.000000 0 426 42 open
0.00 0.000000 0 447 close

docker run –security-opt seccomp:unconfined
vanessa/metrics.scif run strace

...

Any user that adds the SCIF module to his or her container
would immediately have this assessment for any SCIF applica-
tion provided by his or her container. In the example below, we
run a system trace for the SCIF application “custom.”

$./metrics run strace custom
$ docker run –security-opt seccomp:unconfined
vanessa/metrics.scif run strace custom

The code and additional notes for this strace app are pro-
vided at https://www.github.com/sci-f/metrics.scif.

Metric example 2: code quality and linting

A SCIF application can meet the needs to serve as a linter over a
set of files. The example is provided here with a SCIF application
“linter,” which runs a linter over a script.

$./metrics run linter
[linter] executing /bin/bash /scif/apps/linter/scif/runscript
No config file found, using default configuration
************* Module runscript
E: 1, 0: invalid syntax (¡string>, line 1) (syntax-error)

docker run vanessa/metrics.scif run linter

This example lints a script defined by the SCIF creator (the
SCIF executable itself), and the linter application could also ac-
cept the path to a custom file.

Metric example 3: runtime evaluation

In that a metric can call another SCIF application, it could be
easy to evaluate running a primary analysis under various con-
ditions. As a simple proof of concept, here we are creating an
application to execute another in parallel.

% apprun parallel
parallel /bin/bash ::: $SCIF APPRUN main $SCIF APPRUN main
$SCIF APPRUN main

$ docker run vanessa/metrics.scif parallel
$./metrics run parallel
[parallel] executing /bin/bash
/scif/apps/parallel/scif/runscript

Hello World!
Hello World!
Hello World!

https://www.github.com/sci-f/metrics.scif

12 Sochat

You might imagine a similar loop to run an analysis, modify
a runtime or system variable for each loop, and save or print the
output to the console.

Contextual Running

It’s often common that a user will want to run an analysis in
different environments. For example, a scientific analysis run
locally would come down to executing the script, but run on a
cluster would come down to submission of a job to a SLURM [29]
or SGE [30] queue. To help distribute the analysis in different en-
vironments, a scientist could share a SCIFwith an entry point for
each use case. In the examples below, a container called “anal-
ysis” is an example of such a container.

$./analysis run slurm
$./analysis run sge
$ docker run vanessa/jobmaker.scif run slurm
$ docker run vanessa/jobmaker.scif run sge

The above commands pipe to the console a job configuration
for each of slurm and sge that includes resources needed for the
analysis. The resources (memory and time) were estimated dur-
ing the build process and are carried forward with the scientific
filesystem in the container, improving the ability to reproduce
the work. This particular example for slurm and sge have been
implemented.7

A cluster that provides containers for its users could pro-
vide submission scripts for optimal resource usage for each con-
tainer.

Interaction with Scientific Workflows

Interacting with scientific workflows is arguably the most com-
mon use case for scientific filesystems. A scientist is likely to use
SCIF apps for 2 purposes:

� To provide development environments that expose software
to test and develop pipelines

� To provide production applications to serve a final pipeline,
ideally in a reproducible container to supplement a publica-
tion

SCIF can be of use to achieve both of these goals. For this ex-
ample, we have implemented an equivalent pipeline using Sin-
gularity and SCIF for the CarrierSeq workflow [31], as well as
adding SCIF to a previously created variant calling analysis that
used Singularity and Docker8 Each of the 2 example containers
providesmodular access to the different software inside. By way
of using SCIF, we have a lot of freedom in deciding on what level
of functionswewant to expose to the user. A developerwill want
easy access to the core tools (e.g., bwa, seqtk), while a user likely
wants 1 level up, on the level of a collection of steps associated
with some task (e.g., mapping).

Carrierseq Scientific Pipeline
For this example, we use a SCIF installed in a Singularity con-
tainer [17] called “cseq” to perform a genomic analysis that in-
cludes a mapping algorithm, a statistical procedure (poisson),
and a sorting procedure.We assume that an interested party has
found the container “cseq”, has Singularity installed, and is cu-
rious about how to use it. The individual could first ask for help
directly from the container.

7 https://github.com/sci-f/jobmaker.scif.
8 https://github.com/vsoch/singularity-scientific-example.

$./cseq
[help] executing /bin/bash /scif/apps/help/scif/runscript
CarrierSeq is a sequence analysis workflow for low-input
nanopore

sequencing which employs a genomic carrier.
Github Contributors: Angel Mojarro (@amojarro),
Srinivasa Aditya Bhattaru (@sbhattaru),
Christopher E. Carr (@CarrCE),
Vanessa Sochat (@vsoch).

fastq-filter from:
https://github.com/nanoporetech/fastq-filter

To see applications installed in the Scientific Filesystem:
scif apps
To run a typical pipeline, you might do:
scif run mapping
scif run poisson
scif run sorting
If you install in a container, the entry point should be
scif, and then

issue the above commands to it.

Docker example
$ docker run vanessa/cseq

If we follow the instruction to list the SCIF apps, we find
the container has an application that serves only to make the
README.md easily accessible:

$./cseq apps
download

help
mapping
poisson
readme

reference
sorting

$ docker run vanessa/cseq apps

$./cseq help readme
$ docker run vanessa/cseq help readme

Print the repository’s README.md to the console

$./cseq run readme
$ docker run vanessa/cseq run readme

CarrierSeq
About

bioRxiv doi: https://doi.org/10.1101/175281

CarrierSeq is a sequence analysis workflow for low-input
nanopore

sequencing which employs a genomic carrier.

Github Contributors: Angel Mojarro
(@amojarro),

Srinivasa Aditya Bhattaru (@sbhattaru),
Christopher E. Carr (@CarrCE),
and Vanessa Sochat (@vsoch).

fastq-filter from: https://github.com/nanoporetech/fastq-filter

[MORE]

https://github.com/sci-f/jobmaker.scif
https://github.com/vsoch/singularity-scientific-example

The Scientific Filesystem 13

Metadata in the way of labels, environment, help, and the
runscript and build recipes themselves are available for the
whole container in either a json [32] or human readable format
via an inspection command:

$./cseq inspect
$ docker run vanessa/cseq inspect

and also available on the level of individual apps:

$ cseq inspect mapping
$ docker run vanessa/cseq inspect mapping

The entire set of steps for running the pipeline provided by
the container comes down to calling the different apps. Running
the actual pipeline is outside of the scope of SCIF and can be
solved by pipeline logic [3,33,34]. For this simple example, as an
overall strategy, since the data are rather large, we are going to
map a folder to the container’s data base where the analysis is
to run. This directory, just like the modular applications, has a
known and predictable location. The steps look like the follow-
ing:

(1) Download data to a host folder
(2) For subsequent commands, map /scif/data to the host
(3) Perform mapping step of pipeline
(4) Perform poisson regression on filtered reads
(5) Sort the results

The calls to the container to support this would be:

$ singularity run –bind data:/scif/data cseq run mapping
$ singularity run –bind data:/scif/data cseq run poisson
$ singularity run –bind data:/scif/data cseq run sorting

$ docker run -v $PWD/data:/scif/data vanessa/cseq run mapping
$ docker run -v $PWD/data:/scif/data vanessa/cseq run poisson
$ docker run -v $PWD/data:/scif/data vanessa/cseq run sorting

This would be enough to run the pipeline. What do the mod-
ules afford us? We can easily isolate metadata and contents re-
lated to each step or shell into the context to test:

$./cseq shell mapping
$ docker run -it vanessa/cseq shell mapping

We might also decide that we don’t like the “mapping” step
and swap it out for 1 provided by a different container.

$ singularity run –bind data:/scif/data map-container run
mapping

$ singularity run –bind data:/scif/data cseq run poisson

$ docker run -v $PWD/data:/scif/data vanessa/map-container
run mapping

$ docker run -v $PWD/data:/scif/data vanessa/cseq run poisson

A researcher who is incredibly interested in variations of 1
step (e.g., sorting) could provide an entire container just to serve
those variations to then be used with carrierseq:

$ singularity run –bind data:/scif/data sort run quick
$ singularity run –bind data:/scif/data sort run merge

$ docker run -v $PWD/data:/scif/data vanessa/sort run quick
$ docker run -v $PWD/data:/scif/data vanessa/sort run merge

Importantly, metadata and contents relevant to a specific
step (e.g., “mapping”) are represented in the build recipe (the
record of instructions that originally built the container and de-
fined the apps) and the content of the filesystem itself (e.g.,
/scif/apps/mapping). The examples above show that SCIF pro-
vides a standard set of commands that could integrate easily
into a workflow manager but also expose intuitive entry points
for users that may not have expertise to use such a manager.
The creator of the SCIF, the scientist, can carefully craft com-
mands to be specific to his work, and the user is not expected to
know the trivial details to use it. In fact, exposure to the details
may even be a detriment if it confuses the user. This is a very
different use case from a scientific developer’s, discussed next.

Carrierseq Development Container
The developer has a different use case — to have easy com-
mand line access to the lowest level of executables needed to
develop an analysis pipeline. Given a global install of all soft-
ware, without SCIF it would be necessary to look at $PATH to
see what has been added to the path and then list executables
in path locations to find new software installed to system loca-
tions like /usr/bin. The user can only assume that the creator of
the host thought ahead to add these important executables to
the path at all or has provided documentation for loading them.
Unfortunately, there is no way to easily and programmatically
“sniff” a filesystem to understand what changes were made and
what tools are available. A development container created by de-
veloper Sam is likely not going to be understood by developer
Stan. We would do well to create a development container in-
stalled with SCIF. For this discussion, we have created such a
build recipe 9 and discuss usage of the SCIF in a container called
cseq-dev.

For the CarrierSeq development container cseq-dev, instead
of serving software on the level of the pipeline, we reveal the
core software and tools that can be combined in specific ways to
produce a pipeline step like “mapping.”

$./cseq-dev apps
bwa
fqtrim
help
python
seqtk
sra-toolkit

$ docker run vanessa/cseq:dev apps

Each of the above apps can be used with commands “run”,
“exec,” “inspect,” “shell,” or “test” to interact with the SCIF in
context of a particular app. Thismeans sourcing app-specific en-
vironment variables and adding executables associated with the
app to the path. For example, I can use a simple app “python” to
open the python interpreter in the container or shell into the
container to test bwa:

Open interactive python
$./cseq-dev run python
$ docker run -it vanessa/cseq:dev run python
[python] executing /bin/bash /scif/apps/python/scif/runscript
Python 2.7.9 (default, Jun 29 2016, 13:08:31)
[GCC 4.9.2] on linux2
Type “help”, “copyright”, “credits” or “license” for more
information.

>>>

9 https://github.com/vsoch/carrierseq

https://github.com/vsoch/carrierseq

14 Sochat

Load container with bwa on path
#
$./cseq-dev shell bwa
$ docker run -it vanessa/cseq:dev shell bwa
[bwa] executing /bin/bash
$ which bwa
$ /scif/apps/bwa/bin/bwa

These 2 CarrierSeq images that serve equivalent software,
but enable very different use cases, are good examples of the
flexibility of SCIF. The creator can choose the level of detail to
expose to a user that doesn’t know how it was created. A lab
that is using core tools for working with sequence data might
have preference for the development container, while a finalized
pipeline distributed with a publication would have preference
for the first.

Singularity Scientific Example
Finally, we adopted an original analysis10 to compare Singularity
vs. Docker on different cloud and local environments to give ra-
tionale for taking a SCIF apps approach over a traditional Singu-
larity image. We compare the same pipeline implemented with
SCIF andwithout SCIF as an example of how containers can pro-
vide the same software for equivalent functionality but, notably,
have different organization that impacts discoverability. A de-
tailed writeup of the rationale and use case is provided for the
reader, alongwith the code base for the container11 In summary,
without using SCIF, a filesystem with scientific applications is a
black box. With SCIF, these same applications are available for
discoverability and inspection.

Research Evaluation

Containers aren’t only useful for running scientific pipelines,
they are sources of information to discover good practices and
features of scientific software. Havingmodular software apps al-
lows for separation of files and executables for research from
those that belong to the base system, enabling this kind of re-
search. From a machine learning standpoint, the apps and cor-
responding metadata provide labels for a supervised algorithm
to compare between scientific applications or even between the
hosts where they are installed. In addition to the filesystem un-
der /scif, the build recipe might also be parsed to see what soft-
ware (possibly outside of the /scif root location) was intended to
be shared between applications. Installation outside of the /scif
root is meaningful in that it suggests global importance.

Working Environments

SCIF has a very interesting use case when it comes to working
environments, as each application can serve as an entry point
to some custom context. Given that each application is associ-
ated with its own environment, labels, and executables on the
$PATH, a SCIF can serve customworking environments, and this
use case is very similar to modules [19]. Imagine that the exe-
cution of some command is not the goal of the container, but
rather providing a set of environments around a software core.
There is no minimum required set of sections to define an app,
so a container that is intended as a “working container” might
simply be a set of %appenv sections to define different named
environments. Without any other section, the user is then able

10 https://github.com/vsoch/singularity-scientific-example.
11 https://github.com/sci-f/scientific-example-ftw.

to interact with the custom, named environments. For exam-
ple, we might have a container called “tensorflow” that can be
shelled into with libraries for gpu on the path.

$./tensorflow shell gpu

Auditing and Logging

Although we do not delve into this use case, it should be noted
that SCIF apps can provide logging and auditing for containers. A
systems administration that builds and provides containers for
his or her users might want to enforce running with a standard
for logging and auditing [35]. Instead of asking the researcher to
write this into his or her custom runscript, the snippet to per-
form the logging could be added as a SCIF app dynamically at
build time and then the container run with this context.

For the complete specification, we direct the reader to the
documentation base at https://sci-f.github.io.

Community

To encourage sharing and distribution of useful apps, we have
developed an online interface for easily exploring and sharing
SCIF apps and generating recipes using the apps, available at
https://sci-f.github.io/apps.

Community Infrastructure

The interface is served from a Github repository that renders
static template files into a completewebsite that includes search
across all content, exploration by tag (e.g., language or operating
system), and instruction by way of reading examples and tutori-
als. Programmatic access to all apps is provided with a RESTful
API, as is a feed for interested users to be notified when new
content is added. The interface also includes a recipe generator
that allows a user to browse the site, save apps of interest in the
browser’s local storage, and then combine them in a recipe file
that can be downloaded in a compressed archive.

As an example integration, the Singularity container registry
Singularity Hub12 provides a build service for the Singularity
community and is designed to automatically extract complete
metadata about apps that it discovers in containers. The meta-
data including app names, environments, and labels is indexed
and search able on the Singularity Hub site. These tools, along
with the ease of using SCIF, will greatly improve container trans-
parency and recipe sharing.

Contributing

Importantly, as the infrastructure is served from a Github repos-
itory, contributing does not require any expertise with web de-
velopment or related technologies. The user can use Github to
fork the repository, add a text file to a folder (apps), and submit a
pull request (PR) to evaluate the contribution. The text file itself
has a header section that contains bullet pointed lists of meta-
data like name, tags, and files, and the remainder of the file is
the sections for the SCIF application (e.g., %apprun hello-world).
When the PR is approved, the contribution is automatically ren-
dered into all areas of the community site. If an application in-
cludes associated files like scripts or configuration, these data
are also easily added into a folder named equivalently to the file

12 https://www.singularity-hub.org.

https://github.com/sci-f/scientific-example-ftw/blob/master/Singularity
https://github.com/sci-f/scientific-example-ftw/blob/master/Singularity
https://github.com/sci-f/scientific-example-ftw/blob/master/Singularity.noscif
http://sci-f.org/apps/examples/scientific
http://sci-f.org/apps/examples/scientific
https://github.com/vsoch/singularity-scientific-example
https://github.com/sci-f/scientific-example-ftw
https://sci-f.github.io
https://sci-f.github.io/apps
https://www.singularity-hub.org

The Scientific Filesystem 15

alongside it (e.g., apps/hello-world/hello-world-bash.md would
have associated files in apps/hello-world/hello-world-bash). By
way of using version control, all changes and contributions are
tracked and credit allocated.

Testing

Github also allows for complete testing of all contributions, and
the repository is set up with a continuous integration (testing)
service called CircleCI13 that checks the following:

� The file name for the application corresponds with the name
declared in the file.

� The folder path under apps also corresponds to the applica-
tion’s file name. For example, an app located at apps/hello-
world/bash/ must start with hello-world-bash. Matching
names to the folder structure ensures uniqueness of the
names within the repository.

� The user has not provided any empty keys or values.
� Each declared file is included in the repository.
� The application minimally has a tag for 1 operating system14

� The header date is in valid format to be rendered correctly.
� Fields allowed in the header do not go beyond “author,” “title,”
“date,” “files,” and “tags.”

� Required fields (“author,” “title,” “date,” and “tags”) are
present.

Any contribution that does not meet these requirements will
get feedback during the PR, and the contributor can address any
issues. As soon as the content is merged into themaster branch,
it is immediately live on the site. The following are examples for
the utility of this resource:

� A user can find useful examples and apps for his or her SCIF.
� A contributor can easily improve the SCIF specification or
documentation via a PR.

� A user can contribute to a third-party software (e.g., Singu-
larity) that has a native SCIF implementation.

� The user can contribute an application for others to use.
� A user can easily report an issue or ask a question to get help.

Future Work

SCIF is exciting because it makes modular scientific application
and container development and usage easier. It exists side-by-
side with other solutions in the scientific software distribution
ecosystem and is compatible with most, if not all, of them. The
user can immediately inspect and see the software a SCIF pro-
vides and how to use it. The user can install additional software,
use an application in a different container, or view metadata
and help documentation. The developer is provided guidance for
how and where to install and configure software, but complete
freedom with regard to the software itself and the level of mod-
ularity to expose. The minimum requirements for any package
are a unique name within the container and then any one of the
needed sections. SCIF opens up an abstraction from underlying
packaging logic and programming languages to work with sci-
entific applications. This alone opens up new opportunities and
great potential for other potential future use cases, discussed
next.

13 https://www.circleci.com.
14 to help determine compatibility.

Mapping of Software Landscape

Given separation of the software from thehost, we canmore eas-
ily derive features that compare software modules. These fea-
tures can be used with standard unsupervised clustering to bet-
ter understand how groups of software are used together. We
can further apply different labels to understand what modules
are shared (or not shared) between scientific domains. We can
find opportunity by discovering gaps (e.g., that a software mod-
ule isn’t used for a particular domain) and then question why
this is the case.

Artificial Intelligence (AI) Generated Hosts

Given some functional goal, and given a SCIF that serves differ-
ent variations of algorithms to achieve it alongsidemetrics about
running the algorithms, we can (either by brute force or more
elegantly) procedurally generate and optimize hosts for running
the algorithms. An entire body of work can be made possible
by way of installing SCIF applications to extract particular fea-
tures or developing tools to externally interact with applications
to evaluate features of the filesystem associated with different
resource usage and resulting outcomes. In the long run, this kind
of workflow offers promise to prune the host (e.g., container)
landscape, and give insight to what it means to call a solution
the “best.” The idea of procedure to build self-optimized hosts
is, abstractly, a new kind of operating system that essentially
designs itself [36].

Discussion

In summary, SCIF is useful because it allows for:

� Flexible modularity where the definition of modularity is en-
tirely based on the needs of the creator and user.

� Reproducible practices by way of providing portable environ-
ments with contents that are easily discovered.

� Integration with external tools.
� Predictable structure that distinguishes scientific content from
the operating system base.

� Community resources including APIs, version control and test-
ing, and open forums for tracking issues and discussions re-
lated to SCIF and SCIF apps.

This discussion would not be complete without a mention of
limitations and suggested best practices.

Limitations

It is important to distinguish the SCIF and the host that serves it.
When a SCIF is installed to a container, it improves the discover-
ability of software for the container and thus greatly enhances
the reproducibility of the container. While the container itself
is portable and designed to contain all dependencies to support
reproducibility, a SCIF module in and of itself is not guaranteed
to be. For example, a user might define a module only with an
%apprun section, implying that the folder only contains a run-
script to execute. The usermay have chosen to install dependen-
cies for this script globally in the container because perhaps they
are shared across multiple modules. Under these conditions, if
another user expected to add the module to a different build
recipe, the global dependencies would be needed too. The host
operating system also needs to be taken into consideration. A
module with dependencies installed from the package manager
“yum” would not move seamlessly into a Debian base. However,

https://www.circleci.com

16 Sochat

appropriate checks and balances can be implemented to help
with movement of applications between containers.

Best Practices

Application Installation
To avoid missing dependencies, users are encouraged to include
all dependency installs within the %appinstall section to make
their applications maximally portable. It’s also good practice to
use the %apptest section to ensure that an app that might have
been newly installed is functioning as it should. Finally, meta-
data should be providedwith apps about points of contact, usage
and documentation, and supported operating system bases. To
encourage this practice, we have added a test and requirements
of specifying 1 or more operating systems for any module con-
tributed at https://sci-f.github.io/apps.

Global vs Application Install
In the case of software that can be installed globally using a
package manager, it is up to the creator to decide if a global vs.
an application install is more appropriate. In practice, we have
found that global installs tend to be larger, well maintained li-
braries (e.g., libraries installedwith apt-get or packagemanagers
like pip), and having them installed globally to the container, to
be shared among applications, ismost appropriate. In the case of
wanting multiple versions of the same software, an application
install is most appropriate to keep the environments isolated.
This decision is up to the generator of the SCIF.

Although we suggest using SCIF paired with Docker or Sin-
gularity for reproducibility, we do not enforce these particular
technologies. SCIF can be extended to any general host or con-
tainer technology that supports an install routine and has an ex-
ecution entry point, and we encourage the community to foster
discussion about this development.

Conclusion

We have presented the SCIF and have shown examples of its
functionality for interaction, development, and execution of sci-
entific applications. This is an additional and complementary
format to existing and successful approaches to scientific soft-
ware distribution. The SCIF is advantageous in that its creator
can embed his or her work with implied metadata about soft-
ware and contents and generate an environment and organiza-
tional structure to support development and deployment. SCIF
also makes it easier to package different entry points with a
host and expose them easily to the user. However, this does not
mean that the traditional approach of using a container as a gen-
eral toolbox and distributing it with a series of external callers
is bad or wrong. The community is provided with SCIF with
a goal to support reproducible science and continued develop-
ment of specialized filesystems. We hope that SCIF is useful for
the larger community and encourage contributions to continue
formalization of the format toward becoming a widely adopted
standard.

Abbreviations

API: Application Program Interface; APPS: Applications; BWA:
Burrows-Wheeler Aligner, RRID:SCR˙015853; HPC: High Perfor-
mance Computing; SCIF: Scientific Filesystem, RRID:SCR˙016105;
SGE: Sun Grid Engine; SLURM: Simple Linux Utility for Resource
Management; SEQTK: Sequence Processing Toolkit

Resources

The following is a list of (possibly) related standards, formats
and initiatives.

� File Hierarchy Standard
� Open Containers Initiative
� Common Workflow Language
� Fair Principles
� Open Standards
� https://reproducible-builds.org/
� DASPOS: https://daspos.crc.nd.edu
� TANGO: http://tango-project.eu/

Code Availability

The Scientific Filesystem specification, client, and integrations
are open source and freely available.

� Project name: Scientific Filesystem (SCIF)
� Project home page: https://sci-f.github.io
� Operating system(s): Linux
� Programming language: python,bash
� License: Apache AGPL

Availability of supporting data

The software and code supporting the use cases in this article
are available in several code repositories. Snapshots of the code
are also available in the GigaDB repository [37].

� SCIF Client https://www.vsoch.github.com/scif/
� SCIF Documentation https://sci-f.github.io
� SCIF Apps and Resources https://sci-f.github.io/apps/

Competing Interests

The authors declare that they have no competing interests.

funding

V. S. is supported by the Stanford Research Computing Center
and the Stan- ford School of Medicine.

Author Contributions

V. S. conceptualized, implemented, developed, and tested the
SCIF, along with the associated web applications, examples, and
tutorials.

Acknowledgements

The author thanks the community for substantial feedback on
the specification and the manuscript draft. Specifically, thanks
to Pim Schravendijk, Ruth Marinshaw, Satra Ghosh, Remy Der-
nat, and Paolo D. Tommasso for feedback on the draft and for-
mat. Special thanks to the contributors and larger community
for making open source software projects fun, needed, and in-
spiring.

References

1. Glatard T, Lewis LB, Ferreira da Silva R et al. Reproducibility
of neuroimaging analyses across operating systems. Front
Neuroinform. 2015;9.

https://sci-f.github.io/apps
https://scicrunch.org/resolver/RRID:SCR_015853
https://scicrunch.org/resolver/RRID:SCR_016105
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://github.com/opencontainers/image-spec/blob/master/spec.md
http://commonwl.org
https://www.force11.org/group/fairgroup/fairprinciples
https://open-stand.org
https://reproducible-builds.org/
https://daspos.crc.nd.edu
http://tango-project.eu/
https://sci-f.github.io
https://vsoch.github.io/scif
https://sci-f.github.io
https://sci-f.github.io/apps/

The Scientific Filesystem 17

2. Merkel D. Docker: lightweight linux containers for consistent
development and deployment. Linux J. 2014;2014.

3. Docker-based solutions to reproducibility in science- Seven
Bridges. 2015. https://blog.sbgenomics.com/docker-based-
solutions-to-reproducibility-in-science/. Accessed: 17 Dec
2016.

4. Hosny A, Vera-Licona P, Laubenbacher R et al. AlgoRun: a
Docker-based packaging system for platform-agnostic im-
plemented algorithms. Bioinformatics. 2016;32:2396–98.

5. Moreews F, Sallou O,Ménager H et al. BioShaDock: a commu-
nity driven bioinformatics shared Docker-based tools reg-
istry. F1000Res. 2015;4:1443.

6. Boettiger C. An introduction to Docker for reproducible re-
search, with examples from the R environment. 2014.

7. Linux Filesystem Hierarchy.
8. Wikipedia contributors. Comparison of file systems. 2016.

https://en.wikipedia.org/w/index.php?title=Comparison˙of˙
file˙systems&oldid=751048657. Accessed: 23 Nov 2016.

9. Overview of Docker Compose. https://docs.
docker.com/compose/. Accessed: 9 Jan 2016.

10. Di Tommaso P, Palumbo E, Chatzou M et al. The impact of
Docker containers on the performance of genomic pipelines.
PeerJ. 2015;3:e1273.

11. Curcin V, GhanemM. Scientificworkflow systems - can 1 size
fit all? In: 2008 Cairo International Biomedical Engineering
Conference; 2008. p. 1–9.

12. [PDF]A Survey of Data-Intensive Scientific Workflow Man-
agement - Inria.

13. Conda— Conda documentation. Accessed: 2018-2-6.
https://conda.io/docs/. Accessed: 6 Feb 2018.

14. Hoste K. Installing software for scientists on a multi-user
HPC system.

15. Kaczmarzyk J. neurodocker.
16. Chirigati F, Rampin E, Shasha D et al. ReproZip: Computa-

tional Reproducibility With Ease.
17. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific Con-

tainers for Mobility of Compute.
18. Smith JE, Nair R. Virtual Machines: Versatile Platforms for

Systems and Processes. The Morgan Kaufmann Series in
Computer Architecture and Design Series. Morgan Kauf-
mann Publishers; 2005.

19. Furlani JL, Osel PW. Abstract Yourself With Modules. In: Pro-
ceedings of the 10th USENIX Conference on System Admin-
istration. LISA ’96. Berkeley, CA, USA: USENIX Association;
1996. p. 193–204.

20. Warewulf . http://warewulf.lbl.gov/trac. Accessed: 5 Dec
2016.

21. Wikipedia contributors. List of build automation soft-
ware; 2016. https://en.wikipedia.org/w/index.php?title=
List˙of˙build˙automation˙software&oldid=745372506. Ac-
cessed: 23 Nov 2016.

22. container-diff.
23. Yarkoni T, Poldrack RA, Nichols TE et al. Large-scale auto-

mated synthesis of human functional neuroimaging data.
Nat Methods. 2011;8:665–70.

24. strace(1): trace system calls/signals - Linux man page.
https://linux.die.net/man/1/strace. Accessed: 11 Sep 2017.

25. Beaulieu-Jones BK, Greene CS. Reproducible Computational
Workflows with Continuous Analysis; 2016.

26. Understanding the GitHub Flow. https://guides.github.com/
introduction/flow/. Accessed: 26 Jan 2017.

27. Gorgolewski KJ, Auer T, Calhoun VD et al. The brain imag-
ing data structure, a format for organizing and describ-
ing outputs of neuroimaging experiments. Sci Data. 2016;3:
160044.

28. time(1)- Linux manual page. http://man7.org/linux/man-
pages/man1/time.1.html. Accessed: 26 Jan 2017.

29. Slurm Workload Manager. Accessed: 2016-12-6. https://
slurm.schedmd.com/plugins.html.

30. SGE Manual Pages. http://gridscheduler.sourceforge.net/
htmlman/manuals.html. Accessed: 4 Nov 2015.

31. Mojarro A, Hachey J, Ruvkun G, Zuber MT, Carr CE. Carri-
erSeq: a sequence analysis workflow for low-input nanopore
sequencing; 2017.

32. contributors W. JSON; 2015. https://en.wikipedia.org/w/
index.php?title=JSON&oldid=692109528. Accessed: 24 Nov
2015.

33. Köster J, Rahmann S. Snakemake–a scalable bioin-
formatics workflow engine. Bioinformatics. 2012;28:
2520–22.

34. Data Sciences Platform @ Broad Institute. WDL — Home.
https://software.broadinstitute.org/wdl/. Accessed: 6-Feb-
2018.

35. Stodden V. Reproducibility in Computational and Experi-
mental Mathematics.

36. Myers K. At the Boundary of Workflows and AI. AAAI Tech-
nical Report.

37. Sochat V. Supporting data for “The Scientific Filesys-
tem (SCIF); 2018. GigaScience Database. http://dx.
doi.org/10.5524/100420.

https://blog.sbgenomics.com/docker-based-solutions-to-reproducibility-in-science/
https://blog.sbgenomics.com/docker-based-solutions-to-reproducibility-in-science/
https://en.wikipedia.org/w/index.php?title=Comparison_of_file_systems&oldid=751048657
https://en.wikipedia.org/w/index.php?title=Comparison_of_file_systems&oldid=751048657
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://conda.io/docs/
http://warewulf.lbl.gov/trac
https://en.wikipedia.org/w/index.php?title=List_of_build_automation_software&oldid=745372506
https://en.wikipedia.org/w/index.php?title=List_of_build_automation_software&oldid=745372506
https://linux.die.net/man/1/strace
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
https://slurm.schedmd.com/plugins.html
https://slurm.schedmd.com/plugins.html
http://gridscheduler.sourceforge.net/htmlman/manuals.html
http://gridscheduler.sourceforge.net/htmlman/manuals.html
https://en.wikipedia.org/w/index.php?title=JSON&oldid=692109528
https://en.wikipedia.org/w/index.php?title=JSON&oldid=692109528
https://software.broadinstitute.org/wdl/
http://dx.doi.org/10.5524/100420
http://dx.doi.org/10.5524/100420

