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Abstract

The human brain tracks amplitude fluctuations of both speech and music, which reflects

acoustic processing in addition to the encoding of higher-order features and one’s cognitive

state. Comparing neural tracking of speech and music envelopes can elucidate stimulus-

general mechanisms, but direct comparisons are confounded by differences in their enve-

lope spectra. Here, we use a novel method of frequency-constrained reconstruction of stim-

ulus envelopes using EEG recorded during passive listening. We expected to see music

reconstruction match speech in a narrow range of frequencies, but instead we found that

speech was reconstructed better than music for all frequencies we examined. Additionally,

models trained on all stimulus types performed as well or better than the stimulus-specific

models at higher modulation frequencies, suggesting a common neural mechanism for

tracking speech and music. However, speech envelope tracking at low frequencies, below 1

Hz, was associated with increased weighting over parietal channels, which was not present

for the other stimuli. Our results highlight the importance of low-frequency speech tracking

and suggest an origin from speech-specific processing in the brain.

Author summary

The time-varying amplitude of sounds such as speech and music provides information

about phrasing and rhythm, and previous research has shown that the brain continuously

tracks these variations. Is a common neural mechanism responsible for tracking both

sounds? We used a technique that reconstructs these amplitude fluctuations from the fluc-

tuations in recorded EEG to quantify the strength of neural tracking. Our hypothesis was
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that neural tracking for music would match speech in a narrow frequency range associated

with syllables and musical beats. Though our results did suggest a common mechanism

involved in tracking both speech and music at these higher frequencies, we instead found

that speech was tracked better than the rock, orchestral, and vocals stimuli at all of the fre-

quencies we examined. Moreover, low-frequency fluctuations at the rate of phrases were

associated with increased EEG weightings over parietal scalp, which did not appear during

the neural tracking of music. These results suggest that, unlike syllable- and beat-tracking,

phrase-level tracking of amplitude variations in speech may be speech-specific.

Introduction

Sound carries information in speech and music across a wide range of time scales, and theoret-

ically the brain must have some parsing mechanism that operates on the sound prior to

extracting information. There is considerable debate about how speech and music are parsed

by the brain, but it is fairly clear that the sound’s rhythmic structure enables speech decoding

[1], facilitates pattern recognition [2], and affects discrimination of orthogonal acoustic attri-

butes [3,4]. Fluctuations in the envelopes of speech and music capture rhythmic structure, so if

the brain is responding to this structure, brain activity should also be tracking their envelopes.

Indeed, past research has shown that brain signals track envelopes for both speech (for

reviews see: [5,6]) and music [7–9]. Furthermore, the strength of envelope tracking can be

affected by the listener’s locus of attention [10–13], level of comprehension [14,15], and per-

ceived musical meter [16–18]. Thus, rather than simply representing a response to the acousti-

cal structure, envelope tracking may include neural mechanisms that respond to more

complex, non-acoustic features which correlate with the envelope but do not represent the

stimulus envelope per se [8,19–22].

The mechanisms that produce this envelope tracking are still hotly debated, however, and

the various interpretations typically stem from the method of analysis used in each study. One

theory posits that neural oscillations are tuned to particular frequencies relevant for parsing

the speech or music into these discrete units [23,24]. For speech, the phase consistency of the

neural responses observed at theta band (4–8 Hz) and delta band (< 4 Hz) correspond roughly

to syllabic and phrase rates respectively. In another theory, the neural tracking of the envelope

measured with EEG and MEG is represented by its convolution with an evoked response

[25,26]. The evoked response has been shown to respond particularly to envelope edges, which

mark vowel-nucleus onsets and are highly correlated with syllable onsets in speech [20,27]. Yet

it is not clear if the two mechanisms are irreconcilably different. Phase consistency can come

about if characteristic evoked responses occur at transient, regular times in the sound [27].

Likewise, an evoked response model that captures envelope tracking acts like a filter [28] and,

via regularization, focuses on lower frequencies that overlap with the frequencies exhibiting

the largest phase consistency. Evoked-response-type models have been used to quantify and

compare the strength of neural tracking in theta and delta bands [14,19,29], which also sug-

gests that, in spite of the differing theories for the mechanisms of neural tracking, the distinct

results across studies could be related. This can be examined further by computing models

responsible for tracking various frequency bands of the envelope and looking at the corre-

sponding evoked responses captured by those models.

Neural tracking in the theta band appears to be strongest for speech and music compared

to other natural sounds [30], yet it remains to be determined if the underlying mechanisms of

envelope tracking are distinct between speech and music. A model-based approach can test
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this directly by examining how stimulus-response models differ across stimulus types. Unfor-

tunately, comparing model-based quantifications of speech and music neural tracking is com-

plicated by the different spectral profiles between the two types of sounds. Additionally, neural

tracking is also affected by feedback mechanisms relating to non-acoustic features [21,22,31]

or one’s cognitive state [10,11,16,32,33]. But to compare these “higher-level” effects between

speech and music in naturalistic stimuli it is useful to first isolate differences in neural tracking

that cannot be explained by envelope spectral differences alone.

In this study, we apply a variant on linear modeling to focus analysis on a narrow range of

frequency bands. We then compare reconstruction accuracies for various shifts of the fre-

quency range in order to understand precisely how EEG tracks the signal envelope of speech

and music during passive listening. We hypothesized that speech and music would have differ-

ent frequency bands at which their envelopes are tracked best, and by using linear modeling,

we could observe the spatiotemporal patterns of the responses that are most relevant for enve-

lope tracking in each respective frequency region.

Results

In our experiment, 16 subjects (7 female; ages 18–44, median 22) passively listened to four

types of stimuli, interleaved across trials: rock songs in full, excerpts from orchestral songs, the

vocals isolated from the rock songs, and several segments of an audiobook (called “speech” sti-

muli in the figures). Each subject listened to 6–7 of the 10 possible stimuli available for each

stimulus type (see S1 Table for details on the stimuli). We will first step through the model

construction and optimization procedure. Then, we will show the differences in neural track-

ing we observed and examine the spatiotemporal EEG responses that gave rise to these differ-

ences in neural tracking.

Envelope reconstruction with PCA and basis spline transformation

Our initial goal was to quantify how well EEG tracked the music envelopes in comparison to

speech. Previous research had shown that EEG tracks envelope fluctuations in speech and

music particularly above 2 Hz [7,34,35]. Based on this prior work, we expected that music

envelope tracking would be comparable to speech when reconstructions are focused on a nar-

rower bandwidth of frequencies above 2 Hz. Additionally, speech and vocals might show low

frequency tracking of envelopes, below 1 Hz, where the energy in orchestral and rock enve-

lopes is comparatively low (Fig 1A and 1B; see also S1 Fig). On the other hand, if we assume

that the neural signal in the EEG is directly proportional to the dB envelope, we might expect

speech tracking to be largest across all modulation frequencies, followed by vocals, then

orchestral, and then rock music (Fig 1B). With this in mind, we decided to use an approach to

envelope reconstruction that focused on narrow bands of modulation frequencies. This would

allow us to identify if differences in envelope reconstruction that we observe using the broad-

band envelope (see S2 Fig) are due to differences in the modulation frequencies that are most

strongly tracked. Alternatively, envelope tracking of speech could be better because of the rela-

tive variance in the modulations of the dB envelope.

We used a method of modeling that allowed us to focus on envelope tracking in narrow fre-

quency bands. We chose to implement this filtering stage within the model itself, rather than

as a separate stage of preprocessing, so that we could use an identical model architecture and

common hyperparameters to investigate each frequency range (Fig 2A). First, the moving

average of both the stimulus envelope and EEG, using a window size equal to the maximum

EEG delay in the model, was removed in order to remove effects of neural tracking outside of

the model’s spectral range (see S2C Fig). Next, the EEG data were spatially transformed into
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orthogonal components using principal components analysis (PCA) in order to remove spatial

collinearity in the EEG. Lastly, before fitting the model, the time-delayed EEG signal was trans-

formed into a basis of cubic splines. Cubic splines are smooth functions constructed based on

a sequence of knots. By collating these splines across the range of delays, the splines can be

used to interpolate any delayed EEG with a smoother, lower-frequency representation. The

number of basis splines can be equivalently defined by the sampling frequency of the evenly

distributed knots, which also relates to the lowpass cutoff frequency of the splines (see legend

in Fig 2B). Overall, for a specific window size, this model contains two hyperparameters: 1) the

number of principal components to retain, and 2) the number of basis splines within the

model window size.

To optimize these hyperparameters, we fitted the model using the Natural Speech dataset

which is freely available online [36]. In this dataset, subjects (N = 19) listened to 20 trials of an

audiobook that were approximately three minutes long. In order to identify the optimal hyper-

parameters, we compared the PCA & spline model performance to a regularized model using

ridge regression, which is commonly used for speech envelope reconstruction [13,37–39]. Specif-

ically, we compared the performance of the two models on each trial by training and testing the

models using a leave-one-trial-out procedure. When a small number of principal components

and splines are included, the model tends to underperform compared to models with more

parameters (Fig 2B). Because no regularization was applied to the PCA & spline model, it also

underperforms when all principal components are included. The model containing 64 principal

components and 19 splines (or equivalently a spline knot sampling rate of 32 Hz) exhibited the

best performance and was the only hyperparameter pair whose performance was not signifi-

cantly different than the model with regularization (Fig 2B) (Wilcoxon rank-sum test, p> 0.05).

The optimal sampling of spline knots constrained the frequency content of the time-delayed

Fig 1. (A) 20 seconds of example dB envelopes for each stimulus type. (B) Power spectra of the dB envelopes using Welch’s method with a 16 s

Hamming window and half-overlap after normalizing by the average EEG spectrum for all subjects (see Methods). Lines indicate the median

across stimuli of each type, and shaded regions indicate 95% quantiles of the distribution of 1000 bootstrapped median values.

https://doi.org/10.1371/journal.pcbi.1009358.g001
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EEG to 16 Hz, so combined with the removal of the moving average, the optimal PCA & spline

model constrained the envelope reconstruction’s spectrum to a three-octave range (Fig 2C).

Speech envelope tracking is better than music at all modulation frequencies

Using the number of principal components and splines optimized to the Natural Speech data-

set, we computed the reconstruction accuracies for each trial in the current dataset, separately

Fig 2. (A) Diagram of the stages for fitting the PCA & spline model. Throughout this study, the model is trained on all trials with one left out and tested on the left-out

trial. (B) The difference in reconstruction accuracy (Pearson’s r) between the PCA & spline method and a standard approach based on regularized linear regression for

each of the left-out trials was then examined; negative values mean that the standard approach performs better. Error bars show the interquartile range of the

reconstruction accuracy differences. Of all hyperparameter pairs, only 64 PCs and spline knots sampled at 32 Hz exhibited performance that was no different than the

standard approach. (C) The combined effect of removing the moving average and using basis splines restricts the frequency content of the reconstruction to a three-

octave range; for a 500 ms window, this is restricted from 2–16 Hz.

https://doi.org/10.1371/journal.pcbi.1009358.g002
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for each stimulus type, using a leave-one-out procedure (Fig 3A). We analyzed neural tracking

of the envelope across a wide range of frequencies by varying the window size of the model

between 31.25 ms and 16 s, corresponding to an upper frequency range of 32–256 Hz and a

lower range of 0.0625–0.5 Hz respectively. By varying the frequency content of the EEG

involved in reconstruction while simultaneously controlling the low frequency cutoff of the

envelope, we expected to see an increase in reconstruction accuracy as the bandwidth of the

model encompassed the relevant frequency range for envelope tracking for the stimulus (Fig

3B). We can quantify the upper and lower cutoff frequencies of envelope tracking based on the

skirts of the reconstruction accuracy plots, which should vary over a three-octave range, corre-

sponding to the range of frequencies where the model’s spectrum transitions from not overlap-

ping to fully overlapping the relevant frequency range. However, the reconstruction accuracy

needed to be corrected by the variance of the distribution corresponding to chance perfor-

mance; as the model includes more low frequency content, the variance in the null distribution

also increases (Fig 3C). To control for this, we normalized the trial-by-trial reconstruction

accuracy with respect to a distribution of null values computed by circularly shifting the enve-

lopes relative to the EEG (Fig 3A and 3C). In this way, reconstruction accuracies were “z-

scored” relative to the null distribution.

Overall, we found that all stimuli exhibited above-chance reconstruction accuracies, but the

ranges exhibiting this were slightly different. As expected, the trends in the reconstruction

accuracy curves increased from chance to near-peak reconstruction accuracy over a three-

octave change in the upper cutoff frequency, indicating that EEG tracks the rock envelopes

above 2 Hz, vocals and orchestral above 1 Hz, and speech above 0.5 Hz (Fig 3D). Reconstruc-

tion accuracies for all stimuli were above chance up to the highest range we could examine for

the 512 Hz recorded sampling rate of the EEG. There is considerable evidence of cortical and

brainstem tracking of fluctuations at the fundamental frequency of the stimulus pitch [40,41],

which might explain the above-chance reconstructions at very high modulation frequencies.

Additionally, the ranges of peak reconstruction varied across stimulus types: while the music

stimuli had peak reconstructions within 2–32 Hz, speech showed peak reconstruction at a

lower frequency range. We thought that the music reconstruction accuracies might be compa-

rable to speech above 2 Hz, but contrary to our expectations, frequency tracking for speech

was better throughout the range of frequencies at which performance was above chance (Fig

3E). The difference in reconstruction accuracy between speech and the music stimuli increased

with lower frequencies, peaking at the 0.5–4 Hz range (for z-scored reconstruction accuracies

for individual subjects, see S3 Fig; for the envelope reconstruction accuracy using original

Pearson’s r values, see S4 Fig).

We used the Natural Speech dataset to validate that this trend of reconstruction accuracies

as a function of modulation frequency was not specific to the data shown here (S5 Fig). The

Natural Speech data also showed decreasing reconstruction accuracies for models with fre-

quencies below 0.5 Hz (as in Fig 3D), but z-scored reconstruction accuracies were still above

zero at the lowest frequency range we used in this study. This suggests that the limit found in

Fig 3D is a consequence of the limited amount of speech data available in this dataset (6–7 tri-

als here compared to 20 trials in Natural Speech), and speech may be weakly tracked at even

lower frequencies below our lowest frequency range of 0.0625–0.5 Hz). Note that the Natural

Speech dataset was collected using the same EEG system as the current dataset, so the limita-

tion we observed here is unlikely to be an issue with the low-frequency noise floor of the EEG

collection.

Because the model hyperparameters were optimized to speech, we considered that this

might explain the high reconstruction accuracies for speech. We repeated this analysis using

optimal hyperparameters for the music stimuli, but after doing so speech reconstruction still
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Fig 3. (A) For each stimulus type (6–7 trials per subject) the model was iteratively fit to all trials with one left out and tested on the left-out trial. In order to get a null

distribution of reconstruction accuracies, we repeated this procedure, leaving out one trial at a time, after randomly circularly shifting the envelopes in each trial by the

same amount. This was repeated 50 times for each stimulus type. (B) Schematic of our expectation for how reconstruction accuracy varies with frequency. We
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outperformed music (S6 Fig). Another potential reason was that the speech envelopes had less

variable spectra across trials than the music stimuli (S1B Fig); the speech stimuli came from

the same audiobook, but the music stimuli came from different songs with different tempos

(see also S1 Table). To control for this possibility, we repeated the envelope reconstruction

analysis by fitting and testing models on randomly sampled data within each trial, which maxi-

mized the possibility of the testing data containing the same spectrum as the training data

(S7A Fig). We found that within-trial reconstruction accuracies were still significantly larger

for speech than the other stimuli across all measured frequencies (S7B and S7C Fig).

We also validated if eyeblinks could explain our reconstruction results, perhaps if subjects

were more likely to blink at particular events for one stimulus type but not others. The enve-

lope reconstruction analysis was repeated using eyeblink components isolated with indepen-

dent components analysis (S8 Fig). Using the eyeblink component, reconstruction accuracies

were much smaller, and accuracies dropped to zero when only eyeblink peak times were used,

implying that eyeblinks could not explain our results.

Together, these results show that envelope reconstruction better captures the neural repre-

sentation of speech compared to music. The differences in envelope reconstruction perfor-

mance cannot be explained by spectral variability across trials or by the model optimization

procedure. Our results also support the possibility that speech envelope tracking is better due

to the relatively larger variability in the speech envelope (Figs 1B and S1).

Speech envelope tracking at low frequencies is associated with increased

weighting of parietal electrodes

Theoretically, the envelope reconstruction model weights spatiotemporal components of the

EEG response that most strongly track the stimulus envelope. To understand how these

weights correspond to activity evoked by the envelope fluctuations, we inverted the recon-

struction models and transformed them from splines and principal components into delays

and EEG channels (see Materials and Methods). The EEG response shows temporally consis-

tent peaks and troughs across frequency ranges which vary in magnitude depending on the fre-

quency range represented, indicating an overlap in the spatiotemporal neural activity that is

being picked up by each model (Fig 4A).

The temporal variation in the weights is generally consistent across stimulus types, which

appears to be particularly true at low frequencies (< 4 Hz) (Fig 4B). Except for increased

weighting for speech in channels over posterior scalp, the spatial distribution of the weights

was also fairly consistent (Fig 4D). It is also notable that the magnitude of the vocals weights

on average are comparable to speech, even though reconstruction accuracies are smaller at

these frequencies. At higher frequencies (4–32 Hz), however, the models appear to be of differ-

ent magnitudes and potentially phase-shifted relative to each other (Fig 4B and 4C; see also S8

Fig for individual model weights for each subject). For example, the speech and orchestral

responses are well aligned, but the primary peak for vocals happens about 20 ms earlier and

expected that EEG may be tracking a particular frequency range of the stimulus envelope. This could be identified by varying the range of the three-octave model

bandwidth. The reconstruction accuracy increases from chance as the model bandwidth overlaps the relevant frequency range, and plateaus when the model

bandwidth is fully contained within the relevant frequency range. (C) As lower frequencies are introduced into the stimulus envelope, the variance of the null

distribution increases. Because of this, we z-scored the true trial-by-trial reconstruction accuracies relative to the null distribution to ease cross-frequency

comparisons. (D) Shown are the median reconstruction accuracies across subjects and trials. Shaded regions show the 95% quantiles of the distribution of 1000

median values calculated using bootstrap resampling with replacement. Thicker lines indicate frequency ranges where median z-scored reconstruction accuracies

were significantly greater than zero (one-tailed Wilcoxon signed-rank test with Bonferroni correction for 40 comparisons, p< 0.001). (E) Throughout the frequency

range tracked by speech, speech reconstructions were significantly better than all other musical stimuli, with a difference peaking in the 0.5–4 Hz range. Thick lines

indicate differences in reconstruction accuracy that are significantly greater than zero (two-tailed permutation test with Bonferroni correction for 40 comparisons,

p< 0.001).

https://doi.org/10.1371/journal.pcbi.1009358.g003
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the secondary peak for rock happens 20 ms later. To what extent do these differences affect

neural tracking of the envelopes for the different stimuli? Additionally, speech tracking is bet-

ter at low frequencies (0.5–4 Hz) than music tracking, but this could be a consequence of

Fig 4. (A) Model weights, median across subjects and averaged across channels. Models are color-coded based on their frequency range (see to the right of the plots).

The model of the range 0.0625–0.5 Hz was excluded because none of the stimuli exhibited significant neural tracking in this range, and the large values for the weights

obscured the trends in the other models. (B) Mean and standard error across subjects of model weights for two frequency ranges (see S9 Fig for the models for individual

subjects). (C) and (D) show the topographies of the model weights averaged over the range of delays corresponding to peaks and troughs in the 4–32 Hz and 0.5–4 Hz

models respectively. Note that the range of delays vary across stimulus types in the 4–32 Hz model in order to capture similar peaks and troughs.

https://doi.org/10.1371/journal.pcbi.1009358.g004
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differences in power in the dB envelope at those frequencies (Fig 1B). If so, then a common

mechanism would produce comparatively strong neural tracking for speech than music. Is the

speech tracking at low frequencies a result of common processing across stimulus types?

To address this question, we reanalyzed the EEG data using envelope reconstruction mod-

els trained on all stimulus types and then tested on each trial individually. These stimulus-gen-

eral models would necessarily capture consistent trends across all stimulus types relevant to

envelope tracking. If any trends observed in the stimulus-specific models were involved in

tracking the envelope of the respective stimulus, we expected to see higher reconstruction

accuracies for the stimulus-specific model than the stimulus-general model. Yet contrary to

our expectations for the faster frequencies, speech reconstruction using the stimulus-specific

model performed no better than the stimulus-general model, and for all other stimuli the stim-

ulus-specific model performed worse (Wilcoxon signed-rank test with Bonferroni correction

for 36 comparisons, p< 0.001) (Fig 5A). In contrast, the stimulus-specific model performed

better for speech reconstruction only at 1–8 Hz and 0.5–4 Hz (for reconstruction accuracies

for individual subjects, see S3 Fig).

To better understand these differences, we also looked at the difference in performance

between the stimulus-specific models and cross-stimulus models trained on one stimulus type

but tested on another (S10 Fig). We again found that the model trained and tested on speech

did significantly better than the model trained on other stimuli, for both the 4–32 Hz and 0.5–

4 Hz models. Notably, we also found that the other same-stimulus models trained and tested

on music stimuli seemed to outperform the cross-stimulus models for 4–32 Hz, but not 0.5–4

Hz. This was different from our finding in Fig 5A, where the stimulus-specific models trained

on music performed worse than the stimulus-general model. We think this indicates an issue

of limited data, since the stimulus-general model was trained on 24–28 trials compared to the

6–7 trials for the cross-stimulus models. However, the improvement in performance produced

by the stimulus-general model is still smaller than the difference in performance between

speech and the music reconstructions (for reference, see S4 Fig showing the reconstruction

accuracy using non-normalized r values). Thus, we do not think that increasing the amount of

data would have improved the performance of music envelope reconstructions sufficiently to

account for the difference with speech.

We were also concerned that the large frontal negativity at 200–500 ms might be indicative

of eyeblinks (Figs 4D and 5C) [42]. We looked at the individual subject topographies and

found 4/16 subjects with strong eyeblink-like topographies in their models, but after removing

these subjects, only the differences in the 1–8 Hz range were no longer significant, and the

topographies continued to show strong frontal activity (S11 Fig).

On average, the stimulus-general models were topographically and temporally similar to

the stimulus-specific models (Fig 5B and 5C, compare to Fig 4). To better understand what dif-

ferences between the speech-specific models and stimulus-general models might have pro-

duced the improved reconstruction accuracies for speech, we chose to examine these

differences trial by trial. Noting that differences between the stimulus-general and stimulus-

specific models were not restricted to specific delays, we instead quantified the scaling and cir-

cular shift of the stimulus-general model to best match the stimulus-specific model tested on

the same trial (Fig 5D). The circular shift quantifies the change in delay between the two mod-

els, and the positively constrained scaling quantifies the change in magnitude.

We used R2 to quantify the fit of the scaled and shifted stimulus-general model to the stimu-

lus-specific model (note that this is different than Pearson’s r, which we use as a measure of

envelope reconstruction accuracy). The ability to fit the stimulus-specific model varied across

stimuli: for both 4–32 Hz and 0.5–4 Hz models, the fit was not significantly better than chance

for rock music, and for orchestral the 0.5–4 Hz fit was not above chance (Fig 5E; for reference,
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Fig 5. (A) The difference between the trial-by-trial reconstruction accuracies using the stimulus-specific and stimulus-general models was then computed. Lines show

the median reconstruction accuracy differences across subjects and trials. Shaded regions show the 95-percentile range of bootstrapped resampled median values.

Significance values are based on a Wilcoxon signed-rank test with Bonferroni correction for 32 comparisons, ��� p< 0.001, �� p< 0.01). The stimulus-specific speech

model outperformed the stimulus-general model at 0.5–4 Hz and 1–8 Hz (blue text), while the other stimulus-specific models performed worse than the stimulus-

general model for most frequency ranges (black text, solid lines at top). (B, C) The stimulus-general model was quite similar in its temporal (B) and spatial (C) pattern

compared to the stimulus-specific models. (D) We assumed that stimulus-general model is a scaled and phase shifted version of each of the stimulus-specific models, so

by circularly shifting and scaling the model we could quantify the difference between the model weights. The scaling was computed separately for each EEG channel, but

we assumed the shift would be identical for all EEG channels. (E) R2 fits of the scaled and shifted stimulus-general model to each stimulus-specific model on a trial-by-

trial basis, based on the summed errors across all EEG channels. Solid black lines show the median values across all trials and subjects. The grey lines to the left of each

set of black dots designates the 5% and 95% range of the chance R2 distribution. Red asterisks show the stimulus-types for which the fits were significantly better than

chance (Wilcoxon rank-sum, p< 0.001). (F) Distribution of circular shifts plotted identically to E. Red asterisks show distributions whose medians are significantly

different than zero (Wilcoxon signed-rank, p< 0.001). (G) Above, topography of scaling factors for vocals and speech. The scaling factors at channels Fz and Pz were
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see also the R2 values of the stimulus-general to stimulus-specific model fits without scaling or

circular shifting in S12 Fig). This indicates that there were either differences in the rock and

orchestral stimulus-specific models compared to the stimulus-general model, or that the rock

and orchestral models were too variable to be properly fit by the stimulus-general model. The

vocals and speech models were well-fit by the scaled and shifted stimulus-general model. Addi-

tionally, the circular shift of the stimulus-general model matched the expected shift from the

averaged model for vocals (Fig 5F), showing a slight negative shift that was equal to amount of

lead in the peaks of the vocals model relative to the stimulus general model.

We also looked at the scaling of the stimulus-general model as a function of EEG channel

(Fig 5G). Interestingly, the topographies of the scaling factors differed slightly for vocals and

speech. For 4–32 Hz, the scaling was largest in frontal and central channels, consistent with

the spatial patterns of the model weights for all other stimuli (Fig 5C), and consistent with the

weights found for models constrained to this frequency range in prior work [19,43]. For 0.5–4

Hz, the scaling was largest in parietal channels, where model weights were somewhat larger for

speech than the other stimuli (Fig 4D).

To test these topographic differences statistically, we looked at the difference between parie-

tal channel Pz and frontal channel Fz (Fig 5G). For the 4–32 Hz model, the difference between

Pz and Fz was significantly larger for vocals than speech, although this effect was weak (Wil-

coxon rank-sum test: z = 2.22, p = 0.027). For the 0.5–4 Hz model, this relationship flipped

and speech showed a more positive Pz-Fz difference (z = -4.20, p< 0.001). Comparing

between frequency ranges, vocals showed a more negative Pz-Fz difference for low frequencies

than high frequencies (Wilcoxon signed-rank test: z = 4.02, p< 0.001). Again, this relationship

was flipped for speech, though the effects were weaker (z = -2.22, p = 0.026).

Taken together, we found that, at higher frequencies, temporal responses seem to differ

between stimulus types, but these differences are not consistent enough or robust enough to

outperform a model fit to all stimulus types. However, the stimulus-specific speech model out-

performed the stimulus-general model at lower frequencies. Topographic differences for

speech were weak, but they appeared to show increased weighting over parietal channels,

opposite the increased weighting over frontal channels for vocals.

Drums in rock music tracked at multiples of the musical beat frequency,

but tracking was worse than speech

Our previous analyses demonstrated that EEG tracks both speech and music above 1 Hz, but

speech is tracked more strongly than the music stimuli (Fig 3D and 3E). To some extent, this

could be explained by the greater magnitude of fluctuations in the dB envelope for speech,

which is a consequence of the sparsity of speech [44,45]. In contrast, the rock and orchestral

stimuli were multi-instrumental, which have reduced envelope power and reduced sparsity.

However, it is plausible that the brain might more strongly track one of the instruments in

these stimuli, perhaps matching the strength of tracking observed for speech. Furthermore, the

rock reconstruction accuracies were not significantly different than zero using models with

frequency content strictly below 2 Hz. This contradicts some evidence showing neural tracking

of music with note rates below this frequency [7,46] (note also that 3 out of 10 of the rock

songs in this study had tempos, or musical beat rates, below 2 Hz). Perhaps individual instru-

ments may be tracked better at lower frequencies.

then compared for each trial. Below, individual scaling factor differences (Pz–Fz) for each trial and subject for vocals (magenta) and speech (blue). Arrows in each plot

indicate individual points that were outside of the y-axis limits in the plot. Comparisons between vocals and speech for each frequency range are based on a Wilcoxon

rank-sum test. Comparisons between frequency ranges are based on a signed-rank test.

https://doi.org/10.1371/journal.pcbi.1009358.g005
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To address these possibilities, we re-examined EEG neural tracking of the rock stimuli by

quantifying reconstruction accuracies to the envelopes of individual instruments. This was

possible because the rock songs were multi-tracked, so to retrieve the envelope of an individual

instrument all of the other instruments in the track were muted. We focused our analysis on

the vocals, guitar, bass, and drums because these instruments were present in all songs. Models

were then trained and tested on individual instruments using the EEG data collected while

subjects were listening to the multi-instrument rock songs.

Compared to all other instruments, the drums were reconstructed best; only this instru-

ment produced z-scored reconstruction accuracies that were not significantly lower than the

accuracies for the multi-instrument rock envelope (Fig 6A and 6B; a Wilcoxon signed-rank

test with Bonferroni correction for 40 comparisons showed that the drum z-scored reconstruc-

tion accuracy was slightly better than the accuracy for the full rock envelope for the 8–64 Hz

model: z = 3.28, p = 0.042) (see S13 Fig for the reconstruction accuracy curves and differences

for individual subjects). However, the z-scored reconstruction accuracy was still considerably

less than what we observed for speech (Fig 3D).

At the start of this study, we assumed that EEG might track the amplitude fluctuations in music

as a consequence of tracking rhythmic structure [35,47]. To better understand the neural tracking

of the drums, which strongly suggests tracking of musical rhythm, we looked at the power spectral

density of the drums reconstructions for each track averaged across subjects. We focused particu-

larly on reconstructions using the 2–16 Hz, 4–32 Hz, and 8–64 Hz models which produced the

best reconstructions on average (Fig 6C). We then subtracted the spectra from null spectra gener-

ated by randomizing the phases in the reconstructions for each subject and averaging these ran-

domized reconstructions (see [48,49]) (Fig 6D). From these adjusted spectral values we identified

the peaks occurring at the tempo of the music (see Materials and Methods) as well as 2 – 4x the

tempo, since the peak energy may occur at multiples of the expected musical beat frequency of the

music based on the acoustics [50] or neural activity following subcortical processing [51].

Firstly, we found that, most often, the peak energy in the reconstruction often did not occur

at the tempo of the music (the left-most dots of Fig 6E). Interestingly, the peak energy for most

reconstructions was restricted to a 2–8 Hz range, peaking around 5 Hz. This result supports

our earlier observation that reconstruction accuracies for the rock music and drums were best

using models fully encompassing this frequency range (Figs 3D and 6A). The peak energy

around 5 Hz also supports other observations of frequency tracking to real music [35] as well

as rhythmic synthetic stimuli [47,52]. The reduced energy below 2 Hz can be explained by

model constraints, which were restricted to a low cutoff of 2 Hz. However, all models con-

tained energy above 8 Hz, suggesting that the upper cutoff reflects neural tracking limits and

not the model specifications. This could be a consequence of the evoked responses to the musi-

cal events, which may have little energy above 8 Hz.

Overall, EEG tracks drums better than any other instruments at a rate associated with the

rhythmic structure of the music, but not necessarily at the musical beat. In particular, this

tracking peaked around 5 Hz and tracking was not observed above 8 Hz. However, the neural

tracking of the drums alone was still worse than what we observed for speech, implying that

the difference in reconstruction accuracies that we observed between the speech and music

could not be explained by passive neural tracking of, or potentially attention to, individual

auditory objects in the mixture.

Discussion

In this study, subjects passively listened to separate trials containing speech, rock music,

orchestral music, or the vocals from the rock music. Using the recorded EEG on each trial we
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Fig 6. (A) Using the EEG data recorded while subjects were listening to the rock songs, we trained and tested PCA & spline

models on the dB envelopes for the vocals, guitar, bass, and drums individually. Z-scored reconstruction accuracies were

quantified as in Fig 3A–3D. All instrument envelopes were reconstructed above chance when the model included frequencies

above 2 Hz (Wilcoxon signed-rank test: p< 0.001 with Bonferroni correction for 40 comparisons). The full rock envelope, shown

with a dashed black line, is equivalent to the values shown in Fig 3D. (B) Pairwise differences between the z-scored reconstruction

accuracy for the full envelope and the envelope for each individual instrument. The z-scored reconstruction accuracies for drum

were not significantly different than the same pairwise reconstruction accuracies for the rock envelope based on the multi-

tracked recording with all instruments, except for the 8–64 Hz model where reconstruction accuracies were slightly but

significantly better than full rock envelope (Wilcoxon signed-rank test with Bonferroni correction for 40 comparisons: z = 3.28,

p = 0.042). (C) Welch’s power spectral density of the reconstructions was computed for each stimulus and averaged across

subjects. The noise floor of the power spectra is shown with dashed lines. (D) We then adjusted the power spectral density by

subtracting the true spectrum from the average of the null spectra, which made the peaks associated with temporally coherent
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used linear modeling with PCA to control spatial correlations in the EEG and a basis spline

transformation to control temporal correlations. These transformations, in addition to high-

pass filtering, restricted the frequency content in the EEG used for envelope reconstruction.

We then compared reconstruction accuracies for a wide range of frequency bands in order to

identify frequency ranges that were tracked best by each stimulus type. We found, however,

that speech was tracked better than the other stimuli for all frequencies we examined, and

speech tracking continued below 1 Hz where all other stimuli showed reconstruction accura-

cies not significantly better than chance. Closer inspection of EEG tracking for the rock music

showed that the drums, or perhaps more generally the rhythmic structure, was tracked most

strongly around 5 Hz, but this tracking was still worse than what was observed for speech in

this frequency range. For modulation frequencies above 1 Hz, a model trained on all stimuli

did just as well at reconstructing speech and better for the music stimuli, suggesting common

mechanisms involved in this range. However, stronger tracking of speech below 1 Hz appeared

to be associated with increased weighting of parietal channels. Together, this suggests that

both music and speech are tracked above 1 Hz using mechanisms with largely similar spatio-

temporal responses in the EEG, but below 1 Hz mechanisms exist that more strongly track

speech than music.

Our aim in this analysis was to understand how the acoustics of speech and music might

produce observed differences in envelope reconstruction accuracy. In the average spectrum,

speech shows a second, lower frequency peak around 0.3 Hz, within the range where we

observed neural tracking that was not present for the other stimuli (Figs 1B and S1). This

energy corresponds to phrase-level fluctuations in the envelope. Thus, it is possible that the

neural tracking we observed for speech is due to the relatively high energy in that frequency

range compared to the other stimuli. However, it is surprising that the enhanced neural track-

ing was not observed for the vocals, which also showed fluctuations in a slightly lower fre-

quency range (~ 0.2 Hz). Unlike the rock instruments, whose envelope reconstructions also

did not match speech performance, the vocals stimuli were presented in isolation, suggesting

that attention to an individual auditory object also may not explain the relatively high perfor-

mance observed for speech. Additionally, we found that the models for vocals did not have

enhanced weighting over parietal channels, like we observed for speech (Fig 5G). The impor-

tance of low-frequency tracking (within the range generally considered “delta” in most studies)

for speech is not new [14,29,53], but to our knowledge no study has suggested that low-fre-

quency tracking is stronger for speech than other naturalistic stimuli. Recent studies also

found that parietal weighting was increased for tracking phoneme and word surprisal [54] as

well as semantic tracking of speech for native speakers but not non-native speakers [55]. The

parietal weighting could be indicative of language-specific processing in the posterior temporal

lobe [56] which was recently shown to be absent when listening to music [57], but because the

activations are broad and without source localization it is difficult to identify the location

definitively. Still, there is some evidence that low-frequency tracking of speech may be pro-

duced by a domain-general mechanism [58]. A future study could determine if the low-fre-

quency tracking we observed here is specific to speech by presenting both speech and single-

instrument stimuli with phrase-level fluctuations in amplitude. Such a study could also clarify

if the increased parietal weighting was not observed for vocals simply because there was not

reconstructions across subjects clearer. The maximum values in the adjusted power spectral density were then identified relative

to the expected tempo of the music (1x tempo) as well as 2x to 4x the tempo. (E) Each of the 10 rock stimuli are plotted as a

different color, and each dot corresponds to 1 – 4x the music’s tempo with increasing frequency. The darkest blue line and dots

correspond to the example stimulus shown in C and D.

https://doi.org/10.1371/journal.pcbi.1009358.g006
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enough modulation power in their envelopes. If the low frequency tracking truly is unique to

speech, we would expect that other sounds explicitly designed to have high energy in that fre-

quency range will not elicit the same level of neural tracking as observed for speech.

Additionally, we found that speech reconstructions were better than the various musical sti-

muli across all frequency ranges. Our specific observation that vocals reconstructions were

overall worse than speech seems to contradict results based on phase coherence showing

increased tracking of music than speech [59,60]. One concern with our results is that the

music envelopes, particularly rock and vocals, are more periodic than speech, and mismatches

between their autocorrelation functions could hinder envelope reconstruction. If so, we would

expect within-trial music reconstructions to perform better, since the autocorrelations are

more likely to be the same for testing data in the same song than in a different song. But that

was not the case (S7 Fig).

Note, however, that we cannot rule out that the larger modulation power for speech pro-

duces better reconstruction accuracies, particularly at frequencies corresponding to the theta

range (4–8 Hz) (S1 Fig). Even though we normalize the variance of the stimulus envelopes and

the EEG before model fitting and testing, larger modulations in the original stimulus could

improve the signal-to-noise ratio of the EEG signal tracking the envelope (Fig 1B). Relatedly,

the magnitude of the weights for the speech models suggests that the evoked responses to

speech are larger, which increases the signal-to-noise ratio in the EEG and could produce

greater reconstruction accuracies of the speech envelope. This reasoning does not entirely

match the results for music, though, because rock music produced reconstruction accuracies

on par with the vocals alone even though the average spectrum was smallest of the three stimu-

lus types. The best way to address this concern would be with a follow up experiment that

includes speech and music stimuli that are better matched in modulation power. Alternatively,

more regions of auditory cortex are recruited when listening to speech than music [61,62],

which could also explain the increased EEG activation we observed for speech. Furthermore,

some studies have argued that temporal modulations are more important for speech process-

ing, while spectral modulations are more important for music ([63,64]; but see [65]). It is pos-

sible that a different acoustic feature might be tracked better by the EEG than the temporal

envelope during music. Lastly, many studies of EEG processing of speech have shown the

importance of speech features in affecting evoked responses in this frequency range, including

phoneme coding [19], phoneme probability encoding [66], surprise and uncertainty [14,29].

Our analysis focused on isolating specific frequency contributions to envelope reconstruc-

tion while also identifying the spatiotemporal characteristics of the EEG responses. One inten-

tion of the analysis in this study was to bridge the gap between evoked and oscillations-based

interpretations of the neural tracking of speech and music. Here our stimuli are naturalistic

sounds, but we use frequency-constrained modeling to isolate the spatiotemporal responses

which track amplitude modulations in these sounds, showing increased tracking at frequencies

commonly associated with theorized oscillatory tracking for parsing sounds (theta: 4–8 Hz,

delta: < 4 Hz). Given our results, it seems reasonable that theories of evoked responses and

phase-related tracking can be parsimoniously explained by frequency-tuned evoked responses

(see also [27]). Further modeling work comparing the theories of evoked tracking and oscilla-

tions-based tracking will also be beneficial to reconciling their differences and the observations

in EEG (for example, [46]).

When reconstructing the envelopes of individual instruments in the rock music, we found

that drums were reconstructed best, and reconstructions showed that peak energy was usually

between 2–8 Hz with a maximum around 5 Hz. This analysis was inspired by several studies

that have examined the frequency content of EEG or MEG in order to quantify the neural

tracking of musical beats [35,47,52,67]. We did not find strong or consistent tracking at the
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frequency of the tempo, but our results suggest a particular importance for neural tracking

around 5 Hz, consistent with a recent study of EEG tracking of Indian music [35]. Other stud-

ies have found significant neural tracking at the meter of the music [16,22], and it is possible

that our approach of examining envelope reconstruction with linear modeling fails to capture

neural tracking at this frequency range, especially if it is only weakly present in the original

envelope. The potential importance of neural tracking at a multiple of the beat frequency has

been observed in other studies modeling stages of subcortical processing [50,51] but they have

not identified the 2–8 Hz frequency range as specifically important. Interestingly, this result is

also contrary to an analysis of temporal modulations in speech and music, which showed a

prominence of 5 Hz for speech and 2 Hz for music [50]. 5–8 Hz encompasses the limit of audi-

tory-motor synchronization found across various studies [68]. However, these fast events

might be relevant for representing the smallest temporal unit in a musical piece defining the

grid on which the musical beat, rhythmic structure, and meter are based [69]. Understanding

the relationship between peak synchronization to musical events, the limits of synchroniza-

tion, and listener experience could be relevant for biophysical modeling of music perception

in the future.

Quantifying the information carried by EEG for decoding speech is an active area of

research in brain-computer interfaces and auditory attention decoding, which is now focused

primarily on using reconstruction accuracy to identify a subject’s locus of attention [11,70–

72]. Our interest here was also to use reconstruction accuracy as a means of quantifying how

sufficiently the spatiotemporal responses represent neural tracking of the stimulus type. But

we think that our observation of stronger low-frequency tracking (< 1 Hz) for speech is nota-

ble for auditory attention decoding work. Low-frequency tracking may relate to several cogni-

tive aspects of speech processing such as semantics, prosody, surprise, attention,

comprehension, and language proficiency [14,29,36,55,73,74]. If other naturalistic sounds are

not sensitive to this frequency range, then there could be considerable benefit to focusing on

this frequency range to identify the locus of attention of a talker and isolate the most relevant

speech feature to which a user is engaged.

Materials & methods

Ethics statement

The experimental procedures were approved by the Ethics Committee for the School of Psy-

chology at Trinity College Dublin, and all subjects provided written consent at the beginning

of the experiment.

Experiment and EEG recording

Stimuli consisted of seven approximately three-minute segments from an audiobook in

English (“speech” stimuli), ten rock songs including vocals each 3.5–5 minutes long, ten seg-

ments of orchestral pieces that were 3–4.5 minutes long, and ten tracks of the vocals from the

rock songs (2.5–4.5 minutes) (see S1 Table for a list of the stimuli and more detailed informa-

tion). All of the rock songs were originally multitracked, so the other instruments were muted

in order to isolate the vocal track for the vocals stimuli, and silences were manually shortened

to reduce the overall length of the track. Each stimulus was preceded by a 10 ms voltage click

occurring 0.5 s before the start of the stimulus; the click triggered an Arduino to provide a

code to the EEG data collection system signifying the start of the audio in the recorded EEG

data to microsecond precision.

17 subjects took part in the experiment. One subject’s data had issues with trigger timing

that produced shorter EEG recordings than the actual stimulus durations, and their data was
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excluded from further analysis. In total, data from 16 subjects (7 female; ages 18–44, median

22) were included. Subjects listened to the stimuli at a comfortable sound level via Sennheiser

HD650 headphones. Stimuli were presented to the subject using Presentation software (Neu-

robehavioral Systems). 128-channel EEG and two mastoid channels were recorded (Biosemi

ActiveTwo) at 512 Hz as subjects passively listened to each of the sounds in the following

order within each block: rock, orchestral, vocals, speech. An additional track consisting of tone

pips was also included and was presented every 4–5 trials, but the data was not analyzed for

this study. Each subject listened to 6–7 trials of each stimulus type.

After the session, the EEG channels were referenced to the average of the mastoid channels.

No other preprocessing was applied to the EEG data prior to modeling.

Extracting the stimulus envelope

To get the stimulus envelopes, the stimulus waveform was filtered with a bank of 32 gamma-

chirp filters [75] logarithmically spaced between 100 Hz and 8 kHz. The amplitude of the Hil-

bert transform of each channel was then averaged across frequency and normalized to have a

peak amplitude of 1 V. Prior to converting the envelope to dB, in order to prevent discontinui-

ties at zero values in the envelope, all voltages below 10−5 V (equivalent to -100 dB V) were set

to 10−5. The dB envelope was then resampled to 512 Hz for the speech and music data. We

chose to work with the dB envelope because it is more linearly related to the perception of

loudness and the EEG response to sound level than the raw voltage values [76–78]. Addition-

ally, in contrast with the original voltages that are strictly positive, we thought assumptions of

Gaussian distributed errors for linear modeling might be more appropriate for the dB

envelope.

We also wanted to visualize the power spectra of the envelopes to compare them across

stimulus types. However, the original power spectra have a 1/f slope typical of natural signals

[79] which makes the peaks in the spectra and comparisons between stimulus types difficult to

see. A standard approach is to remove the 1/f slope with linear regression in log-frequency, but

this reduced the apparent magnitude of the peak in the speech envelope energy below 1 Hz,

and we thought that seeing the absence of energy below 1 Hz considering the strong speech

envelope tracking we observed in that range would be misleading to the reader.

Instead, for Fig 1B, we compute the ratio of the envelope power spectra relative to the aver-

age EEG power spectra, in order to quantify the hypothesis that EEG tracking of the envelope

is a direct replicate of the envelope itself and that the differences in reconstruction accuracy

are due to differences in envelope variance at each frequency range. Specifically, each dB enve-

lope was zero-centered, and a 16 s moving average was subtracted (equal to the maximum

model delay, see “Quantifying cross-frequency model performance” in the Materials and

Methods). All envelopes were then normalized by the square root of the average variance

across all stimuli. Then, the power spectra of individual envelopes were computed. To com-

pute “EEG noise”, the EEG data in each trial was averaged across channels, the 16 s moving

average was subtracted, and the averaged EEG was z-scored. Then, the power spectrum was

computed on the z-scored EEG data. Power spectra of the envelopes were averaged across tri-

als (including all stimulus types) and subjects, and the ratio of the envelope power to EEG

noise power was computed, where the denominator of the ratio was using the trial- and sub-

ject-averaged EEG spectrum.

The Envelope power to EEG power ratio is theoretically proportional to the signal-to-noise

ratio of the neural response to the envelope, assuming that the neural response is a scaled ver-

sion of the dB envelope (the null hypothesis) and the EEG noise is proportional to the average

EEG spectrum. Note that while we have no knowledge of the linear relationship between dB
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envelope and the neural response, a change in the scaling would multiply these ratios for each

stimulus type identically and maintain their relationships to each other.

To see the envelope power spectra prior to this normalization procedure, see S1 Fig.

Effects of frequency content on regularization-based modeling of envelope

tracking

Our initial goal to compare speech and music neural tracking raised several issues associated

with stimulus differences. Firstly, the shapes and spectra of the envelopes are very different

across stimulus types (Fig 1), so by comparing envelope reconstructions to the broadband

envelope, certain frequency ranges may contribute more to the overall error; if a stimulus type

isn’t being tracked at low frequencies, it might produce a worse reconstruction accuracy

despite reasonable tracking at higher frequencies. Secondly, the speech stimuli had much less

cross-trial variability than the other stimulus types, so a trial-by-trial approach to modeling the

envelope would be poorer for the music stimuli than for the speech stimuli. Because the

rhythms of music are known to be more varied than speech [50], we think this issue is unlikely

to have changed using a different stimulus set using the same stimulus types.

Typically, envelope reconstruction model weights are constrained using ridge regression or

some other form of regularization which minimizes the variance of the weights [25,38,80].

Ridge-type regularization addresses issues of multicollinearity that are present both spatially

(between neighboring EEG channels) and temporally by down-weighting the contribution of

low-variance principal components in the input, effectively acting like a low-pass filter [81,82].

For the purposes of comparing neural tracking for stimulus types with different spectral char-

acteristics, this is problematic because of the lack of control over the frequency effects of regu-

larization; while we could show that reconstruction accuracies are different between different

stimulus types, we would be unable to claim that these differences are not due to spectral dif-

ferences in the envelopes.

Additionally, depending upon the range of delays used, model weights will affect the spec-

tral content at higher frequencies, but leave lower frequencies untouched. To simulate this, a

regularized reconstruction model fitted to the speech stimuli using EEG delays between 0 and

500 ms (a model width of 500 ms, S2A Fig) was applied to a broadband noise input with a flat

spectrum. The output of the model shows variation in the spectrum above 1 Hz, but little effect

on the magnitudes of the spectrum below 1 Hz (S2B Fig). As a consequence, low-frequency

neural tracking may be present and factor into the reconstruction accuracy measures. To dem-

onstrate this in S2C Fig, we reconstructed the different stimuli using models trained on each

stimulus type separately, first using EEG and stimulus envelopes that were highpass filtered

above 0.1 Hz by subtracting the moving average of a 10 s window, and then using a highpass

filtered envelope and EEG after similarly removing energy below 2 Hz. Speech reconstruction

accuracies significantly decrease when frequencies below 2 Hz are removed (Wilcoxon signed-

rank test with Bonferroni correction for 4 comparisons: z = -7.2, p< 0.001), while the recon-

struction accuracies for the music stimuli significantly increase when the low-frequency con-

tent is removed (rock: z = 6.6, orchestral: z = 4.0, vocals: z = 6.2; p < 0.001 for all stimuli).

Envelope reconstruction with PCA & spline transformation

All code used to create and test these models is available on gitlab (https://gitlab.com/

eegtracking/speech_music_envelope_tracking).

The model we used for this study was a linear model that reconstructed the stimulus dB

envelope using the principal components of the EEG and a spline basis to focus on lower fre-

quencies. The PCA and spline transformations control multicollinearity in the EEG data.
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Transforming the EEG channels into principal components reduces spatial correlations

between channels; this was done using Matlab’s built-in pca function. The basis spline trans-

formation reduces the delayed EEG values to a lower-frequency representation using cubic

basis splines. Specifically, cubic splines are piecewise polynomial functions defined by a

sequence of knots such that the first and second derivatives of the function are continuous at

each knot. For a sequence of knots, cubic splines can be collated across the dependent dimen-

sion of a function, and any cubic spline function defined by those knots can be represented by

linear combinations of these basis splines. The collation matrix was constructed using func-

tions from Matlab’s Curve Fitting Toolbox: augknt to construct the sequence of evenly-spaced

knots along the range of delays, and spcol to create the basis spline matrix. The number of

splines is defined by the number of spline knots, so the spline basis can also be defined by the

sampling rate of the knots (this designation is used in Fig 2B).

When fitting the model, first the moving average of the stimulus envelope and the EEG,

using a window size equal to the maximum lag in the model, was subtracted. One trial was left

out for testing, and the rest of the trials were used for model training. Next, the EEG data in

the training trials were converted into principal components, and the principal components

were z-scored for each trial. To create the design matrix for model fitting, each principal com-

ponent was delayed from 0 ms delay up to the maximum delay in the model. For a lag matrix

for a principal component Xd, the lags were converted into a matrix of basis splines Xs:

Xs ¼ XdSðS
TSÞ� 1

where S is the collocation matrix of basis splines with delays along rows and basis cubic splines

along columns. Both the spline-transformed design matrix and the stimulus envelope were z-

scored for each trial, and then concatenated across trials for model fitting. The model was then

computed using linear regression:

ws ¼ ðX
T
s XsÞ

� 1XT
s sðtÞ

where s(t) is the stimulus envelope. The first and last 16 seconds of each trial were left-out of

model fitting and testing in order to avoid potential edge artifacts produced by the removal of

the moving average using the lowest-frequency model (the model with the largest window) in

subsequent modeling (see Fig 3). This included the click and 0.5 s of silence before the stimulus

started, so overall the first 15.5 s and the last 16 s were left-out of each trial.

For testing, the EEG data in the left-out trial were transformed into principal components

using the same transformation matrix calculated for the training data. The delayed principal

components were transformed into a spline basis as described for the training data and the

stimulus envelope for the testing trial was reconstructed by s0testðtÞ ¼ Xs;testws. Throughout,

reconstruction accuracy was quantified based on the Pearson’s correlation between the origi-

nal stimulus envelope and the reconstructed stimulus envelope.

For later analysis of the model, model weights were converted from splines to delays for

each principal component by wd = Sws.

PCA & spline model optimization

The envelope reconstruction model contained three model hyperparameters: the number of

principal components to use, the window size of the model, and the number of basis cubic

splines (or, equivalently, the sampling frequency of the spline knots). The model window size

and the number of splines constrain the lower and upper cutoff frequencies contained within

the model, respectively. As such, we chose to optimize the number of splines with respect to

the window size, with the intention of manipulating both in tandem when examining neural
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tracking across frequency bands. Our method of identifying the optimal hyperparameters is

similar to other modeling approaches that identify the hyperparameters using a cross-valida-

tion approach [61,62].

We used the Natural Speech dataset to identify the optimal model parameters [36]. In this

dataset, subjects listened to an audiobook for 20 trials each approximately 180 s long (a subset

of these segments was used for the speech stimuli in the current study). The dataset contains

the raw EEG and the stimulus envelope at 128 Hz. We first converted the stimulus envelope

into dB; we did not threshold at -100 dB V like we do later for the envelopes in the current

study (see “Extracting the stimulus envelope” above) and instead used the real value of the

log10 of the envelope, since thresholding failed to reduce the effect of low-amplitude artifacts

in the envelope and the real component of the log value seemed to be more robust to these

issues. The EEG was referenced to the average of the mastoid channels.

For model optimization, we used a 500 ms window because of its common use in envelope

reconstruction [13,37–39]. We first removed the moving average of a 500 ms window from

both the dB stimulus envelope and the EEG. Then we transformed the EEG into principal

components and fitted a model using basis splines. We compared the performance of this

model to one based on ridge regression of the original EEG using regularization parameters

between 0 (no regularization) and 108; most often the optimal regularization parameter was

around 104 to 105. PCA & spline models were optimized relative to the performance of the reg-

ularized model using a grid search, using 8, 16, 32, 64, or 128 principal components, and 7, 11,

19, 35 splines (corresponding to a spline knot sampling frequency of 8, 16, 32, 64 Hz respec-

tively) or all 64 lag parameters of the model without a spline transform. Performance was eval-

uated on a left-out trial and trained on the other 19 trials.

To estimate the frequency content of the resulting optimum model (Fig 2C), we used

broadband noise as the input to the model. First, the moving average of the noise using a 500

ms window was removed. Next, the design matrix was created from the noise using delays

-250 to 250 ms, and the matrix was converted into 19 basis splines (32 Hz sampling frequency

of the knots); we set 0 ms as the center delay because when 0 ms was the first or last delay (for

example, 0–500 ms), the edge spline was most heavily weighted and produced edge affects in

the resulting spectrum, which inappropriately represented the low-pass effects of the basis

splines generally. We then used linear regression to estimate the best fit between the spline-

transformed design matrix and the original noise with the moving average removed, which we

used to reconstruct the noise. The filter resulting from the combined moving average removal

and the spline transformation was computed by getting the ratio of the reconstructed noise to

the original broadband noise. Fig 2C shows this ratio in dB V.

Quantifying cross-frequency model performance

We varied the frequency content of the model by changing the window size while retaining

the same number of splines (19 splines), which maintained a 3-octave bandwidth. The low fre-

quency cutoff of each range corresponds to the reciprocal of the maximum delay in the model,

so by examining models with maximum delays from 31.25 ms to 16 s, we varied the frequency

content of each model from a 32–256 Hz range to a 0.0625–0.5 Hz range respectively. Recon-

struction accuracy was quantified based on the Pearson’s correlation between the envelope

reconstruction of the left-out trial and the original envelope.

Because chance performance varies with the frequency content of the stimulus envelope

and EEG (Fig 3C), we calculated a null distribution for each frequency range separately. For

each iteration, the stimulus envelopes were randomly circularly-shifted and the same shift was

applied to all trials. Then, one of the trials was randomly chosen and left out for testing, and
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the rest of the model fitting and testing procedures were applied as described above. This was

repeated 50 times to get a distribution of null accuracies for each stimulus type and for each

subject. The true reconstruction accuracies were normalized relative to the null distribution

and reported in standard deviations relative to the null distribution of accuracies to get the “z-

scored” reconstruction accuracy (see Fig 3C).

Getting a spatiotemporal EEG response from reconstruction model weights

Next, we wanted to understand how neural responses were represented by the reconstruction

models. However, reconstruction models, also known as “backwards” models, are not inter-

pretable without accounting for autocorrelations in the data, since the resulting reconstruction

model could produce weights which cancel out irrelevant autocorrelations and do not neces-

sarily represent a neural response [83]. To account for this possibility, we first inverted the

model, using principal components and a spline basis, into a “forward” model that is a better

representation of the spatiotemporal evoked neural response [43,80]. The transformation was

a modification of the approach used by [83]. The forward model aS was calculated from the

backward model wS by:

aS ¼
1

N
XT

S XS

� �
wS

where N is the total number of sample points in the training data and XS is the design matrix

for the training data. In contrast with the original approach by [83], this scales the weights

assuming that the input is a representation of the stimulus envelope with unit variance. We

chose to use this approach to make the forward models more comparable between stimulus

types. Then, the “forward” model weights were converted into delay weights (see Materials

and Methods: “Envelope reconstruction with PCA & spline transformation”).

The model was then converted from principal components into EEG channels. Because the

principal components were z-scored prior to fitting the model, each principal component was

then multiplied by the ratio of the variance of the principal component to the summed vari-

ance across 128 principal components. Firstly, this ensures that the scaling of each principal

component matches its original contribution to the EEG signal. Secondly, the EEG variance

can increase considerably at lower frequencies, so the variance in the principal components

tends to be larger for the lower frequency EEG range. Dividing by the total variance across

components normalizes this effect of frequency on EEG variance and allows for cross-fre-

quency model comparison.

Fitting the stimulus-general model to the stimulus-specific model

We wanted to understand how differences between the stimulus-specific models might corre-

spond to differences in reconstruction accuracy. We addressed this by looking at the difference

in performance of a stimulus-general model, fit to all stimulus types, relative to the stimulus-

specific model. For the stimulus-general model, trials from all stimulus types (23–27 trials)

were included in training data, and the series of steps for computing the principal components,

normalizing the components, and creating the basis spline design matrix were identical to

those described in the Methods: “Envelope reconstruction with PCA & spline transformation”.

Importantly, both the stimulus-general and stimulus-specific models were tested trial-by-trial,

so we used the difference in reconstruction accuracies (Pearson’s r) for the two models on

each trial to quantify the change in model performance.

We then wanted to systematically quantify the changes in weights between the two types of

models. In a linear model, the effects of model weights are combined to optimize the
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reconstruction, which can complicate interpretation [84]. Thus, we thought it unlikely that dif-

ferences at specific delays would be sufficient to explain the change in reconstruction accuracy.

Subjective examinations of the difference in weights showed that the models differed primarily

in the amplitude (“scaling factor”) and delay (“shift”) relative to each other, even though the

shapes were similar. Thus, we thought it would be most appropriate to examine the relative cir-

cular shift and scaling of the stimulus-general model that would match the stimulus-specific

model at each channel.

To compute the circular shifts and scalings, both the stimulus-specific and stimulus-general

models were centered to have a mean weight of zero for each channel. Next, for each circular

shift, the best scaling factor for each EEG channel was computed using linear regression. Then

the R2 model fit across all channels was computed. The shift producing the maximum R2 was

identified as the optimum model for that trial. All analyses were then based on the model fits

(R2), circular shifts, and scaling factors computed on a trial-by-trial basis. Note that the R2 val-

ues were considerably lower without any shifting or scaling of the stimulus-general model,

showing that this procedure indeed improved the fit to the stimulus-specific model weights

(S12 Fig).

Additionally, to evaluate the goodness of fit, we computed a null distribution of R2 values

by randomizing the phases of the stimulus-specific model and refitting the stimulus-general

model as described above. This procedure ensured that the spectral amplitudes of the stimu-

lus-specific model would remain the same, since the high R2 values could be due to relatively

high signal power at low frequencies, while ensuring that the temporal relationship between

frequencies in the model was destroyed. 20 null R2 values were computed for each trial, and

the distribution of all null values was combined across trials and subjects for statistical testing

relative to the true distribution of R2 values (see Fig 5E).

Quantifying power spectra of drum reconstructions relative to the music’s

tempo

While we found higher reconstruction accuracies for speech than the other music stimuli, we

considered the possibility that EEG may track individual instruments in the rock or orchestral

music more so than what we observed using the envelopes calculated from the multi-instru-

ment mixture. To examine this further, we computed instrument-specific models using the

EEG data recorded during the presentations of rock stimuli by training and testing on the

envelopes for the vocals, guitar, bass, and drums in the rock tracks. Because the rock songs

were multi-tracked, we muted all other instruments in order to get the waveform for the indi-

vidual instrument and computed the envelope as described previously (Methods: “Extracting

the stimulus envelope”).

After we found that drums exhibited the best reconstruction accuracy of all of the rock

instruments (Fig 6A and 6B), we then examined which frequencies were most strongly tracked

in the drum reconstructions. We focused on the 2–16 Hz, 4–32 Hz, and 8–64 Hz models

because they produced the best reconstruction accuracies for drums and for the full rock enve-

lope on average (Fig 6A). First, for each rock stimulus and model frequency range, the drum

reconstructions were averaged across subjects. Then Welch’s power spectral density (pwelch in

Matlab) was computed using a Hamming window of 10 s with half-overlap. Then a null distri-

bution of power spectral densities was created by shuffling the phases in each of the recon-

structions, averaging the randomized reconstructions, and computing the power spectral

density. This technique is based on methods to quantify magnitudes of peaks in frequency-fol-

lowing responses [48,49], where randomizing the phases of each signal and then averaging

captures the spectra associated with the noise floor. 100 null spectra were computed for each

PLOS COMPUTATIONAL BIOLOGY EEG tracking of envelopes in speech and music

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009358 September 17, 2021 23 / 32

https://doi.org/10.1371/journal.pcbi.1009358


reconstruction. The average of these null spectra was subtracted from the true spectra to get

the adjusted power spectral density for each model.

Next, we focused on the peak values in the adjusted power spectral density with respect to

the expected rate of musical beats, since several studies have demonstrated that EEG and MEG

tracks frequencies at multiples or fractions of this rate [35,47,67]. The musical beat rate (which

we call the “tempo” here) was quantified using a beat-tracking algorithm [85]. This algorithm

dynamically computes the timing of beats in a musical recording. The beat timings produced

by the model were validated by the lead author of this study. The tempo was computed as the

inverse of the median inter-beat interval.

Then, for each adjusted spectrum, peaks were identified with respect to 1 – 4x the music’s

tempo. For each scaling of the tempo, we identified the maximum value in the spectrum across

all three models, using a frequency range ±8% around the multiple of the tempo [86].

Supporting information

S1 Fig. (A) Envelope power spectra for each stimulus type prior to normalizing by the EEG

power spectrum, as in Fig 1B. Lines indicate the median across stimuli of each type, and

shaded regions indicate 95% quantiles of the distribution of 1000 bootstrapped median values.

(B) Variance in the spectrum across trials. Because the speech trials all come from a single

audiobook with one talker, they are more spectrally-similar to each other than the music sti-

muli.

(TIF)

S2 Fig. (A) Ridge regression was used to reconstruct the envelope from the EEG. Shown in

the middle is the averaged reconstruction model across subjects and EEG channels for speech,

where ridge regression was used to fit the model. Normally, the reconstruction model takes

EEG as an input, but to simulate the spectral effects of the reconstruction model on the input,

we have used broadband noise as the input in this example, which has a flat frequency spec-

trum. (B) When looking at the spectrum of the reconstruction with respect to a broadband

noise input (black), it is clear that the reconstruction model accentuates certain frequencies

and reduces higher frequencies (blue). However, it has no effect on the magnitude for frequen-

cies corresponding to less than 2x the model width (1 Hz in this example), although it does

add a delay that produces a phase shift at these frequencies (not shown). (C) The presence of

low-frequency tracking has an effect on reconstruction accuracies. When the envelope and the

EEG are highpass filtered by removing the moving average of the model width (500 ms),

speech envelope reconstruction significantly drops, showing neural tracking at low frequencies

untouched by the model. In contrast, reconstruction accuracies for the music stimuli signifi-

cantly improves without these lower frequencies. Each color represents the testing reconstruc-

tion accuracies for one of the subjects.

(TIF)

S3 Fig. Reconstruction accuracy curves for individual subjects. (A) Z-scored reconstruction

accuracies for each stimulus type (compare to Fig 3D). (B) Difference between z-scored recon-

struction accuracy for speech and each of the other stimulus types (compare to Fig 3E). (C)

Difference between stimulus-specific and stimulus-general reconstruction accuracy (compare

to Fig 5A).

(TIF)

S4 Fig. (A) Envelope reconstruction accuracy based on Pearson’s r, without the z-scoring

used in the manuscript. (B) The difference in Pearson’s r between the speech reconstructions

and the reconstructions for each stimulus type shown. These were plotted identically to Fig 3D
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and 3E, showing the median and 95% quantiles across trials and subjects.

(TIF)

S5 Fig. We repeated the frequency-constrained reconstruction accuracy analysis on the

Natural Speech dataset [35], to validate that the high low-frequency reconstruction accura-

cies we observed for speech were not specific to the current dataset (compare to Fig 3D).

Note that the Natural Speech dataset contained 20 trials of the audiobook, whereas the current

dataset in the study only contained the first 6–7 trials (7 for most subjects, see S1 Table). (A)

Shown are the reconstruction accuracies for all 19 subjects in the Natural Speech dataset, aver-

aged across 20 trials. (B) We looked at reconstruction accuracies using all 20 trials of Natural

Speech (blue, same results as A) and only the first seven trials (darker blue, dashed line in B).

Wilcoxon’s rank-sum test with Bonferroni correction for 16 comparisons was used to compare

reconstruction accuracies between datasets; blue shows the comparisons with all 20 trials of

Natural Speech, and darker blue shows comparisons is using just the first seven trials (��

p< 0.01; ��� p< 0.001). In both instances, reconstruction accuracies were comparable to the

current dataset and higher than the reconstruction accuracies for the other stimuli (see Figs

3D and S1). Note, however, that using all 20 trials produces above-chance reconstruction accu-

racies for the lowest frequency model, 0.0625–0.5 Hz. The reconstruction accuracies drop to

chance when only seven trials are used. This indicates that the chance performance we

observed in the current dataset may not be due to a low-frequency limitation on neural track-

ing of the speech envelope and may instead be a result of the limited amount of data in this

study.

(TIF)

S6 Fig. We optimized the hyperparameters of the PCA & spline model (specifically, the

sampling frequency of the spline knots and the number of principal components) to a sep-

arate speech dataset, and we found that speech envelope reconstruction was better than

music for all of the frequency ranges we examined (see Fig 3). Here, we tested if music enve-

lope reconstruction performs as well as speech if we optimize the hyperparameters for the

music stimuli. (A) Using the same 500 ms model window as before, we found the optimal

hyperparameter pairs for each stimulus type that maximized the average envelope reconstruc-

tion accuracy across subjects. These optimal hyperparameters were different than those found

for Natural Speech (Rock = 16 Hz spline knots, 32 principal components (PCs); Orchestral = 16

Hz, 16 PCs; Vocals = 16 Hz, 32 PCs; Natural Speech = 32 Hz, 64 PCs). (B) We then computed

the z-scored reconstruction accuracies (as in Fig 3) using these optimal hyperparameters. For

each music stimulus, the dark blue dots on the left are the trial-by-trial reconstruction accura-

cies for all subjects using the Natural Speech hyperparameters (the same datapoints as those

used to create Fig 3D), and the green dots on the right are using the music-optimized hyper-

parameters. The blue dots for the speech z-scored accuracies are based on the Natural Speech

hyperparameters. Lines indicate the median values across trials and subjects. Even after opti-

mizing the hyperparameters to the music stimuli, speech envelope reconstruction still outper-

forms music (Wilcoxon rank-sum relative to speech: zrock = 9.17, zorchestral = 9.84, zvocals = 7.16,

p< 0.001 for all comparisons).

(TIF)

S7 Fig. We observed higher reconstruction accuracies for speech than the music stimuli

(Fig 3D and 3E) but this could have been due to the higher cross-trial variability for the

music stimuli than for the speech stimuli. To control for this, we looked instead at within-

trial reconstruction accuracy. (A) To get reconstruction accuracies for each trial, we split the

trial into 10 evenly-sized folds, where each fold contained a random sampling of the data in
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the trial. This was done in order to maximize the consistency in the EEG covariance and enve-

lope spectrum across folds. Then models were fit on all trials with one fold left out and tested

on the left-out fold. This was repeated 5 times using a new random sampling of folds each

time, giving a total of 50 reconstruction accuracies (Pearson’s r) for each trial. To get a null dis-

tribution of accuracies, the stimulus envelope was randomly circularly shifted, 1/10th of the

data was randomly sampled for testing, and the rest of the data was used for training. This was

repeated 50 times to get 50 null reconstruction accuracies. (B) Because testing data is highly

correlated with training data using this method, both the true and null reconstruction accura-

cies increase as lower frequencies are used for modeling. To correct this, we computed a d-

prime reconstruction accuracy based on the distribution of true and null reconstruction accu-

racies. (C, D) Firstly, d-prime reconstruction accuracies dropped to zero for the 0.25–2 Hz

model. This is a consequence of the reduced amount of data available in each trial; using

lower-frequency models (with larger model windows) generated warnings in Matlab indicative

of overfitting. But that aside, across all frequency ranges, d-prime reconstruction accuracy was

significantly larger than all other music stimuli. Thick lines in D show significance of a permu-

tation test comparing speech d-prime to each of the different stimulus types, p< 0.001 with

Bonferroni correction for 24 comparisons. Plots (E and F) show the same results as C and D,

respectively, for individual subjects. Overall, this indicates that, even when doing within-trial

reconstructions to avoid the effects of cross-trial variance, speech is reconstructed better than

the music stimuli.

(TIF)

S8 Fig. To verify if the effects of reconstruction accuracy were a consequence of envelope

reconstruction primarily based on eyeblinks (for example, if subjects inadvertently blinked

at key times in the amplitude modulation), we repeated the envelope reconstruction using

a single EEG component containing the subject’s eyeblinks. First, the EEG was highpass fil-

tered by removing a moving average window 16 s long. Then the eyeblink component was cal-

culated for each subject using independent components analysis (ICA; specifically, fastICA, as

in [30]) and then identified empirically by the topography of the projection weights (trans-

forming from the independent component to EEG space) and the time course of the EEG sig-

nal. One subject was left out because we could not reliably get a single component of eyeblinks

using ICA. (A) Shown are the projection weights for this component averaged across the other

15 subjects. (B) Reconstruction accuracies using the eyeblink component. Thick lines indicate

values significantly larger than zero based on a Wilcoxon signed-rank test with Bonferroni cor-

rection for 36 comparisons (p< 0.001). After repeating the envelope reconstruction analysis,

we found that the reconstruction accuracies for all stimuli are still above chance at higher mod-

ulation frequencies, but considerably smaller than before (compare to Fig 3D). Similarly, the

speech reconstructions were still significantly better than music. While this could indicate the

involvement of eyeblinks, it is also plausible that the eyeblink component contains residual

neural activity that tracks the envelope, since the topography for the eyeblink component over-

laps the spatial weightings of the envelope reconstruction models (Fig 4). Thus, we constrained

the analysis further by creating another input signal from the eyeblink component that only

contained onsets at the peaks of the eyeblinks. (C) For each subject, the eyeblink component

was highpass filtered again at 1 Hz by removing the moving average of a 1 s window, and then

an eyeblink trigger was set individually for each subject to automatically identify eyeblinks by

threshold crossing. The peak times of the eyeblinks were identified and the peak onset vector

was used as input for envelope reconstruction. This ensured the envelope reconstruction

would only use eyeblink timing and no other EEG activity contained in the eyeblink compo-

nent. (D) When only the peak times were used, none of the reconstruction accuracies reached
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a significance of p< 0.001 with Bonferroni correction (compare to B).

(TIF)

S9 Fig. Temporal weights for reconstruction models for each individual subject, averaged

across trials, after transforming to a “forward” model [83]. The models were converted

from basis splines to delays, and then from principal components to EEG channels. The

weights shown here were averaged across all 128 EEG channels (compare to Figs 4 and 5B).

(TIF)

S10 Fig. Two different envelope reconstruction models were compared. The “same-stimulus”

model was trained and tested on the same stimulus type (this is identical to the “stimulus-spe-

cific” models from Fig 5 in the manuscript). The “cross-stimulus” models were trained on all of

the presented stimuli for one stimulus type (the “Train” stimulus) and tested on each trial of

another stimulus type (the “Test” stimulus). Shown here is the difference between the same-

stimulus model and the cross-stimulus model. For example, the bottom left corner is the differ-

ence in reconstruction accuracy between a speech model trained on speech (same-stimulus)

and a model trained on rock (cross-stimulus). Values greater than zero imply that the same-

stimulus model outperforms the cross-stimulus model. Three asterisks (both white and black)

indicate a significance of p< 0.001 for a Wilcoxon signed-rank test relative to a median value of

zero after Bonferroni correction for 24 comparisons (this excludes the diagonals of each plot).

(TIF)

S11 Fig. Based on the frontal topography of the weights that we observed for the 0.5–4 Hz

model (Figs 4D and 5C), we were concerned that the greater reconstruction accuracies for

the speech-specific model compared to the stimulus-general model (Fig 5A) might be

related to eyeblink artifacts, which were especially prominent in some subjects (for example,

if subjects unconsciously timed eyeblinks to envelope onsets in the stimulus). While, to our

knowledge, no eyeblink-based speech envelope reconstruction has been reported in the past, a

300–400 ms frontal negativity is indicative of eyeblink contamination in evoked response analy-

ses [42]. (A) We examined the topography of the weights between 200–500 ms for each individ-

ual subject and found four subjects with topographies strongly indicative of eyeblinks. (B) After

removing these subjects from analysis, however, the stimulus-specific model for speech still out-

performed the stimulus general model for 0.5–4 Hz (Wilcoxon signed-rank test with Bonferroni

correction for 32 comparisons, p< 0.001), but this was no longer true for the 1–8 Hz model. (C

and D) Additionally, the time course and topographies of the model weights were very similar

to what was observed in our analysis using all 16 subjects (compare to Figs 4 and 5).

(TIF)

S12 Fig. R2 values between the stimulus-specific and stimulus-general models, without any

scaling or shifting of the stimulus-general model. As in Fig 5E, this is shown for the 4–32 Hz

and 0.5–4 Hz models. The y-axis has been restricted to a range from -1 to 1 for easier compari-

son of the medians (lines); datapoints below R2 are not shown.

(TIF)

S13 Fig. Rock instrument reconstruction accuracies for individual subjects. (A) and (B) are

plotted identically to Fig 6A and 6B respectively.

(TIF)

S1 Table. List of stimuli used in this experiment, including stimulus duration and the

number of times it was presented across all 16 subjects.

(XLSX)
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