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Abstract: Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used
for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties,
which depend on synthesis techniques involving physical, chemical, biological, and microfluidic
reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical
characterization is required to identify the biological and toxicological effects of ZnO nanoparticles.
These nanoparticles have variable morphologies and can be molded into three-dimensional structures
to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against
cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid
in wound healing and can be used for imaging tools and sensors. In this review, we discuss the
synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate
three-dimensional structures, and the various biomedical applications of ZnO nanoparticles.

Keywords: zinc oxide nanoparticles; synthesis; physicochemical characteristics; three-dimensional
structure; biomedical application

1. Introduction

Metal-based drugs, generally including inorganic nanomaterials, have been studied as a
next-generation nanomedicine [1,2]. Some of these drugs include iron oxide (Fe3O4 or γ-Fe2O3),
titanium dioxide (TiO2), cerium dioxide (CeO2), copper oxide (Cu2O or CuO), silica (SiO2), gold,
silver, platinum, and zinc oxide (ZnO) nanoparticles (NPs) [1–4]. These NPs demonstrate their
unique pharmaceutical characteristics and novel pharmacological functions [5–7]. Metal-based
nanotherapeutics with controllable features such as particle size and porosity, are valuable for
biomedical applications of drug delivery and therapeutic activity.

Zinc oxide NPs have been highlighted as promising metal-based nanodrugs due to the fact of
their biocompatibility, selectivity, and high potency [2,6,7]. They have a wide band gap energy (3.3 eV)
and a high excitation binding energy (60 meV) at room temperature with thermal and mechanical
stability [8,9]. Zinc oxide NPs have been extensively used in applications related to optical, chemical
sensing, semiconducting, and piezoelectric research [10,11]. They also have photocatalytic functions
that allow them to be used in purification and disinfection processes [12–14]. Although ZnO is
categorized as “generally recognized as safe (GRAS)” by the US Food and Drug Administration [15],
ZnO NPs still have toxicity issues [16].

Despite the toxicity, ZnO NPs have been conventionally used in pharmaceuticals, cosmetics,
and medical devices of adhesives, mastics, and sealants [17–19] (Table 1). In the pharmaceutical
industry, ZnO NPs are used in soaps, toothpaste, ointments, dental inlays, and powders [20]. Zinc oxide
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NPs are also used in hair and skin powders, creams, ultraviolet (UV) radiation-blocking sunscreen
lotions, and burn ointments [20,21]. Surgical and industrial adhesives containing ZnO NPs (e.g.,
Neoprene adhesive [22]) are used for medical devices.

Table 1. Current applications of ZnO NPs.

Category Applications References

Pharmaceuticals

� Soap
� Ointment
� Dental inlays
� Food powders

[20]

Cosmetics—hair and skin care products

� Powders
� Creams
� UV radiation-blocking sunscreen lotions
� Burn ointments

[20,21]

Medical devices

� Surgical/industrial adhesives
� Mastics
� Sealants

[22]

Zinc oxide NPs have also been investigated as drug delivery carriers, therapeutics, and
diagnostics for human biomedical applications due to the fact of their biocompatibility [23–27]
(Figure 1). Zamani et al. [25] reported mesoporous ZnO–graphene oxide (GO) combined with TiO2 NPs
(TiO2@ZnO–GO NPs) for the targeted drug delivery to the colon. The TiO2@ZnO–GO NPs showed a
pH-dependent drug release, in which the rate of release was higher at a neutral pH than at an acidic
pH. Doxorubicin, daunorubicin, and plasmid DNA were conjugated to ZnO NPs to improve targeted
delivery of cancer therapeutics [28–30]. Zinc oxide NPs have also been developed as therapeutics
for the treatment of bacterial infections, diabetes, wounds, and inflammation [24,31]. In terms of
diagnostic applications, ZnO nanostructures have been studied as biosensors, including nanowires for
glucose detection [32], and core–shell nanorods for detecting UV radiation and hydrogen [33].

The unique morphology and structure of ZnO NPs and their networks are
generated depending on synthesis techniques [34,35]. The following one-dimensional ZnO
structures have been reported: nanocombs [36,37], nanorods [38,39], nanobelts [40,41],
nanoneedles [42,43], and nanowires [44,45]. Nanoplates/nanosheets [46,47] and nanopellets [48]
are two-dimensional structures, while nanoflowers [49] and snowflakes [50] are three-dimensional
structures described in the literature. Moreover, ZnO NPs and aggregates can be built into
three-dimensional network structures with hierarchical porosity [13,51].

In this review, we summarized the synthesis techniques, physicochemical properties (including
the tools used to evaluate these properties), and unique structures of ZnO NPs. We categorized
the synthesis techniques of ZnO NPs into the following categories: conventional (e.g., physical,
chemical, and biological methods) and microfluidic reactor-based methods. In the discussion
regarding the physicochemical properties of ZnO NPs, we describe representative evaluation tools
of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and Brunauer–Emmett-Teller (BET) analysis. We also explore the three-dimensional ZnO NP
structures and their fabrication methods including conventional synthesis techniques, biotemplating,
and self-assembly. We focused particularly on the multilevel porous three-dimensional structures that
are used for biomedical applications. We further discussed the current biomedical applications of
ZnO NPs.
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Figure 1. Schematic diagram of synthesis techniques and applications for ZnO NPs. Zinc oxide NPs
are synthesized via (i) physical, (ii) chemical, (iii) biological, and (iv) microfluidic processes. They are
extensively applied as (i) delivery carriers, (ii) therapeutics, (iii) sensors, and (iv) imaging agents.
Abbreviations: ZnO, zinc oxide; NPs, nanoparticles.

2. Synthesis Techniques for ZnO NPs

Zinc oxide NPs can be synthesized using either conventional or non-conventional
methods [52,53]. While physical, chemical, and biological (green) synthesis techniques are
included among the conventional methods, microfluidic reactor-based synthesis is introduced as
a non-conventional method. The representative advantages and disadvantages of these synthesis
techniques for ZnO NPs are listed in Table 2.

Table 2. Techniques for the synthesis of ZnO NPs.

Synthesis Technique Advantages Disadvantages References

Physical methods

- Arc plasma
- Thermal evaporation
- Physical vapor deposition
- Ultrasonic irradiation
- Laser ablation

� Simple
� Low cost
� Catalyst-free
� Industrial-scale production

� Parameter control [9,54–67]

Chemical methods

- Microemulsion
- Sol–gel
- Precipitation
- Hydrothermal method
- Solvothermal method
- Chemical vapor deposition

� Inexpensive and
easy-to-handle
chemical reagents

� Uncomplicated equipment
� Low energy input
� Easy parameter tailoring
� Industrial-scale production

� Surfactant use
� High cost of precursors [9,35,55,68–76]

Biological methods
(green synthesis)

- Plant extracts
- Microorganisms
- Biotechnology method
- Biochemistry method

� Promising alternatives to
chemical methods

� Eco-friendly
� Non-toxic (safer)
� Inexpensive organic solvents

� Nanoparticle stability
� Antimicrobial activity
� Unclear mechanism

[9,52,56,77–97]

Microfluidic
reactor-based methods

- Continuous flow
- Segmented flow
- Co-flow

� High value-added products
� Reproducible
� Non-toxic

� Parameter control [98–107]

2.1. Conventional Methods

Both top-down and bottom-up approaches can be used to synthesize nanomaterials [9,54,55].
The top-down approach involves physically slicing or cutting bulk materials into nano-sized
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materials [54]. The bottom-up approach, on the other hand, uses atoms and molecules to build
nanostructures through chemical or biological synthesis, or controlled deposition and growth [55].
Biological synthesis, which is otherwise referred to as “green synthesis,” is desirable due to the simplest,
most efficient, reproducible, and ecologically responsible option. However, the mechanism of green
synthesis is not yet fully understood [56].

2.1.1. Physical Methods

Physical methods include arc plasma, thermal evaporation, physical vapor deposition, ultrasonic
irradiation, and laser ablation. These processes are chemically pure and technically simple, which
makes them ideal for carrying out industrial processes at high production rates [57–60]. Arc plasma,
which is based on electrical arc discharge synthesis, is one of the most commonly used physical methods
for converting bulk materials into nanomaterials via condensation and evaporation [61]. Peng et al. [62]
described a plasma method that involved reacting Zn powder with oxygen gas at 0.5–50 L/min to
produce wool-like ZnO nanorods. Using thermal evaporation, ZnO thin films [63] and nano/micro
ZnO rods [64] were synthesized via deposition on substrates. Fouad et al. [63] reported the synthesis
of highly oriented needle-like ZnO crystals (thickness: 10–80 nm) that showed the photocatalytic
decomposition of azo-reactive dye at a deposition and oxygen temperature of 350–650 ◦C for 10 to
30 min. Zhang et al. [64] also reported the synthesis of nano/micro ZnO rods using simple thermal
evaporation at 650–850 ◦C for 60 to 120 min. Zinc oxide nanowires on Al2O3 substrate that were
fabricated via physical vapor deposition between 450 and 600 ◦C of low growth temperature presented
with a high-quality structure and crystallinity [65]. Using ultrasonic irradiation for 75 to 270 min,
Yadav et al. [66] sonochemically synthesized histidine (capping agent)-based ZnO NPs with a tunable
band gap. Thareja et al. [67] used pulsed a laser ablation technique with an Nd:YAG laser (10 Hz,
130 mJ/pulse, 5 ns/pulse duration) to produce a colloidal suspension of ZnO NPs.

2.1.2. Chemical Methods

Chemical methods include microemulsion, sol–gel, precipitation, hydrothermal, solvothermal,
and chemical vapor deposition [9,53]. Wet chemical synthesis, which is based on the physical states
of the solid and liquid phases, is the most commonly used method for producing NPs [9]. During
industrial-scale wet chemical synthesis, capping agents/stabilizers are used extensively in spite of
their toxicity to control particle size and to prevent the agglomeration. Triethylamine (TEA), oleic
acid, thioglycerol, and polyethylene glycol are representative capping agents/stabilizers although they
have immunogenic and apoptotic/necrotic potential [68]. In a microemulsion, stabilizers are used
to generate thermodynamically stable fluid droplets from immiscible phases of hydrocarbon and
water. Fricke et al. [69] reported a method for mini-emulsion-based ZnO NP synthesis using TEA to
control the size (<200 nm) and shape (hexagonal wurtzite crystal) of ZnO NPs. Using sol–gel synthesis,
Valdez et al. [70] created dodecylamine (DDA)-capped ZnO nanocrystals with a low surface density of
DDA (25%) due to the hydroxide groups (protons) on the surface of the ZnO NPs. This precipitation
technique involves a reaction initiated using a source of zinc and alkali (sodium hydroxide, potassium
hydroxide, ammonium, or urea) to promote aggregation. The precipitates of ZnO NPs are then collected
by filtration or centrifugation. Oliveira et al. [71] described the controlled precipitation of ZnO NPs
from zinc nitrate and zinc sulfate with sodium hydroxide. Demir et al. [72] reported the precipitation
of ZnO nanocrystals using the acid-catalyzed esterification of zinc acetate in a mixture of l-pentanol
and m-xylene. Hydrothermal and solvothermal techniques involve the material synthesis under
heated aqueous and non-aqueous conditions, respectively [73]. The parameters of the hydrothermal
and solvothermal techniques used for the synthesis affect the structure, morphology, composition,
and assembly of the resulting ZnO NPs. Aneesh et al. [74] synthesized green photoluminescent ZnO
NPs using the hydrothermal technique. Santos et al. [75] described the solvothermal technique to
synthesize gallium–indium-ZnO NPs for electrolyte-gated transistors. Chemical vapor deposition,
which is a simple and effective method, has also been used for ZnO NP synthesis. However, this method
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has been known to produce heterogeneous growth. Noothongkaew et al. [76] reported the synthesis of
green photoluminescent ZnO nanowalls on a silicon (Si) substrate.

2.1.3. Biological Methods

Biological methods are promising alternatives to physical and chemical synthesis methods because
they are eco-friendly [77]. Microorganisms (bacteria, fungi, yeast, algae, and phage), DNA, proteins,
and plant extracts have been studied extensively for the biological synthesis of ZnO NPs [78,79].
However, the mechanisms of producing ZnO NPs via biological synthesis are not fully understood yet.

Zinc oxide NPs can be synthesized in appropriate microorganisms using various enzymes and
biochemical pathways. Bacteria including Bacillus megaterium NCIM2326 [33], Halomonas elongata
IBRC-M 10214 [80], Sphingobacterium thalpophilum [81], and Staphylococcus aureus [82] have been used
to synthesize ZnO NPs (10–95 nm; rod/cubic, multiform, triangle, acicular) for antimicrobial agents.
Fungal species including Aspergillus niger [83] and Candida albicans [84], can also synthesize ZnO NPs.
Zinc oxide NPs synthesized from fungi had spherical to quasi-spherical shapes of 61 nm and 25 nm,
respectively. These NPs were used for antimicrobial applications and steroidal pyrazoline synthesis.
Pichia kudriavzevii [85] and Pichia fermentans JA2 [86] as yeast systems can also synthesize ZnO NPs.
In yeast, hexagonal wurtzite and smooth/elongated ZnO NPs (10–61 nm) were produced and these
NPs were used for antimicrobial applications. In algae, Chlamydomonas reinhardtii [87] and Sargassum
muticum [88] were used to synthesize ZnO NPs. These algal species produced nanorods/nanoflowers
(55–80 nm from HR-SEM; 21 nm from XRD) and hexagonal wurtzite NPs (30–57 nm from FE-SEM;
42 nm from XRD). A phage-directed system of M13 bacteriophage exposing ZnO-binding peptides on
pIII or pVIII phage coat protein produced photoluminescent wurtzite ZnO NPs [89].

The DNA, amino acids, and proteins can also be used for the ZnO NP synthesis [9,52]. Li et al. [90]
used DNA to guide the synthesis of ZnO NP chains and to control their growth. L-alanine [91],
gelatin [92], and egg albumin [93,94] were used for ZnO NP synthesis. Gharagozlou et al. [91] described
the L-alanine-assisted synthesis of ZnO NPs between 50–100 nm in size (TEM; SEM). Gelatin was
also used to synthesize ZnO NPs (Zn, 59.10%; O, 28.93%) of 20 nm in size; these NPs showed high
antibacterial and anti-angiogenic activities [92]. Ambika et al. [93] described the use of egg albumin
to synthesize ZnO NPs that were spherical and hexagonal wurtzite. These albumin-based NPs
were measured at 16 nm (XRD), 10–20 nm (TEM), and 8–22 nm (AFM). Other reports documenting
egg albumin-capped ZnO NPs described them as spherical, hexagonal wurtzite nanocrystals with a
hydrodynamic diameter of 34.2 nm [94].

Plant extracts are attractive for use in the biological synthesis of metal oxide NPs due to
the presence of components such as flavonoids, terpenoids, and polysaccharides [9]. Calotropis
procera leaf extract [95], Matricaria chamomilla (flower)/Olea europaea L. (leaf)/Lycopersiconesculentum
M. (fruit) extract [96], Pelargonium graveolens leaf-extracted geranium oil [97], and Thymus vulgaris
leaf extract have been used to synthesize ZnO NPs and ZnO-Ag nanocomposites. Zinc oxide NPs
synthesized from plant extracts have been applied for dye photodegradation, antimicrobial applications,
and solar photocatalysis.

2.2. Non-Conventional Method: Microfluidic Reactor-Based Synthesis

A microfluidic reactor is a miniaturized, non-conventional synthesis tool which may be used for
bench-top material fabrication [73,98]. The mechanisms of actions, critical parameters, advantages, and
particular cases are described in microfluidic ZnO NP synthesis. Firstly, microfluidic reactor systems
manipulate and control the flow in reaction environments, thus allowing for better control of the
reaction [98]. Such a system usually attaches to a lab-on-a-chip or micro-total-analysis system. Since
the microfluidic reactor mixes reactants on a microscale, viscosity is the major factor affecting flow
rather than inertial forces (low Reynolds number < 102) [99,100]. Thus, in the microfluidic environment,
mixing occurs through diffusion and laminar flow.
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The reaction temperature should also be tightly controlled in a microfluidic reactor when
synthesizing NPs [73,100]. In the microchannel of a microfluidic reactor, the reactions are controlled
with reducing agents and metal salts at low temperatures (15–20 ◦C). Dynamic precursors are formed
via reduction after the reactants are mixed. Finally, NP nucleation and growth occur at a higher
temperature (80–90 ◦C). To produce high-quality NPs with a high degree of crystallinity and narrow
size distribution, each step of nanoparticle generation should be controlled within a narrow time frame
and terminated at the desired stage.

Microfluidic reactor systems have several advantages in NP synthesis [101]. Compared with
classical and macroscale synthesis, a microfluidic reactor uses small reagent volumes and offers
selectivity, environmental friendliness, short reaction time, a small footprint, and improved safety [102].
These systems have been used in academia and industry for reaction optimization [101,102]. Specifically,
controlling the flow (e.g., continuous or segmented flows) alters the reaction conditions (e.g.,
temperature, time, and reagent concentrations) in the microfluidic reactor to produce high-quality
products with improved characteristics and enhanced performance [103,104]. Metal oxide NPs,
semiconductors, and quantum dots (QDs) are typical products of microfluidic reactor-based synthesis.

Microfluidic reactor systems have also been used to synthesize ZnO NPs. In a microfluidic reactor,
ZnO NPs/nanowires were synthesized using a hydrothermal method [103,105–107]. Azzouz et al. [103]
reported the synthesis of ZnO nanowires from ZnO seeds and explored their ability to remove volatile
organic compounds from water. Joo et al. [105] also reported the bottom-up device fabrication for
producing ZnO nanowires in a continuous flow from ZnO seeds. Kraus et al. [106] used a segmented
flow for the synthesis of ZnO NPs. They generated microfluidic segments of droplet-like small reaction
mixture portions at high flow rates. Using a static micromixer, they enhanced internal convection by
promoting heat exchange between the reaction mixture and channel environment. On the other hand,
Zukas and Gupta [107] used a two-phase co-flow system in a droplet flow reactor with a T-junction for
the synthesis of ZnO NPs.

3. Physicochemical Characterization and Tools

The Organization for Economic Co-operation and Development (OECD) recommends that
engineered nanomaterials undergo a physicochemical property evaluation as a pre-requisite
for toxicological assessment [108,109]. The OECD recommends investigating the following
physicochemical properties: agglomeration/aggregation, catalytic potential, composition, concentration,
crystalline phase, dustiness, fat solubility/oleophilicity, grain size, hydrodynamic size/particle
size/size distribution, length, purity, shape, specific surface area, surface chemistry, water
solubility/hydrophilicity, and zeta potential [108]. Table 3 summarizes the physicochemical
characteristics of ZnO NPs and the analysis tools. The physicochemical results for engineered
nanomaterials are needed to predict toxicological risks in vitro and in vivo [109]. The physicochemical
properties of ZnO NPs and their representative evaluation tools are also described below.

3.1. Appearance, Crystallinity, Particle Size, Morphology, and Porosity

Zinc oxide NPs (81.38 g/mol, m.p. 1975 ◦C) are a white, colorless, and odorless solid. Zinc oxide
crystal structures mainly take after hexagonal wurtzite and cubic zinc blended forms [9,110].
The hexagonal wurtzite form in which each tetrahedral Zn atom is surrounded by four oxygen
atoms or vice versa is common and generally stable [35,110]. Zinc oxide NPs are less than 200 nm
in diameter and are used in cosmetics, foot care products, whitening agents, and ointments [68,110].
As previously mentioned, ZnO NPs have one-, two-, or three-dimensional structures. They also generate
aggregates and can self-assemble into three-dimensional networks with multilevel porosity [13,68,111].
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Table 3. Techniques for analyzing the physicochemical properties of ZnO NPs.

Physicochemical Characteristics Analysis Techniques

Agglomeration/aggregation SEM (++), TEM (++), SPM (++), MALS (+), SAXS (+/−), SMPS (++)

Composition
Neutron/electron scattering (+), XRD (+), ICP-MS/OES (++), SP

ICP-MS (++), EDS (+), NMR (++), XRF (++), SIMS (+), EELS (+),
TOF-MS/ATOF-MS (++), FTIR/RS (++), UV–Vis (+), AES (+/−)

Crystalline phase SEM (+), TEM (+), Neutron/electron scattering (++), XRD (++),
FTIR/RS (+; RS), TGA/DSC (+)

Dustiness SD/VS (+)

Solubility DLS/PCS/QELS (++), MALS (++)

Dispersibility DLS/PCS/QELS (++), MALS (++)

Stability DLS/PCS/QELS (++), MALS (++), ELS (++), TGA/DSC (++)

Particle size/size distribution

SEM (++), TEM (++), SPM (++), DLS/PCS/QELS (++), MALS (++),
SAXS (+), XRD (+; volume weighted primary crystals), SP ICP-MS
(++), TOF-MS/ATOF-MS (+; coupled with FFF), FTIR/RS (+; RS),
UV–Vis (+; for plasmonic materials), CHDF (++), FFF/A4F/FlFFF

(++), BET (+/−), CLS (++), SMPS (++)

Shape SEM (++), TEM (++), SPM (++)

Specific surface area TEM (+; electron tomography), SAXS (+/−), BET (++)

Surface chemistry
ICP-MS/OES (+/−), EDS (+), NMR (+), XPS (++), SIMS (++), EELS
(++), TOF-MS/ATOF-MS (++), FTIR/RS (+), AES (++), TGA/DSC

(++)

Surface charge/zeta potential SPM (+/−), DLS/PCS/QELS (+), ELS (++)

Porosity BET (++), Mercury intrusion (++)

Abbreviations: SEM: scanning electron microscopy, TEM: transmission electron microscopy, SPM: scanning probe
microscopy, MALS: multiangle light scattering, SAXS: small-angle X-ray scattering, SMPS: scanning mobility
particle sizer, XRD: X-ray diffraction, ICP-MS: inductively coupled plasma-mass spectroscopy, OES: optical emission
spectrometer, SP ICP-MS: single particle ICP-MS, EDS: energy dispersive X-ray spectroscopy, NMR: nuclear magnetic
resonance, XRF: X-ray fluorescence spectrometer, SIMS: secondary ion mass spectrometry, EELS: electron energy
loss spectroscopy, TOF-MS: time-of-flight mass spectrometry, ATOF-MS: aerosol TOF-MS, FTIR: Fourier-transform
infrared spectroscopy, RS: Raman spectroscopy, UV–Vis: ultraviolet–visible spectroscopy, AES: Auger electron
spectroscopy, TGA: thermogravimetric analysis, DSC: differential scanning calorimetry, SD: small drum rotator,
VS: vortex shaker, DLS: dynamic light scattering, PCS: photon correlation spectroscopy, QELS: quasi-elastic light
scattering, ELS: electrophoretic light scattering, CHDF: capillary hydrodynamic flow fractionation, FFF: field
flow fractionation, A4F: asymmetrical flow field-flow fractionation, FlFFF: flow field-flow fractionation, BET:
Brunauer–Emmett-Teller analysis, CLS: centrifugal liquid sedimentation.

3.2. Characterization Tools

Characterization tools are necessary to identify the properties of engineered nanomaterials.
Some tools used to determine the crystallinity, morphology, particle size/size distribution,
and surface characteristics (specific surface area and porosity) of ZnO NPs include XRD, SEM,
TEM, and BET analysis.

3.2.1. X-ray Diffraction (XRD)

X-ray diffraction is a well-established technique for analyzing the size, shape, and crystal structures
of inorganic, carbon-based, or complex crystalline materials [108,109]. It offers high spatial resolution at
the atomic scale, but it is limited to crystalline materials and has a lower intensity compared to electron
diffraction. For ZnO NPs, a pure hexagonal wurtzite structure was identified using diffraction peaks
(2θ degree) and attributed to the following Miller–Bravais indices: (100), (002), (101), (102), (110), (103),
(200), (112), and (201) (JCPDS No.89-0510 or JCPDS No.36-1541) [112–114]. Bindu and Thomas [112]
analyzed the lattice strain in ZnO NPs with crystalline sizes of 27.49 nm, 35.35 nm, 36.28 nm, 36.09 nm,
and 34.55 nm as calculated by Scherrer method, the uniform deformation model, uniform stress
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deformation model, and uniform deformation energy density model of the Williamson–Hall method,
and a size-strain plot. The crystal size of those ZnO NPs was measured at 30 nm using TEM. n [113]
synthesized pure ZnO NPs using a Chlorella aqueous extract and reported a hexagonal wurtzite
structure (19.44 nm; calculated from Debye–Scherrer equation) as determined by the XRD pattern.
Abdullayeva et al. [115] investigated the crystallinity of nanoflower-, nanosheet-, and nanorod-like
three-dimensional ZnO nanostructures. According to the XRD patterns, all ZnO nanostructures were
the hexagonal wurtzite type from the (100), (002), and (101) of Miller–Bravais indices.

3.2.2. Scanning Electron Microscopy (SEM)

Scanning electron microscopy is a high-resolution method for estimating size,
size distribution, shape, aggregation, dispersion (cryo-SEM), and crystallinity (electron backscattering
detection) [108,109]. It may be used to analyze inorganic, organic, carbon-based, biological, and complex
materials and to determine whether they are spherical or equiaxial particles, tubes, flakes, rods,
fibers, or of any other shape. Scanning electron microscopy is limited to the analysis of conductive
or coated materials under non-physiological conditions. The cryogenic method is required for
biomaterials. Various ZnO NP shapes have been reported from SEM analyses, including spheres and
rods [13,32,116,117]. Sphere-type ZnO NPs less than 50 nm in diameter have also been reported [116].
Other spherical ZnO NPs produced an aggregate network on a Si wafer using a layer-by-layer
structure [13,111]. Zinc oxide NPs that were used in electrochemical biosensors for detecting glucose,
were shaped as nanocombs, nanorods, nanofibers, nanowires, and nano-nails [117].

3.2.3. Transmission Electron Microscopy (TEM)

Transmission electron microscopy measures size and size distribution and confirms the
nanomaterial shapes with higher resolution compared to SEM [108,109]. Aggregation, dispersion
(environmental TEM), and crystal structure can also be determined by TEM. The TEM technique is
limited to very thin samples under non-physiological conditions. It can be used to visualize inorganic,
organic, carbon-based, biological, and complex materials as spherical and equiaxial particles, tubes,
flakes, rods, or fibers. The size, size distribution, crystalline structures, and aggregates of ZnO NPs
have been analyzed using TEM [46,118,119]. The TEM technique is extensively used to determine the
size, size distribution, and morphology of ZnO NPs based on the stabilizer (glycerol)-to-zinc source
ratios during the synthesis [46,109]. Li et al. [118] reported the layer-by-layer growth of ZnO nanopillar
crystals using in situ, high-resolution TEM. Ludi and Niederberger [119] also used TEM to demonstrate
the nucleation and growth of ZnO NPs, including the hexagonal pyramid and oleic acid-stabilized,
cone-shaped ZnO nanocrystals in liquid media.

3.2.4. Brunauer–Emmett-Teller (BET) Analysis

Brunauer–Emmett-Teller analysis provides the specific surface area and porosity of spherical and
equiaxial particles of inorganic, carbon-based, and complex materials [120]. This technique is limited
to the analysis of volatile compound-free materials. Furthermore, BET cannot distinguish between
particles and nonparticulate porous materials. Mesoporous ZnO thin films were found to have a
specific surface area of 14–140 m2/g depending on the synthesis techniques [121]. Zafar et al. [122]
reported spherical ZnO NPs with a specific surface area of 49.36 m2/g that could be used for the
removal of adsorptive azo dyes, such as methyl orange and amaranth. Lu et al. [123] described
three-dimensional macroporous network structures of ZnO that were synthesized as dried gels. These
structures had specific surface areas of 131 m2/g, 50 m2/g, 20 m2/g, and 18 m2/g, before and after heat
treatment at 320 ◦C, 360 ◦C, and 400 ◦C, respectively.
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4. Three-Dimensional Structure Generation by Nanofabrication

4.1. Three-Dimensional Network Structure with Multilevel Porosity

Zinc oxide NPs have been shown to form three-dimensional networks with multilevel
porosity [51,111,123]. Pores are defined by the International Union of Pure and Applied Chemistry
(IUPAC) in terms of size: micropores (<2 nm), mesopores (2 nm–50 nm), and macropores
(>50 nm) [124,125]. A micropore is also known as a “nanopore”. Multilevel or multiscale porosity
is usually bimodal (micro-meso, meso-micro or micro-macro) or trimodal (micro-meso-macro or
meso-meso-macro) [126]. Hierarchically porous structured materials are highly porous, multiscale,
and interconnected with a large surface area and low density. In experimental models, hierarchical
pores follow Murray’s law which is used to determine the sizes of vessels in in the architecture of
transport systems for insects (Figure 2A) and leaves (Figure 2B) [111,127]. Using a hierarchically porous
material model, macro-, meso-, and microporous (nanoporous) channel modalities are designed to
meet specific performance goals (lateral view, Figure 2C; top view, Figure 2D). Networks of ZnO NPs
are tuned to provide catalysis via light scattering, potential harvesting, multiple internal reflections of
NP aggregates (Figure 2E), and layer-by-layer structures (Figure 2F) [128]. Wang et al. [129] reported
the gas-sensing activity of nest-like, hierarchically porous ZnO structures. The specific surface area and
pore size of the nest-like ZnO structures synthesized by a one-pot hydrothermal method, were 36.4
m2/g and 3–40 nm, respectively. Lei et al. [130] also described highly efficient dye (Congo red)
adsorption by hierarchically porous ZnO microspheres designed to remove anionic organic dyes from
wastewater. The specific surface area of those hierarchically porous ZnO microspheres was 57 m2/g,
and their maximum adsorption was 334 mg/g of Congo red. Besides gas sensing and photocatalytic
degradation, hierarchically porous ZnO NP structures can be applied to drug delivery and tissue
engineering [131,132]. Leone et al. [131] reported micro-metric or sub-micrometric aggregates of
spherical NPs loaded with ibuprofen for antibacterial drug delivery, which were effective in preventing
the growth of S. aureus > C. albican > K. pneumoniae. Pérez et al. [132] used osteostatin-loaded
mesoporous bioactive SiO2–CaO–P2O5 glass containing 4–5% ZnO as three-dimensional porous
scaffolds for promoting bone regeneration. Osteostatin in ZnO-mesoporous structured glass scaffolds
promoted osteogenesis in MC3T3-E1 cells.

4.2. Nanofabrication Techniques

4.2.1. Conventional Methods of Nanofabrication

Hierarchically porous materials can be fabricated using a variety of procedures, including
dual surfactant templating, colloidal crystal templating, polymer templating, bioinspired processing,
emulsion templating, freeze drying, phase separation, breath figures, selective leaching, replication,
zeolitization, sol–gel control, and post-treatment [133–140]. Fabrication technologies are divided
into four categories: basic (surfactant templating, replication, sol–gel control, and post-treatment),
chemical (emulsion templating, phase separation, zeolitization and self-formation), replication-related
chemical (colloidal templating, bioinspired processing and polymer templating), and physical–chemical
(supercritical fluids, freeze drying, breath figures, and selective leaching) methods [140]. Self-formation
in chemical fabrication via a spontaneous phenomenon produces hierarchically porous materials from
a metal alkoxide (reactant) and a surfactant (template) in a solvent (water and co-solvent). This method
has the advantages of direct production, simplicity, and facile scale-up. Furthermore, this technology
is also easy to combine with other fabrication methods.
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4.2.2. Non-Conventional Methods of Nanofabrication

Biotemplating

Biotemplating uses biological structures or replicates the morphological and functional
characteristics of biological species to guide the assembly or array of inorganic nanomaterials [141].
Proteins, biopolymers, natural scaffolds, and microorganisms are used as biotemplates to obtain the
required morphology. After the nanomaterials are synthesized, biotemplates should be removed
for purification.

Prakash et al. [142] used albumen as a biotemplate for ZnO NP films designed to sense acetic
acid in aqueous mixtures. Gelatin was also reported as a biotemplate to obtain the desired crystal
structure using a biomimetic method [143]. It assisted with the hydrothermal synthesis of star-like
ZnO NPs by facilitating the self-assembly of nanorods. The resulting product was able to perform
photocatalytic degradation of methyl orange when exposed to UV irradiation. Oudihia et al. [144]
described a biological method in which Azadirachta indica (neem) leaves acted as cellulose biotemplates
for capping in solvents during the synthesis of blue-emitting ZnO nanostructures at 12–36 nm in size.
Silk fibroin fibers were also used to synthesize biotemplated, photoluminescent ZnO NPs [145].

Among natural scaffolds, eggshell membrane [146], rice [147], and banana stalks [148] have
been used as biotemplates for the synthesis of ZnO NPs. Camaratta et al. [146] investigated eggshell
membrane-based biomimetization for the synthesis of ZnO nanostructures using zinc acetate, zinc
nitrate, and zinc chloride as precursors. Ramimoghadam et al. [147] used uncooked rice as a soft
biotemplate for the hydrothermal synthesis of hexagonal wurtzite ZnO NPs with flake-like, small
flower-like, tooth-like, and star-like structures. Upneja et al. [148] reported banana stalks as a source
of biofuel and biotemplate for the hydrothermal synthesis of ZnO nanostructures with a ~20 m2/g
specific surface area.

Microorganisms are attractive, cost-effective, and versatile biotemplates for the bottom-up
fabrication of biologically inspired heterogenous nano/micro-structures [149]. Bacteria [26,149]
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and viruses [150] have been used as biotemplates for ZnO synthesis. Microzyme species have
been used for the synthesis of hollow ZnO spheres that were applied to detect acetone [26,149].
Stitz et al. [150] reported the use of tobacco mosaic virus (TMV)-based piezoelectric ZnO films for
promoting biomineralization and acting as biomimetics. The TMV template had electromechanical
properties due to the formation of dipoles in the protein structure, which was a non-centrosymmetric
structure of a polar protein in the axial plane of the virus fibers.

Nanofabrication via Self-Assembly

Self-assembly involves the formation of an organized structure or pattern based on conventional
ionic, covalent, metallic, hydrogen, and coordination bonds. These bonds are built from weaker
interactions such as van der Waals and Casimir; π–π and hydrophobic; and colloidal and capillary,
magnetic, electrical or optical forces [151–153]. This approach is a smart nanofabrication technique
based on material properties. Jin et al. [13] described a self-assembled three-dimensional network
structure consisting of ZnO NPs and aggregates. This network was prepared by dripping ZnO NP
hexane suspensions onto a Si wafer [13,151]. Zheng et al. [111] also reported that ZnO NPs developed
a hierarchical, trimodal porosity network on solid Si wafer substrate via self-assembly [152,153]
after ZnO NP hexane suspensions were dripped onto the substrate and the hexane was evaporated.
Du et al. [154] reported the self-assembly of hexagonal, grid-like ZnO lamellae that were synthesized
with o-phthalic acid using a hydrothermal technique. The grid-like ZnO lamellae were prepared via
the interlinked self-assembly of ZnO NPs in ethanol, which were coated onto an alumina ceramic
tube containing a gold electrode after air-drying (60 ◦C, 1 h) and heating in an electric furnace
(350 ◦C, 1.5 h). Zena et al. [155] also reported self-assembled and monolayer-based hydrothermal
fabrication of ZnO nanorods on indium tin oxide substrates. Liu et al. [156] described the synthesis of
precursor-directed and self-assembled porous ZnO nanosheets. The ZnO nanosheets had a unique
parallelogram morphology, which were formed following an alkalization reaction and self-assembly
using didodecyldimehtylammonium bromide as a surfactant. These ZnO nanosheets served as a
high-performing semiconductor substrate for surface-enhanced Raman scattering. In the case of
titania, Han et al. [157] reported an evaporation-induced self-assembly technique that used titanium
(IV) tetraethoxide as a precursor, obtaining a hierarchically porous titania surface with macro- and
mesopores for cell adhesion, proliferation, and mineralization.

5. Biomedical Applications

Zinc oxide NPs have been studied for biomedical applications because they have shown anticancer,
antidiabetic, antimicrobial, anti-inflammatory, and wound healing activities. They have also been
used in imaging agents and biosensors [24,158] (Table 4). Various three-dimensional structures of
ZnO NPs and aggregates affect biomedical activity by modulating the surface characteristics of the
hierarchically porous architectures [13,111,126,158]. These hierarchically porous architectures enhance
mass transfer via light scattering and multiple reflections caused by micro-/macrochannels in the
nanomaterials [159,160].

Table 4. Biomedical applications of ZnO NPs.

Biomedical Application Morphology/Structure Test System References

Anticancer activity [1,2,5]

Paclitaxel or cisplatin-ZnO
Photo-stimulated paclitaxel or

cisplatin-ZnO NPs under
UV-A irradiation

HNSCC cells [161]

VP-16-Fe3O4@ZnO:Er3+,Yb3+@β-CD
VP-16 released from

Fe3O4@ZnO:Er3+,Yb3+@β-CD NPs
after microwave-triggering

MCF-7 cells [162]

Doxorubicin-ZnO Starch-stabilized ZnO NPs MCF-7 cells [163]

Daunorubicin-ZnO Multilamellar liposomes with
hexagonal ZnO NP cores

A549 (non-small cell lung
carcinoma) cells [164]
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Table 4. Cont.

Biomedical Application Morphology/Structure Test System References

Aminopolysiloxane-capped
ZnO NPs

K562 (sensitive leukemia) and
K562/A02 (resistant leukemia) cells [28]

Antidiabetic activity [165–167]

Vildagliptin + ZnO Hexagonal ZnO NPs
(mixed shape,~20 nm) Rats, type 2 diabetes [165]

ZnO Hexagonal ZnO NPs
(spherical shape, 10–15 nm) Rats, type 1 and 2 diabetes [166]

Antimicrobial activity [6,34]

ZnO

Self-assembled ZnO NP network
structure on Si wafer under dual

UV irradiation
(ZnO 0.05 mg/mL, UV 10 sec, 5 or

120 min incubation)

E. coli [13]

ZnO

Hexagonal ZnO NPs with/without
dual UV irradiation (~100 nm, ZnO

1.0 mg/mL, UV 30 sec,
30 min incubation)

Escherichia coli, M13 bacteriophages [116]

Gentamicin + ZnO
Mesoporous ZnO structures on

Si substrates
(guest-host structures)

In vitro release for 7 days [121]

Anti-inflammatory activity [168,169]

ZnO (74% Lyocell fiber, 19% Smart
Cell sensitive fiber, and 7% spandex)

ZnO-functionalized textile
(Benevit Zink+)

Staphylococcus aureus, Klebsiella
pneumoniae (for atopic

dermatitis patients)
[10]

ZnO–TiO2 ZnO NP-embedded TiO2 nanotubes
Macrophage-like RAW 264.7

(murine leukemic monocyte) cells,
S. aureus

[170]

Magnesium/epoxy
resin-ZnO/poly-capro-

lactone-ibuprofen

Multifunctional microstructure
(coating) In vitro release [171]

Wound healing [172–175]

ZnO
ZnO NPs

(antimicrobial tissue adhesive,
71.1 nm)

Skin wound closure
(E. coli and adhesion test) [176]

Alginate/ZnO Alginate/nano-ZnO
composite bandages

Infected wounds
(S. aureus and E. coli) [177]

ZnO ZnO NPs
(boiling method-based synthesis)

Wound dressing
(adipocyte-derived stem cell

proliferation)
[178]

ZnO

Topical ZnO formulations
(Increased local Zn and basal cell

metallothionein in wound margins
for accelerated wound healing)

Wound dressing
(surgical wound model in

Sprague-Dawley rat)
[179]

Cod liver oil/ZnO
Zincojecol

(ointment containing cod liver oil
and ZnO)

Wound dressing
(tail skin, retarded wound model by

dexamethasone)
[180]

Imaging agents [181,182]

Folic acid-ZnO QD
Folic acid-modified
ZnO nanocrystals
(NIR excitation)

KB (oral carcinoma) cells [183]

ZnO QD
ZnO QDs (3–4 nm) immobilized on
silica nanospheres (~150–200 nm)

(photoluminescence)
Photoluminescence intensity [184]
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Table 4. Cont.

Biomedical Application Morphology/Structure Test System References

Sensors [185,186]

ZnO
Three-dimensional interconnected

ZnO nanostructures
(macro-mesoporosity)

Acetone/methanol detection [29]

ZnO ZnO nano-brush and pearl
chain-like nanowire Selective/sensitive ethanol sensing [187]

Mn-ZnO
Interlocking p + n field-effect

transistor circuit of Mn-doped
ZnO NPs

Acetone sensing
(> 2 ppm) [188]

ZnO Aligned ZnO nanorods Epinephrine sensing [189]

ZnO ZnO electrodes on flexible porous
polyimide substrates Cardiac troponin sensing [190]

ZnO ZnO nanorod field-effect
transistors (FETs)

Glucose, cholesterol, and
urea sensing [57]

Au–ZnO Gold (Au)–ZnO hybrid NP films Optical and impedimetric analyses [191]

5.1. Anticancer Activity

Zinc is an essential trace element that regulates the activity of many enzymes to maintain
homeostasis in the body [1,161]. Zinc also plays a role in humoral and cellular immunity, which
protects cells against cancer. Zinc deficiency causes the initiation and propagation of cancer cells
via DNA mutation and p53 disruption [1,2,162]. Zinc oxide NPs have enhanced permeability and
retention (EPR) effects toward cancer cells compared to bulk zinc materials and can kill cancer cells
through the generation of reactive oxygen species (ROS) [1,5,163]. Zinc oxide NPs were investigated as
standalone agents against HepG2 (hepatocellular carcinoma), PC3 (prostate cancer), A549 (non-small
cell lung carcinoma), B16F10/A375 (melanoma), HeLa (cervix adenocarcinoma), HNSCC (head and
neck squamous cell carcinoma), LoVo/CaCo-2 (colon carcinoma), MCF-7 (breast adenocarcinoma),
and T98G (glioma) cells [158,161,164].

Zinc oxide NPs have also been studied as tools for the targeted delivery of
chemotherapeutics [158,161–164]. Photo-stimulated, paclitaxel- and cisplatin-loaded ZnO QDs were
also used as theranostics against HNSCC cells under UV-A irradiation [161]. Peng et al. [162] reported
that VP-16 (etoposide) was loaded into beta-cyclodextrin functionalized iron oxide QDs, coated with
ZnO and doped with Er3+ and Yb3+ (Fe3O4@ZnO:Er3+,Yb3+@β-CD). After microwave-triggering,
VP-16 released from Fe3O4@ZnO:Er3+,Yb3+@β-CD NPs demonstrated antitumor activity in MCF-7
cells. Doxorubicin [163] and daunorubicin [28,164] were delivered to MCF-7, A549, K562 (sensitive
leukemia), and K562/A02 (resistant leukemia) cells, using ZnO NP-mediated drug delivery systems.
Doxorubicin was loaded onto ZnO NPs at a concentration up to 0.1 mg/mL and stabilized with
starch [163]. The doxorubicin-loaded ZnO NPs showed antiproliferative activity against MCF-7
cells. Daunorubicin was incorporated into multilamellar liposomes with hexagonal ZnO NP cores for
pH-sensitive drug release against cancer cells [164]. It was also delivered by ZnO NPs capped with
aminopolysiloxane to generate synergistic anticancer activity against leukemia cells [28,164].

5.2. Antidiabetic Activity

Zinc can ameliorate type 1 and type 2 diabetes because of its role in the function of enzymes (>300)
needed to maintain metabolic homeostasis in the body [165,166]. As an essential micronutrient, zinc is
involved with the synthesis, storage, and secretion of insulin [167]. Specifically, zinc enhances the
structural integrity of insulin through zinc–insulin hexamers. Zinc also downregulates blood glucose
levels by inhibiting glucose absorption and increasing glucose uptake by skeletal muscle and adipose
tissue. El-Gharbawy et al. [165] reported that hexagonal ZnO NPs and vildagliptin (10 mg/kg/day, oral
administration), an antidiabetic drug, restored the structure and function of beta cells in a model of
type 2 diabetes. They used sol–gel synthesis to produce mixed shapes of oval- and rod-shaped ZnO
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NPs (~20 nm). Umrani and Paknikar [166] also described the antidiabetic activity of hexagonal ZnO
NPs (10–15 nm) in rat models of type 1 and 2 diabetes.

5.3. Antimicrobial Activity

Zinc oxide NPs produce antimicrobial activity via adsorption-induced membrane damage and
ROS-mediated cellular toxicity [6,116,158]. They are effective against Escherichia coli, Staphylococcus
aureus, Pseudomonas aeruginosa, Pseudomonas vulgaris, Bacillus subtilis, Bacillus megaterium, Sarcina lutea,
Klebsiella pneumonia, Candida albicans, and Aspergillus niger [6,13,34]. Zinc oxide NPs were used to
deliver gentamicin from the intra- and interparticle pores of host–guest structures [6,121]. Jin et al. [13]
presented the antibacterial activity of a self-assembled ZnO NP network structure with macro- and
mesopores on a Si wafer against E. coli under dual UV irradiation. Jin et al. [116] also demonstrated the
antibacterial and antiviral activities of hexagonal ZnO NPs (<100 nm in diameter) with and without
UV-A and UV-C irradiation. The antimicrobial activity of ZnO NPs at a concentration of 1.0 mg/mL
was tested in E. coli (Figure 3) and M13 bacteriophages.

5.4. Anti-Inflammatory Activity

Zinc oxide NPs have anti-inflammatory activity in response to pathogens or chemicals [168].
Zinc oxide NPs reduce inflammation by (i) blocking the production of pro-inflammatory cytokines
such as interleukin (IL)-1β and IL-18 via inhibiting NF-kB and caspase 1 in activated mast cells and
macrophages; (ii) inhibiting mast cell proliferation by increasing p53 and decreasing thymic stromal
lymphopoietin production related to IL-13, a TH2 cytokine, along with IL-1 and tumor necrosis factor-α;
and (iii) suppressing lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase
expression [168,169]. Wiegand et al. [10] described a ZnO-functionalized textile (Benevit Zink+,
Benevit Van Clewe, Dingden, Germany) made of 74% Lyocell fiber, 19% SmartCell sensitive fiber,
and 7% spandex. This ZnO-functionalized textile increased the antioxidative capacity and reduced
bacterial growth on the skin of atopic dermatitis patients. Yao et al. [170] also reported that ZnO
NP-embedded titanium dioxide (TiO2) nanotubes had antibacterial and anti-inflammatory activities.
A multifunctional microstructure containing ZnO NPs trapped ibuprofen, an anti-inflammatory drug,
in the intra- and interparticle pores of a magnesium/epoxy resin-ZnO/polycaprolactone [171].

5.5. Wound Healing

As an essential micronutrient, zinc plays the following key roles in wound repair: it contributes
to (i) fibrin clot formation, (ii) resolution of the inflammatory response, (iii) induction of cell
proliferation, re-epithelization, granulation, and angiogenesis, and (iv) remodeling of the extracellular
matrix [172,173]. By providing a prolonged supply of zinc to wounds, ZnO NPs are attractive
emerging therapeutic agents to effectively penetrate the cell, to modulate the immune system, and to
promote disinfection. Their promoted antibacterial action and enhanced re-epithelization have also
been reported in several studies of wounds [174,175]. Gao et al. [176] explored using ZnO NPs as
antimicrobial tissue adhesives for the closure of skin wounds. Alginate/nano-ZnO composite bandages
have also been used on wounds that were infected with S. aureus and E. coli [177]. Jin et al. [178]
reported that ZnO nanorods enhanced the proliferation of adipocyte-derived stem cells (ADSCs) for
tissue engineering. The nanorods were synthesized by grinding (ZnO-G), boiling (ZnO-B), and micelle
formation (ZnO-M) techniques. Zinc oxide nanorods (6 µg/mL) enhanced ADSC proliferation via
increased phosphorylation of extracellular-signal-regulated kinase (ERK) (Figure 4). Based on proteomic
approaches using tandem mass spectrometry (MS/MS), thioredoxin (Trx) was related to the enhanced
rate of ADSC proliferation seen after treatment with the ZnO nanorods. The ZnO nanorods increased
the expression of thioredoxin reductases (TrxR) I mRNA, while the increase in the proliferation rate
was abolished following treatment with epigallocatechin gallate (EGCG) (10 mM), a TrxR I blocker.
They had chondrogenic differentiation capacity in ADSC, which Col II and Sox-9 mRNA expressions
increased (Figure 5). Topical pharmaceutical formulations of Zn/(Cu) and ZnO/cod liver oil regulated



Pharmaceutics 2019, 11, 575 15 of 26

the rates of cellular proliferation and reepithelization [179,180]. In particular, the ZnO/cod liver oil
ointment efficiently increased the rate of wound healing after it was delayed by dexamethasone
treatment [180].Pharmaceutics 2019, 10, x FOR PEER REVIEW  15 of 27 
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Figure 3. Antibacterial effects of dual UV-MO NPs hybrid on Escherichia coli. (A) The plot of
Log(CFU/mL) versus MO NPs. Dual UV was exposed for 30 s or 10 s in three cycles, while MO NPs
at 1.0 mg/mL were treated for 30 min. Representative plate images of colonies after the treatment of
cyclic exposure (10 s × 3) from the uncoated area and MO NPs are shown: (B) control (untreated),
(C) UV (uncoated), (D) ZnO, (E) ZnTiO3, (F) MgO, and (G) CuO, -, not detected; * p < 0.05; ** p < 0.01.
Reproduced with permission from Jin et al., International Journal of Nanomedicine; published by
DOVE Medical Press, 2017. from ref [116]. Abbreviations: UV, ultraviolet; MO, metal oxide; NPs,
nanoparticles; ZnO, zinc oxide; ZnTiO3, zinc titanate; MgO, magnesium oxide; CuO, cupric oxide.
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Figure 4. ZnO nanorod enhancement of ADSC proliferation based on the activation of ERK.
(A) Proliferation (%) of ADSCs using ZnO nanorods at concentrations ranging from 1.56 to 25
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5.6. Imaging Agents

Quantum dots are semiconductors of transparent nanoparticles (1–10 nm) [181]. They have
unique optical and electronic properties, including fluorescence under light sources for bioimaging
applications [182]. In core–shell configurations, the photoluminescent quantum yield of the core
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emission is boosted and shielded from photobleaching [181,182]. In pharmaceutical and biomedical
applications, QDs can be used for imaging and drug delivery [181,182]. Liu et al. [183] described the use
of folic acid-modified ZnO nanocrystals for near-infrared excitation. Jia and Misra [184] also described
photoluminescent ZnO QDs (3–4 nm) that were immobilized on SiO2 nanospheres (~150–200 nm) for
bioimaging purposes.

5.7. Sensors

Zinc oxide NPs have been used as biomedical diagnostic/analytical sensors for detecting gases and
biochemicals [57,185,186]. In gas sensors, the pore properties are important factors because they allow
adsorbates into internal surfaces to ensure adequate adsorption performance. For example, highly
sensitive and selective gas sensors of ZnO nanowires/NPs were able to detect ethanol and acetone
quickly and accurately [187,188]. Nano-brush and pearl chain-like ZnO nanowires were developed for
the selective and sensitive detection of ethanol [187]. Zhou et al. [188] reported an interlocking p + n
field-effect transistor circuit of Mn-doped ZnO NPs for detecting acetone as low as 2 ppm, even under
conditions of high relative humidity (>85%). Zinc oxide nanorod field-effect transistors (FETs) were
monitored physiological conditions via the detection of glucose, cholesterol, and urea in the samples of
mice’s blood, and diabetic dogs’ serum and blood [57]. Mohsin et al. [189] reported using aligned ZnO
nanorods for epinephrine sensing. Zinc oxide electrodes on flexible porous polyimide substrates were
also developed for the detection of cardiac troponin [190]. Perumal et al. [191] reported gold (Au)–ZnO
hybrid NP films for optical and impedimetric analyses.

6. Conclusions

Zinc oxide NPs have different physicochemical characteristics that can vary depending on the
techniques used for synthesis. The different physicochemical properties of ZnO NPs affect their
biomedical activity in vitro and in vivo. Synthetic ZnO NPs form one-, two-, and three-dimensional
structures or hierarchically porous network structures that enhance their performance. They show
promising potential as therapeutics with anticancer, antidiabetic, antimicrobial, anti-inflammatory,
and wound healing activities. Zinc oxide NPs are also used for imaging tools and biosensors. In the
near future, it is expected that ZnO NPs can be extensively applied in non-clinical and clinical studies
as emerging therapeutic agents.
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Volceanov, A.; Mogoantă, L. In vitro and in vivo studies of novel fabricated bioactive dressings based on
collagen and zinc oxide 3D scaffolds. Int. J. Pharm. 2019, 557, 199–207. [CrossRef] [PubMed]

22. Sabura Begum, P.M.; Mohammed Yusuff, K.K.; Joseph, R. Preparation and Use of Nano Zinc Oxide in
Neoprene Rubber. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 1083–1094. [CrossRef]

23. Huang, X.; Zheng, X.; Xu, Z.; Yi, C. ZnO-based nanocarriers for drug delivery application: From passive to
smart strategies. Int. J. Pharm. 2017, 534, 190–194. [CrossRef] [PubMed]

24. Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising
nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [CrossRef]

25. Zamani, M.; Rostami, M.; Aghajanzadeh, M.; Kheiri Manjili, H.; Rostamizadeh, K.; Danafar, H. Mesoporous
titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J. Mater. Sci.
2018, 53, 1634–1645. [CrossRef]

26. Zhang, H.; Xu, C.; Sheng, P.; Chen, Y.; Yu, L.; Li, Q. Synthesis of ZnO hollow spheres through a bacterial
template method and their gas sensing properties. Sens. Actuators B Chem. 2013, 181, 99–103. [CrossRef]

27. Zhu, P.; Weng, Z.; Li, X.; Liu, X.; Wu, S.; Yeung, K.W.K.; Wang, X.; Cui, Z.; Yang, X.; Chu, P.K. Biomedical
Applications of Functionalized ZnO Nanomaterials: From Biosensors to Bioimaging. Adv. Mater. Interfaces
2016, 3, 1500494. [CrossRef]

28. Guo, D.; Wu, C.; Jiang, H.; Li, Q.; Wang, X.D.; Chen, B. Synergistic cytotoxic effect of different sized ZnO
nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol.
B 2008, 93, 119–126. [CrossRef]

http://dx.doi.org/10.1039/C9RA02091H
http://dx.doi.org/10.1016/j.cis.2017.07.033
http://dx.doi.org/10.2147/CCID.S44865
http://dx.doi.org/10.1038/nmat4599
http://www.ncbi.nlm.nih.gov/pubmed/27005918
http://dx.doi.org/10.3390/molecules22081284
http://www.ncbi.nlm.nih.gov/pubmed/28771163
http://dx.doi.org/10.2147/IJN.S192277
http://www.ncbi.nlm.nih.gov/pubmed/30880977
http://dx.doi.org/10.1039/C7CP07984B
http://dx.doi.org/10.1016/j.dental.2015.06.004
http://dx.doi.org/10.1039/C8RA03693D
http://dx.doi.org/10.1186/s12951-018-0392-8
http://dx.doi.org/10.1021/acsami.7b11219
http://dx.doi.org/10.1016/j.colsurfb.2016.05.046
http://dx.doi.org/10.1002/wnan.1481
http://dx.doi.org/10.1016/j.ijpharm.2018.12.063
http://www.ncbi.nlm.nih.gov/pubmed/30597267
http://dx.doi.org/10.1080/00914030802341646
http://dx.doi.org/10.1016/j.ijpharm.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29038062
http://dx.doi.org/10.1016/j.drudis.2017.08.006
http://dx.doi.org/10.1007/s10853-017-1673-6
http://dx.doi.org/10.1016/j.snb.2013.01.002
http://dx.doi.org/10.1002/admi.201500494
http://dx.doi.org/10.1016/j.jphotobiol.2008.07.009


Pharmaceutics 2019, 11, 575 19 of 26

29. Liu, J.; Huang, H.; Zhao, H.; Yan, X.; Wu, S.; Li, Y.; Wu, M.; Chen, L.; Yang, X.; Su, B.-L. Enhanced
Gas Sensitivity and Selectivity on Aperture-Controllable 3D Interconnected Macro–Mesoporous ZnO
Nanostructures. ACS Appl. Mater. Interfaces 2016, 8, 8583–8590. [CrossRef]

30. Nie, L.; Gao, L.; Feng, P.; Zhang, J.; Fu, X.; Liu, Y.; Yan, X.; Wang, T. Three-Dimensional Functionalized
Tetrapod-like ZnO Nanostructures for Plasmid DNA Delivery. Small 2006, 2, 621–625. [CrossRef]

31. McNamara, K.; Tofail, S.A.M. Nanoparticles in biomedical applications. Adv. Phys. X 2017, 2, 54–88.
[CrossRef]

32. Li, X.; Zhao, C.; Liu, X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for
electrochemical glucose detection. Microsyst. Nanoeng. 2015, 1, 15014. [CrossRef]

33. Saravanan, A.; Huang, B.; Kathiravan, D.; Prasannan, A. Natural Biowaste-Cocoons Derived Granular
Activated Carbon-Coated ZnO Nanorods: A Simple Route to Synthesis Core-Shell Structure and Their
Highly Enhanced UV and Hydrogen Sensing Properties. ACS Appl. Mater. Interfaces 2017, 9. [CrossRef]
[PubMed]

34. Siddiqi, K.S.; ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity
Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [CrossRef]

35. Wang, X.; Ahmad, M.; Sun, H. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase
Synthesis and Applications. Materials 2017, 10, 1304. [CrossRef]

36. Pan, X.; Liu, X.; Bermak, A.; Fan, Z. Self-Gating Effect Induced Large Performance Improvement of ZnO
Nanocomb Gas Sensors. ACS Nano 2013, 7, 9318–9324. [CrossRef]

37. Xu, T.; Ji, P.; He, M.; Li, J. Growth and Structure of Pure ZnO Micro/Nanocombs. J. Nanomater. 2012, 2012, 5.
[CrossRef]

38. Tan, K.H.; Lim, F.S.; Toh, A.Z.Y.; Zheng, X.-X.; Dee, C.F.; Majlis, B.Y.; Chai, S.-P.; Chang, W.S. Tunable
Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.
Small 2018, 14, 1704053. [CrossRef]

39. Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization
via piezo-electro-chemical coupling. Chemosphere 2018, 193, 1143–1148. [CrossRef]

40. Hu, L.; Yan, J.; Liao, M.; Xiang, H.; Gong, X.; Zhang, L.; Fang, X. An Optimized Ultraviolet-A Light
Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt. Adv. Mater. 2012, 24,
2305–2309. [CrossRef]

41. Yang, Y.; Wang, G.; Li, X. Water Molecule-Induced Stiffening in ZnO Nanobelts. Nano Lett. 2011, 11,
2845–2848. [CrossRef]

42. Li, Q.; Wei, L.; Xie, Y.; Zhang, K.; Liu, L.; Zhu, D.; Jiao, J.; Chen, Y.; Yan, S.; Liu, G.; et al. ZnO nanoneedle/H2O
solid-liquid heterojunction-based self-powered ultraviolet detector. Nanoscale Res. Lett. 2013, 8, 415.
[CrossRef]

43. Yao, Y.-F.; Tu, C.-G.; Chang, T.-W.; Chen, H.-T.; Weng, C.-M.; Su, C.-Y.; Hsieh, C.; Liao, C.-H.; Kiang, Y.-W.;
Yang, C.C. Growth of Highly Conductive Ga-Doped ZnO Nanoneedles. ACS Appl. Mater. Interfaces 2015, 7,
10525–10533. [CrossRef]

44. Errico, V.; Arrabito, G.; Fornetti, E.; Fuoco, C.; Testa, S.; Saggio, G.; Rufini, S.; Cannata, S.; Desideri, A.;
Falconi, C.; et al. High-Density ZnO Nanowires as a Reversible Myogenic–Differentiation Switch. ACS Appl.
Mater. Interfaces 2018, 10, 14097–14107. [CrossRef]

45. Mead, J.L.; Xie, H.; Wang, S.; Huang, H. Enhanced adhesion of ZnO nanowires during in situ scanning
electron microscope peeling. Nanoscale 2018, 10, 3410–3420. [CrossRef]

46. Wang, Z.; Li, H.; Tang, F.; Ma, J.; Zhou, X. A Facile Approach for the Preparation of Nano-size Zinc Oxide in
Water/Glycerol with Extremely Concentrated Zinc Sources. Nanoscale Res. Lett. 2018, 13. [CrossRef]

47. Yu, W.-C.; Sabastian, N.; Chang, W.-C.; Tsia, C.-Y.; Lin, C.-M. Electrochemical Deposition of ZnO Porous
Nanoplate Network for Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2018, 18, 56–61. [CrossRef]

48. Gopala Krishna, P.; Ananthaswamy, P.; Yadavalli, T.; Nagabhushana, B.; Ananda, S.; Yogisha, S. ZnO
nanopellets have selective anticancer activity. Mater. Sci. Eng. C 2016, 62. [CrossRef]

49. Akhtar, N.; Metkar, S.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor
for amyloid detection. Mater. Sci. Eng. C 2017, 78. [CrossRef]

50. Li, C.; Li, G.; Shen, C.; Hui, C.; Tian, J.; Du, S.; Zhang, Z.; Gao, H.-J. Atomic-scale tuning of self-assembled ZnO
microscopic patterns: From dendritic fractals to compact island. Nanoscale 2010, 2, 2557–2560. [CrossRef]

http://dx.doi.org/10.1021/acsami.5b12315
http://dx.doi.org/10.1002/smll.200500193
http://dx.doi.org/10.1080/23746149.2016.1254570
http://dx.doi.org/10.1038/micronano.2015.14
http://dx.doi.org/10.1021/acsami.7b11051
http://www.ncbi.nlm.nih.gov/pubmed/29052978
http://dx.doi.org/10.1186/s11671-018-2532-3
http://dx.doi.org/10.3390/ma10111304
http://dx.doi.org/10.1021/nn4040074
http://dx.doi.org/10.1155/2012/797935
http://dx.doi.org/10.1002/smll.201704053
http://dx.doi.org/10.1016/j.chemosphere.2017.11.116
http://dx.doi.org/10.1002/adma.201200512
http://dx.doi.org/10.1021/nl201237x
http://dx.doi.org/10.1186/1556-276X-8-415
http://dx.doi.org/10.1021/acsami.5b02063
http://dx.doi.org/10.1021/acsami.7b19758
http://dx.doi.org/10.1039/C7NR09423J
http://dx.doi.org/10.1186/s11671-018-2616-0
http://dx.doi.org/10.1166/jnn.2018.14614
http://dx.doi.org/10.1016/j.msec.2016.02.039
http://dx.doi.org/10.1016/j.msec.2017.04.118
http://dx.doi.org/10.1039/c0nr00421a


Pharmaceutics 2019, 11, 575 20 of 26

51. Zhou, H.; Zhang, H.; Wang, Y.; Miao, Y.; Gu, L.; Jiao, Z. Self-assembly and template-free synthesis of ZnO
hierarchical nanostructures and their photocatalytic properties. J. Colloid Interface Sci. 2015, 448C, 367–373.
[CrossRef]

52. Agarwal, H.; Kumar, V.; Shanmugam, R. A review on green synthesis of zinc oxide nanoparticles—An
eco-friendly approach. Resour. Effic. Technol. 2017, 3. [CrossRef]

53. Brayner, R.; Dahoumane, S.A.; Yéprémian, C.; Djediat, C.; Meyer, M.; Couté, A.; Fiévet, F. ZnO Nanoparticles:
Synthesis, Characterization, and Ecotoxicological Studies. Langmuir 2010, 26, 6522–6528. [CrossRef]

54. Malfatti, L.; Pinna, A.; Enzo, S.; Falcaro, P.; Marmiroli, B.; Innocenzi, P. Tuning the phase transition of ZnO
thin films through lithography: An integrated bottom-up and top-down processing. J. Synchrotron Radiat.
2015, 22, 165–171. [CrossRef]
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