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ABSTRACT: We report an efficient method for the preparation of
synthetically valuable trisubstituted alkenylboronate esters through
alkene isomerization of their readily available 1,1-disubstituted
regioisomeric counterparts. Either stereoisomer of the target
alkenylboronate motif can be obtained at will from the same
starting material by employing different isomerization catalysts.

The synthetic utility of alkenylboron compounds is widely
accepted thanks to their role in various C−C bond

forming reactions. The foremost example of such a process is
the Suzuki-Miyaura cross-coupling reaction,1−3 which has been
extensively employed to form highly substituted alkenes and
dienes, structures featured in bioactive natural products.2,4 The
value of this motif is amplified by several transformations that
leverage the alkene π-system through electrophile-induced 1,2-
boronate rearrangements, affording either new alkene prod-
ucts, as in the Zweifel olefination,5,6 or products of net C−C
bond addition as in the Morken conjugative cross-coupling
reaction.7−11 Finally, instead of being directly engaged in C−C
bond formation, oxidation of the C−B bond can result in
boron enolates, which have proven useful in the realm of
stereoselective aldol reactions.12−14 The stereospecific nature
of the above processes requires complete control over the
stereochemistry of the alkenylboron fragment to secure access
to stereodefined products. Accordingly, considerable effort has
been dedicated to the stereoselective generation of the
alkenylboron motif. The pioneered route is the anti-
Markovnikov hydroboration of alkynes,15−22 which performs
admirably for terminal alkynes and affords E-alkenylboron
products with complete regio- and stereocontrol. Unfortu-
nately, the formation of trisubstituted alkenylboron com-
pounds through this strategy is significantly more challenging.
For example, canonical hydroboration of unbiased internal
alkynes suffers from substantial regioselectivity issues. Recent
efforts directed toward the stereoselective preparation of
trisubstituted alkenylboron compounds are depicted in Scheme
1 and range from the Ru-catalyzed formal trans-hydroboration
reactions systems (Scheme 1a),19,22−24 to stereoselective
elimination reactions (Scheme 1b)25 and boron-Wittig
reactions (Scheme 1c).26 Alternative approaches utilize alkene
isomerization to establish the regio- and stereochemistry of the

alkenylboron motif.27 Such a strategy has been explored by
Suginome in the isomerization of boronate esters derived from
the silaboration and diboration of terminal alkynes, where
highly substituted alkenylboronate esters were generated from
readily available starting materials (Scheme 1d).28 In this
context, our group has recently demonstrated that ω-ene
alkylboronate esters can undergo long-range isomerization in
the presence of a Ru−H catalyst to result in stereodefined
alkenylboronate esters (Scheme 1e).29 In line with our interest
in the utilization of alkene isomerization in stereoselective
synthesis,30−36 we set out to explore the alkene isomerization
of readily available 1,1-disubstituted alkenylboronates37−40 into
either (E)- or (Z)-trisubstituted alkenylboronate esters
(Scheme 1g). Overall, this strategy would offer selective access
to both stereoisomers of the target alkenylboronate esters from
a single starting material. During the course of our study,
Huang and Guo et al. have reported an elegant Fe−H-
catalyzed isomerization resulting in trisubstituted (Z)-alkenyl-
boronates (Scheme 1f),41 leading us to disclose our results
herein. For the formation of (E)-alkenylboronates, our strategy
relies on an Ir-based alkene isomerization catalyst operating
through a 1,3-hydride shift mechanism.35,42−50 In this
mechanistic scenario, the key allyl iridium hydride intermediate
prefers a “W-shaped” conformation where the substituents at
the termini of the allylic system point away from the bulky
iridium center (A, Scheme 2a) rather than toward it (B).
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Reinsertion of the hydride would result in the formation of the
E-alkenylboronate ester. Notably, overisomerization leading to
allylboron species should be avoided due to the substitution
pattern of the alkenylboronate substrates employed and the
reluctance of the 1,3-hydride shift-based catalyst to generate
allyliridium hydride intermediates featuring branching at the
termini.
Such an isomerization process that transiently generates

reactive allylboronates has been extensively explored by the
Murakami group and others,51−60 constituting an impressive
application of alkene isomerization in stereoselective synthesis.
Alternatively, a metal hydride catalyst that operates through a
1,2-hydride shift mechanism should afford the (Z)-alkenyl-
boronate derivatives, achieving our goal of stereodivergence
(Scheme 2b). Through this mechanism, selectivity would

derive from the conformational preferences of the alkylmetal
intermediate D over E. As depicted in Scheme 2b, the
alkylmetal intermediate should favor a conformation where the
bulky Bpin substituent avoids steric interactions with the R
group, resulting in (Z)-selectivity.
To challenge the two hypotheses presented above, our

model substrate 1a (R = n-Pr), easily synthesized through the
Ni-catalyzed hydroalumination-transmetalation sequence of
alkynes developed by Hoveyda,37 was first submitted to our
slightly modified Ir-based isomerization conditions (see
Supporting Information).35,47−49

Hydrogenative activation of the catalyst to free the iridium
of the chelating cyclooctadiene ligand prior to the addition of
substrate 1a proved to be necessary. Although the more
sensitive precatalyst [Ir(coe)2Cl]2 (coe = cyclooctene) could
be used to avoid the hydrogenation step, we decided to use the
more stable and widely available [Ir(cod)Cl]2 as the precatalyst
of choice for this study.
Before investigating the substrate scope of this trans-

formation, we probed the functional group tolerance of the
Ir-based catalyst by performing the isomerization of 1a in the
presence of various additives (see Supporting Information).
With a clearer view of the functional groups tolerated by the Ir-
catalyst, we prepared various alkenylboronates to explore the
substrate scope of the reaction. We were pleased to observe
that the reaction proceeds smoothly in most cases and that
steric hindrance has little influence on the stereoselectivity
(Scheme 3a, compare (E)-2a and (E)-2c), albeit requiring
longer reaction times to isomerize sterically encumbered
substrates. TBS-protected primary alcohols ((E)-2d and (E)-
2e) and a primary alkyl chloride ((E)-2f) were well tolerated.
Product (E)-2g, featuring an indole, was successfully formed
with satisfactory yield and stereoselectivity after a slightly
extended reaction time (3 h). Allyl-vinylboronate ester (E)-2h
was efficiently and stereoselectively generated from the
corresponding alkyne diboration product. Remarkably, (E)-2i
is generated with minimal isomerization of the neighboring
trisubstituted alkene into conjugation. Similarly, product (E)-
2j is formed as two energetically degenerate isomers but
without any detectable traces of conjugated isomers. Alkenyl-
boronates (E)-2k−2m, featuring aromatic substituents of
various electronic characters, were all smoothly prepared. All
attempts to isomerize dialkenyl boronate ester 1n failed,
possibly due to chelation of the catalyst by the two alkenes,
inhibiting productive isomerization (Scheme 3a). To challenge
this hypothesis, substrates 1o and 1p were prepared, extending

Scheme 1. Stereoselective Preparation of Trisubstituted
Alkenylboronate Esters

Scheme 2. Stereodivergent Isomerization Based on
Discrepant Mechanisms
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the tether by one and two methylene units, respectively. Their
isomerization resulted in the desired products (2o and 2p) in
good yield and excellent stereoselectivity, demonstrating the
feasibility of isomerization given enough separation between
the targeted positions (Scheme 3a).
Having established reliable access to (E)-configured

trisubstituted vinylboronate esters, we wanted to complement
this strategy with a route toward the corresponding (Z)-
isomers.
As discussed previously (Scheme 2b), alkene isomerization

through the 1,2-hydride shift mechanism should provide this
expected isomer. In this vein, we subjected our model substrate
1a to the commercially available catalyst [RuHCl(CO)-
(PPh3)3], and after a brief optimization of the reaction
conditions (solvent, temperature and time, see Supporting
Information), we obtained the isomerized product (Z)-2a with
93% yield and a 20:80 E/Z ratio (Scheme 3b). A preliminary
substrate scope for the Ru-catalyzed isomerization is presented
in Scheme 3b. Linear and branched alkyl chains [(Z)-2a and
(Z)-2c)] do not pose any challenges (see Supporting
Information),35,47−49 and as anticipated, the stereoselectivity
of the reaction increases with the steric demand of the
substituent. Protected alcohol-containing product (Z)-2d can
be obtained with minimal formation of the silyl enol ether side
product resulting from overisomerization, provided the
reaction is closely monitored. The introduction of a chloride
maintained an acceptable transformation but unfortunately
with a significant loss of selectivity (formation of (Z)-2f).
Pleasingly, indole-containing (Z)-2g was smoothly generated
with the Ru-based catalyst as well as products containing aryl
groups of varied electronic nature (Scheme 3b, (Z)-2k−m). As
expected, the lack of selectivity inherent to the metal hydride
catalyst is manifested in the isomerization of polyenic
substrates, as illustrated by the formation of 2i as a mixture
of isomers. A recent study by Aggarwal demonstrates the
different steric properties of a range of boronic esters, with the
counterintuitive conclusion that the Bneo ester is bulkier than
its Bpin counterpart.61 Therefore, in an effort to improve the
stereoselectivity, the larger Bneo alkenylboronates were
synthesized and isomerized. The isomerization of the
aforementioned Bneo variants resulted in significantly
improved levels of stereoselectivity. However, it should be

noted that such boronic esters (Bneo) are of lesser synthetic
value compared to their Bpin counterparts, partaking in
substantially fewer transformations.
Finally, we demonstrated the synthetic value of this method

through a sequential isomerization-Suzuki-Miyaura cross-
coupling process. Following Ir-catalyzed alkene isomerization,
the crude reaction mixture was filtered, concentrated, and
directly subjected to previously established cross-coupling
reaction conditions, affording trisubstituted styrene products
4a and 4b in excellent yields and as single stereoisomers
(Scheme 4). It should be noted that the filtration

concentration step can be omitted. The cross-coupling partner
and catalytic system can be directly added to the reaction
mixture following the isomerization stage, affording product 4b
in 40% yield.
In conclusion, we have developed a stereodivergent strategy

toward synthetically valuable trisubstituted alkenylboronate
esters by alkene isomerization of their readily available 1,1-
disubstituted regioisomers. Using an Ir-based catalytic system
operating through a 1,3-hydride shift mechanism, excellent
(E)-selectivity was obtained. Alternatively, a commercially
available Ru−H catalyst provided the (Z)-configured alkenyl-
boron compounds with varying degrees of selectivity. The (E)-
selective Ir-based system complements the (Z)-selective Fe−H
catalyst recently reported by Huang and Guo et al.41 Overall,

Scheme 3. Substrate Scope for Ir- and Ru-Catalyzed Isomerization of Terminal Alkenylboronates

Scheme 4. Sequential Isomerization-Suzuki-Miyaura Cross-
Coupling

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.1c03513
Org. Lett. 2021, 23, 9194−9198

9196

https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c03513/suppl_file/ol1c03513_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c03513/suppl_file/ol1c03513_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c03513/suppl_file/ol1c03513_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c03513/suppl_file/ol1c03513_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03513?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03513?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03513?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03513?fig=sch4&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.1c03513?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


this method illustrates the potential of alkene isomerization as
an entry to highly substituted stereodefined alkenes.
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