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ABSTRACT 

Anti-aging therapy is the latest frontier in the world of medical science, especially for widespread diseases such as 
chronic kidney disease ( CKD) . Both renal aging and CKD are characterized by increased cellular senescence, 
inflammation and oxidative stress. A variety of cellular signalling mechanisms are involved in these processes, which 

provide new potential targets for therapeutic strategies aimed at counteracting the onset and progression of CKD. At the 
same time, sodium–glucose co-transporter 2 inhibitors ( SGLT2is) continuously demonstrate large beneficial effects at all 
stages of the cardiorenal metabolic continuum. The broad-spectrum benefits of SGLT2is have led to changes in several 
treatment guidelines and to growing scientific interest in the underlying working principles. Multiple mechanisms have 
been studied to explain these great renal benefits, but many things remain to be solved. With this in mind, we provide an 

overview of the experimental evidence for the effects of SGLT2is on the molecular pathway’s ability to modulate 
senescence, aging and parenchymal damage, especially at the kidney level. We propose to shed some light on the role of 
SGLT2is in kidney care by focusing on their potential to reduce the progression of kidney disease across the spectrum of 
aging and dysregulation of senescence. 
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fact, correctly defining the cellular and molecular processes of 
aging is truly a challenge [4 ]. Aging-associated response mech- 
anisms such as metabolic adaptation, senescence or apoptosis 
are mainly programmed. Therefore, aging can be defined as fail- 
ure to counteract damage, and this failure causes functional de- 
cline, pathology and death. Factors causative in the initiation of 
kidney aging might be stochastic, consisting of acute kidney in- 
jury ( AKI) or chronic diseases such as glomerulonephritis and di- 
abetic kidney disease. The timely accumulation of different en- 
tities of cellular insults causes increased storage of senescent 
cells driving detrimental effects, thereby leading to accelerated 
nephron loss [5 ]. 
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NTRODUCTION 

ging and chronic diseases have been regarded as critical issues
ue to the increase in the elderly population and its impact on
lobal health. Physiologic kidney aging and several kidney dis- 
ases share common biologic processes and molecular path- 
ays [1 ], including cellular senescence, inflammation, fibrosis,
ascular rarefaction, loss of glomeruli and tubular dysfunction,
hich lead to glomerulosclerosis and tubulointerstitial fibrosis 

2 , 3 ]. Nevertheless, the processes driving the progressive decline
f kidney function performance during aging and the interrela- 
ion between aging and disease are yet not fully understood. In
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Figure 1: Structural and functional changes in the kidney across the senescence–aging spectrum. AKI, glomerulonephritis and diabetic kidney disease lead to micro- 

scopic and macroscopic changes cutting across the senescence–aging spectrum. These changes imply kidney damage that is expressed in proteinuria and kidney 
function decline. 
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Certainly the balance between tissue dysfunction and repair 
rogressively diminishes during aging. In response to a variety of 
tressors, cells can either undergo apoptosis or enter a secretory 
henotype featuring changes in morphology and transcriptional 
rofile and resistance to apoptosis, namely senescence. Cellular 
enescence was initially considered with regard to its physio- 
ogical and homeostatic effects, particularly during embryonic 
evelopment and wound healing, but it is now seen as a patho- 
ogical process that contributes to aging as well as to various dis- 
ases and metabolic disorders. The characteristic triad of senes- 
ence includes arrested cell growth, resistance to apoptosis and 
enescence-associated secretory phenotype ( SASP) , which typ- 
cally lead to macromolecular damage and altered metabolism 

6 ]. In fact, senescent cells are characterized by morphological 
lterations including large, flat bodies and organelle abnormali- 
ies and chromatin organization, as well as loss of physiological 
unctions [7 ]. In particular, cellular senescence is characterized 
y altered transcriptome and secretome, sharing characteristic 
eatures with kidney aging and leading to chronic kidney dis- 
ase ( CKD) progression ( Fig. 1 ) . Interestingly, although aging at 
he organismal level might be irreversible, the kinetics can be 
ecelerated. 
In in vitro or in vivo models, sodium–glucose co-transporter 

 inhibitors ( SGLT2is) have been shown to correct or improve 
any of the pathological processes involved in the development 
nd progression of kidney aging, including inflammation, en- 
othelial dysfunction, mitochondrial injury, fibrosis and cellular 
enescence [8 ]. These protective effects are likely to underlie the 
bility of these agents to slow progression of established CKD 

s demonstrated in large prospective clinical trials [9 ]. We be- 
ieve detailed analysis of their potentiality might stimulate fur- 
her experimental studies to outline new therapeutic targets in 
he context of kidney aging prevention and treatment. For these 
easons, in this review we attempt to describe the aging-related 
hanges in the kidney cells and the prospects of SGLT2is in the 
herapeutic management of kidney aging, focusing on its asso- 
iated molecular pathways. 

IDNEY AGING AND SENESCENCE 

he kidney in healthy aging 

n clinical studies, aging-associated changes are related to a de- 
rease in renal function [both glomerular filtration rate ( GFR) and 
enal plasma flow ( RPF) ] [10 ], with an average yearly decline of 
FR of 0.7–0.9 ml/min/1.73 m2 in otherwise healthy individu- 
ls [11 ]. The fundamental origins of the decrease in GFR with
ealthy aging are not fully understood, but it is a phenomenon 
elated to a slowly progressive loss of nephrons from age 30 years 
nward. From a histological point of view, kidney aging is mainly 
haracterized by nephrosclerosis, i.e. global glomerulosclerosis,
nterstitial fibrosis/tubule atrophy ( IF/TA) and arteriolosclerosis 
12 ], and the rate of GFR decrease is the result of several mecha-
isms leading to reduced glomerular density [13 ]. As a matter 
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f fact, nephron hyperfiltration occurring in residual nephron 
nd haemodynamic stress on podocytes contributes to their de- 
eneration, altering hydraulic permeability and the surface area 
vailable for filtration [14 ]. 

While healthy aging is associated with structural changes in 
he kidney and a decrease in GFR, this does not always involve
 substantive increase in the risk of end-stage kidney disease
 ESKD) or mortality. For this reason, some authors have proposed 
n age-based modification to the definition of CKD. According to
his vision, the definition of CKD when estimated GFR ( eGFR) is 
 75 ml/min/1.73 m2 in younger adults ( age < 40 years) [15 ] and
hen eGFR is < 45 ml/min/1.73 m2 in older adults ( age > 65 years)

16 ] appears to be properly balanced. 
However, due to the pivotal role of the kidney in the de-

elopment of hypertension and regulation of body volume 
nd metabolic homeostasis, GFR decline and the age-related 
hanges in the structure and function of kidney cells actually
ncrease the overall risk class. Animal and human studies 
eport that age is related to changes in the permeability of
he capillary wall in glomeruli, increased susceptibility to 
odocyte injury, changes in tubular reabsorption and secretory 
apacities, changes in urinary concentration and production 
f kidney-derived hormones and bioactive molecules [17 ],
ncreased apoptosis, oxidative stress and inflammation [18 , 19 ].
he subsequent deterioration of the integrity of the slit pore
embrane in glomeruli defines both GFR decline and albumin 
ermeability alteration. In other words, healthy kidney aging 
ould be viewed as a compound of physiological changes with
athological implications. For these reasons, specific manage- 
ent strategies that are of actual benefit to older patients with
ecreased GFR warrant attention. 

ging in kidney disease 

n the context of contemporary nephrology research, the effect 
f age on the fate of CKD patients is a critical issue. The kidneys
f elderly patients are more vulnerable to the detrimental effects 
f proteinuria due to the greater degree of renal fibrosis and is-
haemia, significantly increasing the risk of ESKD in older CKD
atients [20 ]. 
Research attention has been recently drawn to the knowl- 

dge gaps of age-related differences in the mechanisms and 
athways that contribute to progression to ESKD. In contrast 
ith healthy aging, the global glomerulosclerosis related to GFR 
ecline in kidney diseases [21 ] is a result of visceral glomeru-
ar podocyte degeneration, inadequate repair and autophagy 
mpairment. Autophagy, a conserved lysosomal pathway for 
he degradation of cytoplasmic components, is essential to the 
aintenance of kidney homeostasis, and its reduction has been 
hown to be detrimental to kidney structure and function. Au-
ophagy defects in kidney cells of both tubular and glomerular
ompartments have been shown to contribute to the develop- 
ent of diabetic kidney disease, focal segmental glomeruloscle- 

osis and polycystic kidney disease [22 –24 ]. 
The mechanisms underlying the aging-related reduction of 

utophagy in podocytes have largely been investigated in mice.
itochondrial damage, endothelial reticulum stress and accu- 
ulation of oxidized and ubiquitylated protein aggregates and 

ipofuscin were found in a mouse model of autophagy-deficient 
odocytes. Proteasome activity has been shown to be increased 
n aged mice, probably for the purpose of clearing protein aggre-
ates and compensating for the loss of autophagy [25 ]. Another
ouse model of podocyte-specific deletion of a lysosomal pro- 

ease further demonstrated the importance of lysosomal activ- 
ty in podocyte maintenance during aging. Defective autolyso-
ome degradation in podocytes triggered the accumulation of
oxic lipofuscins and protein aggregates, leading to apoptotic
odocyte death. As a result, lysosomal-defective mice developed
roteinuria and kidney failure [23 ]. 
One more longevity factor is sirtuins ( SIRT) , a family of

AD+ -dependent class III histone deacetylases, which are in-
olved in metabolic regulation and are activated by increased
AD+ levels. SIRT1 cross-talks with other pathways regulat- 
ng different mechanisms involved in energy metabolism and
ell survival, including autophagy [26 ]. Interestingly, it was re-
orted that podocyte-specific knockdown of SIRT1 aggravated 
ge-associated kidney injury in aging mice [27 ]. Sirtuins role in
nti-aging interventions has been confirmed in several experi-
ental studies testing the role of caloric restriction ( CR) on ag-

ng. CR is well known to enhance lifespans and health spans,
reventing many age-related diseases. The biochemical mecha- 
isms by which it increases kidney health is linked, at least in
art, to enhanced mitochondrial Ca2 + uptake rates, regulating 
everal aspects of mitochondrial function, including oxidative 
hosphorylation and redox balance [28 , 29 ]. 

ccelerated cellular senescence in the kidney 

ellular senescence not only contributes to aging, but also plays
 causal role in numerous age-related diseases; in particular, it
as been proven to be involved in the pathogenesis of AKI, AKI to
KD transition and many types of CKD [30 ]. Cell senescence may
evelop during an acute response after injury as a mechanism
f tissue repair [30 ]. This kind of ‘acute senescence’ is a tightly
ontrolled process that participates in repair mechanisms and
imits fibrosis. In contrast, in chronic diseases, senescent cells
ccumulate in the kidney in response to a variety of stressors,
ncluding metabolic stress, telomere shortening [31 ], oncogenic
utations, inflammation and mitochondrial dysfunction [32 ].
hese stressors promote cell-cycle arrest via pathways either
ependent or independent of the DNA damage response. Differ-
ntly from the ‘acute senescence’ setting, in chronic diseases,
enescent cells are scarcely removed by apoptosis or immune
learance and are increasingly considered to be mediators of
isease progression [33 , 34 ]. Data from animal models suggest
hat senescent interstitial and tubular epithelial cells contribute
o ischaemia–reperfusion injury and AKI, as well as to AKI to
KD progression. Endothelial cell, podocyte and mesangial cell
enescence might contribute to diabetic kidney disease [35 ].
ubular epithelial cell senescence has also been detected in
any forms of CKD, including obesity-related nephropathy,
embranous nephropathy, lupus nephritis, minimal change 
isease, unilateral ureteral obstruction and immunoglobulin 
 nephropathy. In contrast, cellular senescence occurs as part
f sequential and tightly orchestrated stress-induced effector 
rograms involving metabolic changes associated with obesity 
nd diabetes. High glucose drives in vitro senescence in kidney
odocyte, mesangial and tubular cells [36 ]. Furthermore, hyper-
lycaemia causes cellular senescence via an SGLT2-dependent 
athway in proximal tubules in the early stage of diabetic
ephropathy [37 ]. 
Regardless of the kidney disease, the major changes in GFR

ith aging can be attributed primarily to nephron loss. The
ast evidence shows that the drawbacks of accelerated cell
enescence in kidney diseases are 2-fold. First, senescence
auses a cell cycle arrest, with a consequent loss of tissue repair
apacity; this is especially relevant for cells with low repli-
ation rates, like podocytes. Second, senescent cells produce
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Figure 2: Overview of various mechanisms involved in cellular senescence. The cell cycle becomes dysfunctional as telomere shortening and mitochondrial dysfunction 

cause DNA damage, the extracellular matrix is expanded and there is organelle injury and senescent cells develop a SASP that leads to chronic inflammation. All the 
kidney cells are involved—podocytes, tubules and endothelial cells. 
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ro-inflammatory and matrix-degrading molecules in what is 
nown as the SASP, leading to development and progression of 
lomerulosclerosis and IF/TA [38 ] ( Fig. 2 ) . Accordingly, the com- 
only used biomarkers of in vitro senescent cells are enzymatic 
ctivity of the lysosomal hydrolase senescence-associated 
-galactosidase ( SA- β-GAL) , reflecting an increase in lysosomal 
ass [39 , 40 ], the development of an SASP [41 ] and arrested cell 
rowth [5 ]. 

Many of the cell senescence inducers, namely metabolic 
tress, telomere shortening [31 ], inflammation and mitochon- 
rial dysfunction [32 ], cause overexpression of the cyclin- 
ependent kinase inhibitors p16INKA and/or p21cip1. Their 
inding to CDK4/6 inhibits cyclin D-CDK4/6 complex and in- 
uces cell cycle arrest at the G1/S cell cycle checkpoint. Activa- 
ion of p16INKA/Rb and p53/p21 tumour suppressor networks 
mplements this growth arrest in the nucleus [38 ], composing a 
ey signalling cascade implicated in kidney cell senescence. Ex- 
erimental models of CKD showed that accumulation of senes- 
ent cells later the G2/M phase triggers a secretory phenotype,
esulting in fibrosis [42 ]. Interestingly, SIRT1 has been shown to 
nhibit cellular senescence through regulation of the p53/p21 
athway. Podocyte-specific knockdown of SIRT1 accelerated age- 
elated glomerulosclerosis and podocyte loss in mice kidneys 
27 ]. 

In contrast, a number of signalling molecules have been iden- 
ified to exacerbate renal cell senescence and renal aging. For 
nstance, Wnt9a/ β-catenin signalling seems to promote renal 
ubular senescence and renal fibrosis in diseased kidneys, as evi- 
enced by the upregulated expression of p16INK4a, p53 and p21,
nd increased SA–β–GAL activity in renal tubules [43 ]. 

Reactive oxygen species ( ROS) can induce cellular senes- 
ence by regulating the p16INK4a/prb and p53/p21 pathways.
n turn, senescent cells produce ROS [44 ], perpetuating a vi- 
ious cycle of cellular damage. Accumulation of ROS results in 
ipid peroxidation, which leads to elevated advanced glycation 
nd-products and advanced lipoxidation end-products, both of 
hich regulate cellular senescence [45 ]. One of the shared links 
etween oxidative stress and cellular senescence might be in- 
ammation, which drives and results from both processes and 

ontributes to CKD. f
ROS signalling also mediates autophagy-delaying cell senes- 
ence and leads to SASP, a distinctive secretome consisting of 
 various pro-inflammatory molecules, metalloproteases and 
rowth factors [39 ]. SASP components include interleukin ( IL) - 
 β, IL-6 and IL-8 and transforming growth factor ( TGF) - β1, and 
hese can act in a paracrine and autocrine fashion, leading to 
ersistence and propagation of senescence within tissues [46 ].
irect evidence in the kidney is lacking and specific studies are 
eeded. Detection of cells displaying the SASP in the kidney 
ould be a major step in determining the choice of treatment. 

FFECT OF SGLT2 INHIBITION IN KIDNEY 

GING AND SENESCENCE 

eroscience represents a novel paradigm whereby biological 
ging is recognized as the major modifiable driver of age- 
elated diseases and other late-life conditions. Some authors 
ave proposed a standardized process for evaluating US Food 
nd Drug Administration ( FDA) -approved medications for their 
eroscience potential, and SGLT2i demonstrated the most robust 
linical evidence for a reduction of death from any cause [47 ]. 

SGLT2 inhibition has pleiotropic effects on multiple organ 
ystems. As for the heart, there have been several demonstra- 
ions of the mechanisms underlying the cardioprotective effect 
onferred by inhibition of SGLT2 activity, including a reduction 
f myocardial fibrosis and remodelling, ischaemia–reperfusion 
njury, oxidative stress and inflammation and improved myocar- 
ial contractility [48 , 49 ], which lead to a reduction in heart fail-
re and cardiovascular events [50 , 51 ]. It has also been shown
hat mitochondrial function is improved and amyloid plaque de- 
osition in the brain is reduced, ameliorating age-related and 
eurodegeneration disease [52 , 53 ]. 
Studies on the effect of defective senescent cell formation 

ave provided a major step forward in our understanding of 
he effects of treating cell senescence. Baker et al . [54 ] identi-
ed a causal link between cellular senescence and aging phe- 
otypes by showing that the clearance of senescent cells in a 
ouse progeroid model in vivo can delay age-related tissue dys- 

unction. More recently, it was demonstrated that the removal 
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• ↓ NADPH-oxidase 4
• ↓ Influx of glucose into RPTECs
   • ↑ Ketone-induced NRF2 pathway
   • ↑ Ketone-induced mTOR reduction  
• ↓ Mitochondrial Ca2+ overload 
   upregulates SIRT1 and SOD1–2

Oxidative stress • ↑ SIRT1 → activation of NRF2 
   → mitochondrial fitness
• ↓ mTOR → cell repair mechanism 
   → attenuate cell senescence 
• ↑ HIF2α/HIF1α
   → may augment autophagy
• ↑ AMPK, adiponectin and PPARα
   → reversal of metabolic syndrome 
   → suppress chronic inflammation
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↓ Oxidative stress and 
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Figure 3: Molecular effects of SGLT2is on kidney aging. SGLT2is act on different metabolic pathways in order to protect kidney function and prevent damage: SIRT1 
is able to deacetylate and activate NRF2 that regulates mitochondrial fitness; inhibition of mTOR mediates renoprotection; autophagy is affected by an elevated HIF- 

2 α:HIF-1 α ratio; and upregulation of AMPK, adiponectin and PPAR- α results in inhibition of chronic inflammation through energy deprivation. Furthermore, SGLT2is 
decrease oxidative stress in different ways: they inhibit NADPH-oxidase 4 and reduce the influx of glucose into RPTECs in order to increase ketone activation of 
the NRF2 pathway and mTOR inhibition; the decreased mitochondrial calcium overload contributes to upregulation of SIRT1 and SOD1 and 2. PPAR- α: peroxisome 
proliferator-activated receptor α. 
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f senescent cells delays aging, increases lifespan and restores 
rgan function, including the blood vessels [55 ] and kidney [56 ],
ithout increasing the risk of cancer. As changes at the molec-
lar level due to SGLT2i involve inflammation, oxidative stress 
nd DNA damage ( Fig. 3 ) , we aim to gain a clearer picture of the
urrent scientific understanding of the potential of SGLT2is re- 
ated to targeting aging and senescence in the kidney ( Table 1 ) . 

GLT2is effect on aging: the role of caloric restriction 

everal experimental models have contributed to the convic- 
ion that SGLT2is may exhibit anti-aging effects by providing 
rotection against ROS-induced cellular senescence, DNA dam- 
ge and attenuated inflammation, reducing end-organ fibro- 
is and improving endothelial function [57 ]. Moreover, SGLT2is 
ave been shown to modulate the nutrient-sensing pathways,
nown drivers of aging. By urinary caloric loss, SGLT2is activate 
 fasting-like metabolic state and reduce insulin signalling in 
esponse to a decrease in the glucose level. These events reduce
he insulin:glucagon ratio and increase hepatic and kidney glu- 
ose production from glycogenolysis and gluconeogenesis [58 ].
he compensating formation of ketone bodies, in addition to be
 direct energy source for damaged proximal tubular epithelial 
ells ( PTECs) , was shown to prevent PTEC and podocyte dam- 
ge by inhibiting mammalian target of rapamycin ( mTOR) sig- 
alling in mice models of proteinuric and non-proteinuric dia- 
etic kidney disease [59 ]. By promoting a nutrient deprivation
tate, SGLT2is upregulate the energy deprivation sensors adeno- 
ine 5′ -monophosphate-activated protein kinase ( AMPK) and 
IRT1, inhibit the nutrient sensors mTOR and insulin/insulin- 
ike growth factor 1 and modulate the closely linked hypoxia-
nducible factor ( HIF) -2 α/HIF-1 α pathways [57 ]. Activation of the 
MPK/SIRT1 axis has recently been suggested as a novel target
or the treatment of high-glucose-induced endothelial cell injury 
nd dapagliflozin abrogated high-glucose-induced endothelial 
ell dysfunction by AMPK/SIRT1 pathway up-regulation in hu- 
an umbilical vein endothelial cells [60 ]. 
Several studies have been conducted on the effects of CR

n longevity across various animal species, demonstrating 
n increase in lifespan and improved health outcomes [61 ].
mong involved molecular processes, DNA methylation has 
een shown to play a critical role: CR has resulted in attenuation
f age-related methylation drift in mice and rhesus monkeys
62 , 63 ]. The Comprehensive Assessment of Long-Term Effects
f Reducing Intake of Energy ( CALERIE) randomized controlled 
rial found that CR modified DunedinPACE, a DNA methylation
iomarker of the pace of aging. This finding supports the gero-
cience hypothesis that proposed this strategy to slow or reverse
olecular changes that occur with aging, delaying or preventing
ultiple chronic diseases and extending healthy lifespan [64 ].
GLT2is belong to the category of CR mimetics, specifically the
ownstream type, regulating intracell signalling proteins [65 ].
herefore, they represent a fascinating and promising class of
rugs that modify cellular mechanisms to mimic the effects of
aloric restriction. Their complexity and potential to modulate
ultiple pathways make them an exciting area of research in

he quest to promote healthy aging [66 ]. 

GLT2i: redox control of senescence ( oxidative stress 
nd mitochondrial dynamics) 

xcess ROS can directly or indirectly damage DNA, proteins and
ipids, thereby inducing transgenation, conformational changes 
n proteins and lipid peroxidation [67 , 68 ]. There is increasing ev-
dence that oxidative stress causes oxidative tissue damage and
isrupts cellular metabolism [69 , 70 ], especially in the kidney,
hich has fast metabolic processes. The increased influx of glu-
ose into the renal proximal tubular epithelial cells ( RPTECs) un-
er high-glucose conditions leads to a burst of ROS production,
oth by the mitochondria and by nicotinamide adenine dinu-
leotide phosphate ( NADPH) oxidase or xanthine oxidase [71 ]. By
ecreasing the influx of glucose into RPTECs, dapagliflozin and
ofagliflozin significantly ameliorate the high-glucose-induced 
xidative stress and the consequent DNA damage response, es-
ecially in high-glucose conditions [72 , 73 ]. 
Oxidative stress is known to be a common pathogenic sub-

trate in chronic disease and may occur in the diabetic kid-
ey at an early time. Specifically, dysregulated mitochondrial
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Table 1: Experimental models proving mechanisms involved in kidney protection from aging and/or senescence with SGLT2i treatment 

Organs/cells/tissues Experimental models SGLT2i tested Mechanisms involved References 

Renal proximal 
tubular cells ( mice) 

Mice with or without diabetes in 
which HHIP was present or 
specifically knocked out in renal 
tubules 

Canagliflozin Inhibited β-galactosidase activity [70 ] 

Proximal tubules 
( mice) 

Damaged proximal tubules of 
ApoE knockout mice fed a high-fat 
diet ( model of non-proteinuric 
diabetic kidney disease) 

Empagliflozin Elevation of ketone body that 
corrects mTORC1 hyperactivation 

[53 ] 

Kidney cortex ( rats) Male hereditary 
hypertriglyceridaemic rats fed a 
standard diet with or without 
SGLT2i 

Empagliflozin Increased activity of 
GSH-dependent enzyme GSH-Px 
and SOD decreased levels of 
lipoperoxidation products 

[64 ] 

Kidney tissue 
sections ( mice) 

Mice aged by subcutaneous 
injection of D-galactose 

Empagliflozin Upregulated SIRT1 levels [65 ] 

Endothelial cells 
( ECs) ( pigs and male 
rats) 

ECs were isolated from porcine 
coronary arteries and arterial 
segments from rats, incubated in 
the absence or presence of either 
NADPH oxidase inhibitor, an AT1R 
antagonist, SGLT1 and/or SGLT2i, 
then Ang II or a nitric oxide 
synthase inhibitor 

Empagliflozin Abolished pro-oxidant responses, 
SA- β-GAL activity, expression of 
senescence markers p53 and p21 
and p16 protein 

[63 ] 

Aorta tree and aortic 
valve ( mice) 

Spontaneously atherosclerotic 
mice 

Empagliflozin Improved protein expression level 
of p-AMPK affected by ox-LDL in 
cell; reduced gene expression level 
of inflammatory factors and 
protein expression level of NF- κB 

[69 ] 

Human renal 
proximal tubular 
epithelial cells 
( hRPTECs) 

hRPTECs were incubated under 
high-glucose conditions 

Dapagliflozin Reduced p16, inhibited ROS 
production with blunted DNA 

damage, ataxia telangiectasia 
mutated kinase ( ATM) and p53 
phosphorylation; decreased 
high-glucose-induced IL-1 and IL-8 
production; normalized TGF-1 
level 

[60 ] 

hRPTECs hRPTECs were incubated under 
high-glucose conditions 

Tofogliflozin Reduced MCP-1 gene expression 
and apoptotic cell death 

[61 ] 

Human renal 
tubular epithelial 
cell line ( HK-2 cells) 

HK-2 cells pretreated with 
hydrogen peroxide to induce 
cellular senescence 

Dapagliflozin Inhibited cellular senescence and 
oxidative stress via 
ketone-induced NRF2 activation 

[66 ] 

Human endothelial 
cells ( hECs) 

hECs were plated on glass-bottom 

dishes and treated with different 
concentrations of glucose 

Empagliflozin Reduced mitochondrial Ca2 + 

overload and ROS production 
attenuated cellular permeability 
and improved cell viability in 
response to oxidative stress 

[62 ] 

Human umbilical 
vein endothelial 
cells ( HUVEC) 

HUVEC were incubated under 
high-glucose conditions 

Dapagliflozin Abrogated high-glucose-induced 
endothelial cell dysfunction by 
AMPK/SIRT1 pathway 
up-regulation 

[54 ] 
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tness has been proposed as a potential root of age-related 
railty. Empagliflozin has been shown to significantly reduce mi- 
ochondrial Ca2 + overload and ROS production triggered by high 
lucose in human endothelial cells, attenuate cellular perme- 
bility and improve cell viability in response to oxidative stress 
74 ]. These findings were associated with decreased frailty in di- 
betic and hypertensive patients after 3 months of treatment 
ith empagliflozin as compared with the control group. 
This protective role of SGLT2is on endothelial damage has 

een confirmed by the demonstration that pro-oxidant re- 
ponses, SA- β-GAL activity, the expression of senescence mark- 
rs p53 and p21 at both the messenger RNA and protein lev- 
ls and p16 protein were upregulated by angiotensin II ( Ang- 
I) and abolished by SGLT2i in endothelial cells isolated from 

orcine coronary arteries [75 ]. Ang-II up-regulates SGLT1 and 
 protein expression in endothelial cells and arterial seg- 
ents, promoting sustained oxidative stress, senescence and 
ysfunction. Such a sequence contributes to coronary artery 
isease microparticle–induced endothelial dysfunction. Since 
T1R/NADPH oxidase/SGLT1 and 2 pathways promote endothe- 
ial dysfunction, inhibition of SGLT1 and/or 2 appears as an at- 
ractive strategy to promote endothelial health. 
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Trnovska et al . [76 ] tested the effect of empagliflozin on
etabolic parameters and insulin resistance using non-obese 
ereditary hypertriglyceridaemic rats, a strain characterized by 
levated concentrations of triglycerides and insulin resistance.
hey observed that empagliflozin reduces oxidative stress in 
he kidney tissue. In fact, in the kidney cortex, activity of the
-glutamyl-cysteinyl-glycine ( GSH) -dependent enzyme GSH-Px 
nd superoxide dismutase ( SOD) , an antioxidant enzyme, was 
ncreased in the empagliflozin-treated group while levels of 
ipoperoxidation products were decreased. Empagliflozin can 
lso exert antioxidant effects by upregulating SIRT1 levels 
hrough upregulation of SOD1 and 2 in a mice model of senes-
ence [77 ]. 

Moreover, dapagliflozin prevented the progression of diabetic 
idney disease by inhibiting cellular senescence and oxidative 
tress via ketone-induced nuclear factor erythroid 2–related fac- 
or 2 ( NRF2) activation. In particular, expression levels of age- 
ng marker genes ( p21 , p16 and p53) and the expression levels
f SASP in the kidney were reduced in a type 2 model of db/db
ice, primarily focusing on cellular senescence and oxidative 
tress, when treated with dapagliflozin [78 ]. The fact that such
mprovement was not observed in the subgroup of mice treated
ith sulfonylurea suggests that dapagliflozin has antisenescent 
nd antioxidant properties, which is independent of its glucose- 
owering effect. 

GLT2is effect on kidney cellular senescence: 
nflammation pathways 

ince SGLT2is promote ketogenesis from a shift toward fatty acid
xidation, one may postulate that they have anti-inflammatory 
ffects similar to CR, with promising effects on longevity and the
dvantage of not being difficult to adhere to. 

Results suggest that SGLT2is possess a tangible activity 
gainst low-grade inflammation, an effect possibly mediated 
y their ability to lower uric acid and insulin concentrations
79 ]. Moreover, reducing the glucose influx in senescent cells is
ikely to result in attenuation of their inflammatory affects. In
act, in vitro experiments detected that dapagliflozin decreased 
igh-glucose-induced IL-1 and IL-8 production and normalized 
he level of TGF-1 in renal tubular epithelial cell culture super-
atants [60 ]. Moreover, both monocyte chemoattractant protein- 
( MCP-1) gene expression and apoptotic cell death were reduced 
y SGLT2is [80 ]. 

The interaction between SGLT2is and the AMPK signal path- 
ay was studied in both spontaneously atherosclerotic mice in 
ivo and an oxidized low-density lipoprotein ( ox-LDL) -induced 
acrophage inflammation model in vitro . Empagliflozin can im- 
rove the protein expression level of phosphorylated AMPK 

 p-AMPK) affected by ox-LDL in cells and reduce the gene expres-
ion level of inflammatory factors and protein expression level 
f nuclear factor ( NF) - κB, thus removing the effect of diabetes in
erms of inflammation-mediated damage [81 ]. 

Hedgehog interacting protein ( HHIP) encodes a protein of 
00 amino acids attached to the cell membrane, regulates cel-
ular function and is essential in organ development. HHIP is
etectable in renal endothelial and epithelial cells in the nor-
al, mature kidney and is believed to promote SASP through

he release of a variety of inflammatory cytokines in re-
odelled kidney cells, thereby exacerbating the progression 
f diabetic kidney disease. In human renal proximal tubule 
K2 cells, high-glucose-induced HHIP overexpression promoted 
ncreased SGLT2 protein expression and cellular senescence 
82 ]. Moreover, their increased β-GAL activity was inhibited by
anagliflozin, reaffirming a potential role of SGLT2is in the mod-
lation of inflammaging. 

ONCLUDING REMARKS AND FUTURE 

ROSPECTS 

argeting aging and senescence pathways offers myriad benefi-
ial effects, particularly in the context of chronic disease. We de-
ict aging and senescence as being interacting or intercalating,
ut different processes are becoming increasingly recognized as
ossible causes of disease pathophysiology throughout the car-
iorenal system. 
SGLT2is are antihyperglycaemic drugs that have been shown

o protect the kidneys and heart of patients with or without type
 diabetes and to preserve kidney function or reduce kidney fail-
re. Recent research has provided further insights into the aging
reatment paradigm. Many in vivo and in vitro studies are aimed
t revealing the pathways underlying the pleiotropic effects
f SGLT2is, both blood glucose-dependent and -independent 
echanisms [83 ]. 
Understanding how aging and senescence of kidney cell

ypes contributes to specific disease phenotypes and how the
athways involved can be regulated by SGLT2is will allow re-
earchers to develop improved, targeted therapies to delay or
revent aging-associated diseases in the kidney. 
While other strategies related to CR or the use of molecules

uch as metformin, rapamycin or resveratrol that interfere with
ASP signalling factors are promising in order to delay the on-
et of age-associated diseases [84 , 85 ], further basic and clinical
esearch is needed to define the potential effects and complex
echanisms of SGLT2is in aging and senescence processes. 
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