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Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen

which causes huge economic damage globally in the swine industry. Current vaccination

strategies provide only limited protection against PRRSV infection. Viperin is an interferon

(IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-inde-

pendent pathways. However, the role of viperin in PRRSV infection is not well understood.

In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA

(cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mVi-

perin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1
gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner

and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin sup-

presses PRRSV replication by blocking the early steps of PRRSV entry and genome repli-

cation and translation but not inhibiting assembly and release. And mViperin co-localized

with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic

loci. Furthermore, it was found that the 13–16 amino acids of mViperin were essential for

inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the

granular distribution to a homogeneous distribution in the cytoplasm. These results could

be helpful in the future development of novel antiviral therapies against PRRSV infection.

Introduction
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic loss
in the global swine industry [1–3]. Current vaccination strategies and antiviral drugs cannot
effectively control PRRSV infection [4]. PRRSV belongs to the family Arteriviridae, order Nido-
virales and is divided into European and North American genotypes based on genetic differ-
ences. The PRRSV genome is single-stranded positive-sense RNA and consists of ten open
reading frames (ORFs) [5–8]. Among them, ORF1a and ORF1b encode proteins with replicase

PLOSONE | DOI:10.1371/journal.pone.0156513 May 27, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Fang J, Wang H, Bai J, Zhang Q, Li Y, Liu
F, et al. (2016) Monkey Viperin Restricts Porcine
Reproductive and Respiratory Syndrome Virus
Replication. PLoS ONE 11(5): e0156513.
doi:10.1371/journal.pone.0156513

Editor: Kui Li, University of Tennessee Health
Science Center, UNITED STATES

Received: January 24, 2016

Accepted: May 16, 2016

Published: May 27, 2016

Copyright: © 2016 Fang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was mainly supported by the
National Natural Science Foundation (31230071) and
grant from the Ministry of Education, China
(2012009711004), and for PRRSV immunology, a
grant from the Ministry of Agriculture (CARS-36) for
swine disease controlling techniques, and the priority
academic program development of Jiangsu higher
education institutions (PAPD).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156513&domain=pdf
http://creativecommons.org/licenses/by/4.0/


and polymerase activities. And ORFs 2–7 encode GP2a, GP2b, GP3, GP4, GP5, GP5a, matrix
protein (M) and nucleocapsid protein (N) [9–14], which are related to the process of viral
entry, assembling, and release.

The innate immune response is the first line of defense against infections. Pattern recogni-
tion receptors (PRRs) are essential for the detection of pathogen-associated molecular patterns
(PAMPs). Toll-like receptors (TLRs) 3, 7–9, retinoic acid inducible gene-I (RIG-I), melanoma
differentiation-associated gene-5 (MDA5), STING, POIIII, DDX41, DAI, IFI16, AIM and
cGAS recognize foreign nucleic acids to activate type I interferon (IFN) production pathway.
And then IFNs are secreted outside the cell to bind the IFN receptors on itself or neighbor cells.
The Janus kinase (JAK) and Tyk2 are activated by receptor binding to phosphorylate the signal
transducers and activators of transcription 1(STAT1) and 2. Phosphorylated STAT1 and
STAT2 along with IRF9 form the ISGF3 complex, and the ISGF3 complex is translocated into
the nucleus to bind IFN-stimulated response elements (ISREs), which results in the induction
of numerous IFN-stimulated genes (ISGs) that interfere with multiple stages of the virus life
cycle and limit viral infection [15, 16]. But the exact molecular mechanisms of specific ISGs to
combat different pathogens are not fully understood. Viperin (also known as RSAD2) is an
ISG that is found in most tissues and cells at a very low basal level and is induced by multiple
viruses via IFN-independent and IFN-dependent pathways [17, 18]. Viperin is localized to the
endoplasmic reticulum (ER) membrane and lipid droplets via its N-terminal amphipathic α-
helix [19–21]. It has been shown to have anti-viral actions in many viral infections such as hep-
atitis C virus (HCV) [22, 23], influenza virus [24, 25], human immunodeficiency virus (HIV)
[26, 27], equine infectious anemia virus (EIAV) [28], Dengue virus (DENV) [29, 30], sindbis
virus (SINV) [31], Japanese encephalitis virus (JEV) [32], West Nile virus (WNV) [30, 33],
Bunyamwera virus [34], respiratory syncytial virus (RSV) [35, 36], tick-borne encephalitis
virus (TBEV) [37], and Chikungunya virus [38–40]. In this study, it was first found that
PRRSV and IFN-α both induced the expression of monkey viperin (mViperin) in Marc-145
cells. Over-expression of mViperin could inhibit PRRSV replication in a dose-dependent man-
ner. Moreover, it blocked PRRSV entry and genome replication and translation but had no
effect on assembly and release of PRRSV in Marc-145 cells. Meanwhile, mViperin can co-local-
ize with PRRSV GP5 and N protein, and interact with N protein in vitro.

Materials and Methods

Viruses and cells
Marc-145 cells, a subclone of African green monkey kidney MA104 cells, and BHK21 cells were
purchased from American ATCC and maintained in Dulbecco’s Modified Eagle’s medium
(DMEM; GIBCO, Shanghai, China) with 10% fetal bovine serum (FBS; GIBCO) penicillin (100
U/mL) and streptomycin (100 μg/mL) at 37°C in 5% CO2. HP-PRRSV BB0907 strain (GenBank
accession number: HQ315835) was isolated from a clinically diseased pig in Guangxi Province,
China, in 2009 and propagated in the Marc-145 cells, and a 50% tissue culture infection dose
(TCID50) was determined by titration in Marc-145 cells. PRRSV strain BB0907 infectious
cDNA clone were constructed and preserved in our laboratory.

Effect of IFN-α on induction of mViperin
To investigate the induction of mViperin by IFN-α, Marc-145 cells were seeded onto 12-well
plates for 24 h and treated with IFN-α (Peprotech, Rocky Hill, USA) at various concentrations
of 0, 300, 1000 and 3000 U/mL, respectively. Twenty-four hours later, the cells were challenged
with PRRSV at 0.1 multiplicity of infection (MOI). After being incubated for 12, 24, 36 and 48
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h, the cells were harvested, and both mViperin and PRRSV were detected by real-time PCR
and western blotting [41].

Construction of plasmids expressing full-length and truncated mViperin
Total RNA was extracted fromMarc-145 cells treated with 3000 U/mL human IFN-α (Pepro-
tech) using QIAprep viral RNA minikit (Qiagen, Hilden, Germany) and cDNA synthesis was
performed with SuperScript III Reverse Transcriptase (Invitrogen, Shanghai, China). The full-
length mViperin gene was amplified with a set of primers (Table 1), and amplicons were cloned
into a pEASY-Simple Blunt vector (Beijing TransGen Biotech Co. Ltd., Beijing, China) and
sequenced. The determined nucleotide sequence of mViperin was compared to that found in
the database (GenBank accession number: JQ437826.1). To generate the expression vector, the
mViperin gene was amplified from a previously sequenced plasmid using the primers shown in
Table 1. Polymerase chain reaction (PCR) products were digested with restriction enzymes and
cloned into a pVAX-1 vector with the kozak sequence at the N terminus and a FLAG tag at the
C terminus to produce a pVAX-mVIP plasmid. Truncations of mViperin were subcloned from
the pVAX-mVIP plasmid with a FLAG tag at the N-terminus to produce pVAX-mVIP (5’Δ8,
5’Δ10, 5’Δ12, 5’Δ17, 5’Δ33 and 3’Δ143) plasmids.

Plasmid transfection and virus challenge
To determine the effects of mViperin on PRRSV replication, Marc-145 cells plated on 24-well
plates were respectively transfected with 0.5, 1 and 1.5 μg pVAX-mVIP or pVAX-1 plasmid
DNA using Lipofectamine 3000 transfection reagent according to the manufacturer's recom-
mendations (Invitrogen). To locate the antiviral domain of mViperin, Marc-145 cells were
respectively transfected with 1 μg mViperin truncations, and pVAX-1 plasmids as described
above. PRRSV strain BB0907 were infected with a MOI of 0.01 at 24 h after transfection, then
the cells were analyzed by western blotting, immunofluorescence assay (IFA) and real-time
PCR at an indicated time point (0, 12, 24, or 48 h) post infection (hpi). PRRSV yields in the
supernatant were titrated by TCID50.

Western blotting assay
Marc-145 cells treated with various methods were harvested and processed as described previ-
ously [42]. The processed protein samples were subjected to 12% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto nitrocellulose (NC)
membrane (Pall Co., Ann Arbor, MI, USA). The membranes were blocked in Tris-buffered
saline with 0.05% Tween-20 containing 10% nonfat for 2 h at 25°C and then incubated with
anti-N monoclonal antibody (mAb, made in our laboratory), anti-β-actin mAb (Abmart,
Shanghai, China), anti-FLAG (Abmart), overnight at 4°C. After washing three times with
TBST buffer (20 mM Tris–HCl, pH 7.4, 150 mMNaCl, 0.1% Tween 20), the membranes were
incubated with horseradish peroxidase- conjugated goat anti-mouse IgG (Boster Bio-Tech Co.
Ltd., Wuhan, China) for 1 hour at 37°C. The signals were developed using an ECL western
blotting system (Thermo Fisher Scientific, USA) and the spot levels were detected by using
ImageJ quantification software.

Quantitative reverse transcriptase PCR (qRT-PCR)
Total RNA fromMarc-145 cells was extracted using total RNA kit I (Omega Bio-tek, Inc, Nor-
cross, GA, USA) according to manufacturer’s instructions. RNA were converted to cDNA
using HiScript1 Q RT SuperMix (+gDNA wiper) (Vazyme, Nanjing, China) according to the
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manufacturer’s instructions. Two microliters of the RT reaction mixture were submitted to
quantitative RT-PCR (qRT-PCR) using mViperin, PRRSV ORF7, IFN-α, or IFN regulatory
factor-1 (IRF-1)-specific primers (Table 1), and SYBR Green Real-time PCRMaster Mix
(Vazyme), according to the manufacturer’s recommendations. The reaction procedure was
95°C for 5 min, followed by 40 cycles at 95°C for 5 s and 60°C for 31 s. Standard curve analysis
was performed for relative quantification. The transcript levels of target genes were relatively
quantified using the 2-ΔΔCT method. The GAPDH gene served as an internal reference. The rel-
ative amount of target gene mRNA was normalized to that of GAPDHmRNA in the same
sample.

Indirect immunofluorescence assay (IFA)
Marc-145 cells plated on 12-well plates with different treatments were washed three times with
phosphate-buffered saline (PBS) and fixed with methanol at 4°C for 45 min. PRRSV N protein
was detected as described previously using a monoclonal antibody to N protein of PRRSV
(made in our laboratory) [42]. The nuclei were stained using 4’,6-diamidino-2-phenylindole
(DAPI; Invitrogen, China).

mViperin siRNA knockdown
The mViperin siRNA (S1 and S2) and negative control siRNA (siNC) (Invitrogen) were trans-
fected with Lipofectamine 3000 transfection reagent (Invitrogen). Marc-145 cells with 80%
confluence on a 24-well plate were transfected with 60 pmol mViperin siRNA and siNC for 6
h prior to administration of 1000 U/mL IFN-α (Peprotech). Twenty-four hours later, cells
were infected with PRRSV at a MOI of 0.01 for 48 h. The effect of siRNAs and IFN-α on mVi-
perin expression and PRRSV replication were detected by using qRT-PCR, western blotting
and virus yield titration. The siRNA sequences were: S1: 50-gcaacuauaaaugcggcuutt-30; S2:50-
gggugagaauuguggagaatt-30. siNC, 50-uucuccgaacgugucacgu-30 (scrambled oligonucleotides).

Table 1. PCR Primers.

Sense primer (5’-3’) Antisense primer (5’-3’)

PCR primer

wt-mVipern cccaagcttgccaccatggattacaaggatgacgacgataagtgggtactcacgcctgc Ccgctcgagctaccaatccagct tcagatcagccttact

IRF-1 atgcccatcactcggatgcgcatgaga ctacggtgcacagggaatggcctggat

5’Δ8 cccaagcttatggactacaaggacgacgatgacaagtttgctgggaagctcctgag ccgctcgagctaccaatccagcttcagat

5’Δ10 cccaagcttatggactacaaggacgacgatgacaaggggaagctcctgagtgtgtt ccgctcgagctaccaatccagcttcagat

5’Δ12 cccaagcttatggactacaaggacgacgatgacaagctcctgagtgtgttcaggca ccgctcgagctaccaatccagcttcagat

5’Δ17 cccaagcttatggactacaaggacgacgatgacaagaggcaacctctgagctctct ccgctcgagctaccaatccagcttcagat

5’Δ33 cccaagcttatggactacaaggacgacgatgacaagtggctgagggcaacctggct ccgctcgagctaccaatccagcttcagat

3’Δ143 cccaagcttatggactacaaggacgacgatgacaagatgtgggtactcacgcctgc ccgctcgagctacttgaaagcgactctataat

Quantitative PCR primer

mViperin taaatgcggcttctgtttcc gaaatggctctccacctgaa

PRRSVORF7 aaaccagtccagaggcaagg tcagtcgcaagagggaaatg

IRF-1 ggctgggacatcaacaagga gagttcatggcacagcgaaag

IFN-α acctttgctttactggtggcc atctgtgccaggagcatcaag

mGAPDH gaaggtgaaggtcggagtc gaagatggtgatgggatttc

RGAPDH ccttcattgacctcaactacatg cttctccatggtggtgaagac

doi:10.1371/journal.pone.0156513.t001
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Internalization assay
The effect of mViperin suppression on PRRSV internalization was also evaluated by western
blot assay. Marc-145 cells with 80% confluence were washed and cultured with serum-free
DMEMmedium for 12 h. Then the cells were incubated with PRRSV at 1 MOI for 1 h at 4°C
to allow virus attachment without internalization. The cells were washed with ice-cold PBS
three times so that unbound viruses were removed. Then the culture medium was replaced
with fresh serum-free DMEM and the cells were subsequently shifted to 37°C with 5% CO2 to
allow virus internalization. The cells were washed with citrate buffer solution (pH = 3) to
remove the non-internalized visions on the surface of cells, and then the cells were washed
with ice-cold PBS three times. The level of viral protein in cells was detected by using a western
blot assay [43].

Co-immunoprecipitation assay
Marc-145 cells were transfected with pVAX-mVIP or pVAX-1 using lipofectamine 3000 (Invi-
trogen). At 24 h post transfection (hpt), the cells were infected with PRRSV BB0907 (MOI = 1).
Then 36 h later, the cells were rinsed three times in cold PBS. Cells were then lysed in protein
extraction reagent for 30 min on ice, followed by centrifugation at 5000×g for 10 min at 4°C to
remove cell debris. Cell extracts were incubated with rabbit anti-FLAG polyclonal antibody
(Cell Signaling, Boston, MA, USA) or mouse anti-PRRSV N (made in our laboratory), GP5
mAb (made in our laboratory) for 12 h at 4°C, then A/G-agarose beads (Beyotime, Shanghai,
China) were added. After 4 h incubation, the beads were collected by centrifugation at 2500 g
for 5 min and washed five times with cold PBS. The beads were boiled in 2×SDS loading buffer
to elute bound protein and subjected to western blotting; the proteins were analyzed by mouse
anti-FLAG mAb (Abmart, Shanghai, China) or rabbit polyclonal antibody (Cell Signaling),
and mouse anti-PRRSV N protein mAb (made in our laboratory).

Confocal microscopy analysis
Marc-145 cells plated onto a cover glass in a 24-well plate were transfected with pVAX-mVIP
or pVAX-1. Twenty hours later, the cells were infected with PRRSV BB0907 (MOI = 1) and
incubated for 36 h. After being fixed with 1:1 methanol/acetone, the cells were incubated with
mouse anti-PRRSV N, GP5 (made in our laboratory) and rabbit anti-FLAG-mViperin antibod-
ies (Cell Signaling), mouse anti-calnexin (Cell Signaling) for 1 h at 37°C. After being washed
three times, the cells were incubated with a mixture of Alexa Fluor 555-conjugated donkey
anti-rabbit (Beyotime) and FITC-conjugated goat anti-mouse secondary antibodies (Boster)
for 1 h at 37°C. The nuclei were stained using DAPI, and cover slips were mounted onto a slide
glass using 10% glycerol. After three washes, confocal images were obtained using a Zeiss LSM
710 scanning confocal microscope.

Statistical analysis
The results were analyzed for significance by one-way or two-way analysis of variance using
GraphPad Prism for Windows version 5.02 (GraphPad, San Diego, CA, USA). P<0.05 indi-
cated significant differences between two groups.

Results

mViperin mRNA is upregulated by IFN-α and PRRSV infection
To investigate the expression of mViperin in Marc-145 cells during PRRSV infection, Marc-
145 cells were infected with the PRRSV BB0907 strain and mViperin mRNA expression was
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detected by qRT-PCR and western blotting assay. The results showed that mViperin expression
levels were significantly increased by treatment with IFN–α in a dose-dependent manner (Fig
1A). Meanwhile, PRRSV infection was obviously decreased after IFN-α treatment at 300–3000
U/mL concentration (Fig 1B and 1C). The peak expression levels of mViperin mRNA arrived
at 24 hpi, as shown in Fig 1D.

To understand the effect of IRF-1 on induction of mViperin by PRRSV BB0907, IRF-1
mRNA levels were detected with qRT-PCR. The results showed that expression levels of mVi-
perin and IRF-1 in Marc-145 cells infected with PRRSV BB0907 strain are simultaneously
increased compared with those without the virus infection. Meanwhile, the IFN-αmRNA lev-
els were detected with qRT-PCR. The results showed that no significant changes occurred for
IFN-αmRNA at different time points in Marc-145 cells infected with PRRSV, indicating that
the expression of mViperin is independent of IFN-α production (P<0.05, Fig 1E).

mViperin inhibits PRRSV replication
To determine if mViperin plays a role in inhibiting replication of PRRSV, Marc-145 cells were
transfected with pVAX-mVIP and pVAX-1 plasmids at 0.5 μg, 1 μg and 1.5 μg doses and then
infected with PRRSV BB0907 (MOI = 0.01). At 48 hpi, the cells were harvested and levels of
PRRSV N protein in the cell lysates were examined by western blotting assay, and PRRSV yield
titer in the culture supernatant were detected. The results demonstrated that overexpression of
mViperin inhibited PRRSV replication in a dose-dependent manner (Fig 2A and 2C).

Fig 1. Induction of mViperin and inhibition of PRRSV by IFN-α is dose-, and time-dependent.Marc-145 cells were stimulated with IFN-α at
concentrations of 0–3000 U/mL for 24 h, and infected with PPRSV BB0907 at 0.1 multiplicity of infection (MOI). At 48 h post infection, PRRSV-ORF7
and mViperin mRNAwere detected with real-time PCR, and the levels were normalized to the level of mRNA (A, B). Meanwhile, PRRSV was examined
by western blotting with anti-PRRSV N protein. The levels of PRRSV N protein were then quantified by immunoblot scanning and normalized with
respect to the amount of β-actin (C). Marc-145 cells were infected with PRRSV BB0907 (at 1 MOI) then, at the indicated time points, the cells were
harvested and mViperin mRNA, PPRSV and IRF-1, IFN-αmRNA were detected by quantitative RT-PCR, the levels were normalized to the level of
GAPDHmRNA (D, E). The values represent mean ± SEM. *, **, *** indicates a significant difference of P < 0.05; P < 0.01; P < 0.001, respectively.

doi:10.1371/journal.pone.0156513.g001
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Meanwhile, IFA results showed that the number of infected cells in the pVAX-mVIP transfec-
tion group were obviously less than that in the pVAX-1 transfection group (Fig 2B).

Meanwhile, to further investigate whether the inhibition effect of mViperin is related to the
amount of inoculated PRRSV, theMarc-145 cells transfected with 1 μg pVAX-mVIP were
infected with various amounts of PRRSV (MOI = 0.01,0.1,1). The result indicated that the anti-
PRRSV effect of mViperin is significant when the cells were inoculated with PRRSV at a MOI of
0.1, 0.01. Moreover, the anti-PRRSV effect of mViperin was lost with an increase of infected
PRRSVMOI to 1. The results showed that anti-viral functions of mViperin depend on virus titers.

Knockdown of mViperin enhances PRRSV replication and impairs the
antiviral activity mediated by IFN
To determine if mViperin expression is necessary to control PRRSV replication, Marc-145 cells
were transfected with mViperin-specific siRNA S1 and S2, and negative siRNA control siNC

Fig 2. Overexpression of mViperin inhibits PRRSV replication in a dose-dependent manner.Marc-145 cells were transfected with 0.5, 1, 1.5 μg of
pVAX-mVIP or pVAX-1 plasmids, individually. After being transfected for 24 h, the cells were subsequently infected with 0.01 multiplicity of infection
(MOI) PRRSV BB0907. At 48 h post infection, the cells were harvested and the PRRSV and mViperin was detected by western blotting with anti-N and
anti-FLAG antibodies. The levels of mViperin and N protein were quantified by immunoblot scanning and normalized with respect to the amount of β-
actin (lower panel) (A). Meanwhile, PRRSV in the cells was detected by IFA (B), and the virus yields in the culture supernatants were detected by TCID50

(C). Values represent mean ± SEM. *, **, *** indicate a significant difference of P < 0.05; P < 0.01; P < 0.001, respectively. Data represent one of two
independent experiments.

doi:10.1371/journal.pone.0156513.g002
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before administration with 800 U/mL of IFN-α, and then were infected with the PRRSV BB0907
strain. QRT-PCR assay results showed that the expression of mViperin mRNA was significantly
decreased by mViperin siRNA compared to those by siNC inMarc-145 cells after being adminis-
trated with IFN-α (Fig 3A and 3B). The PRRSV ORF7 mRNA levels and viruses yields in S1 and
S2 treatment groups were significantly higher than those in the siNC group (Fig 3A and 3B).
Meanwhile, western-blot results also showed that knockdown of mViperin mRNA by siRNA sig-
nificantly enhanced the production of PRRSV inMarc-145 cells (P<0.05) (Fig 3C). This indi-
cates that mViperin is necessary for IFN-α-mediated anti-PRRSV effects in Marc-145 cells.

mViperin blocks an early step of PRRSV entry and genome replication
but does not affect virus assembly or release
To analyze the stages of the dissected virus life cycle affected by mViperin, the earliest virus
entries were initially assessed by internalization assay. Marc-145 cells seeded on 24-well plates

Fig 3. Knockdown of mViperin increased PRRSV replication and impaired IFN-α-mediated antiviral activity.Marc-145 cells in six wells
of the 24-wells-plate were transfected with S1, S2 and siNC, and 2%DMEM containing 800 U/mL of IFN-α-2a was added, after 24 h two wells
of each group were harvested and mViperin mRNA levels were detected by QPCR (A, B). Another four wells were infected with 0.01 multiplicity
of infection (MOI) PRRSV BB0907. At 48 h post infection, the total RNA in the 2 well cells in each group was extracted for the determination of
PRRSVORF7mRNA levels by quantitative RT-PCR and the levels were normalized to the level ofGAPDHmRNA in the same sample (A).
Meanwhile, the culture supernatants were collected and the virus yields were detected by TCID50 (B). The two well cells in each group were
harvested for western blotting analysis with anti-N and anti-β-actin antibodies. The levels of N protein were quantified by immunoblot scanning
and normalized with respect to the amount of β-actin (lower panel) (C). Values represent mean ± SEM; *, **, *** indicate a significant
difference at P < 0.05; P < 0.01; P < 0.001, respectively.

doi:10.1371/journal.pone.0156513.g003
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were transfected with pVAX-mVIP and pVAX-1, and then incubated with the PRRSV BB0907
strain at 4°C for 1 h to permit virus attachment and further held at 37°C to allow virus internal-
ization, followed by washing with PBS and citrate buffer solution to remove the remaining
viruses. And the cells were harvested to detect the PRRSV N protein in cell lysate by western
blot. The results showed that the amount of PRRSV that entered the cells transfected with
pVAX-mVIP was decreased compared to those transfected with pVAX-1, suggesting that mVi-
perin inhibited PRRSV entry to the host cell (Fig 4A).

To further detect the antiviral effect of mViperin on the stages of PRRSV assembly or
release, Marc-145 cells were transfected with pVAX-mViperin or pVAX-1, and then incubated
with PRRSV for 48 h and the cells and supernatants were collected for western blot and real-

Fig 4. mViperin blocks an early step of PRRSV entry but does not affect virus assembly or release.Marc-145 cells were transfected with pVAX-
mViperin and pVAX-1, after being transfected for 24 h, the cells were infected with one multiplicity of infection (MOI) PPRSV BB0907 at 4°C for 1 h, after
washing with cold PBS, the infected cells were further incubated at 37°C for 1 h, the bound but non-internalized virus particles were removed and washed
with citrate buffer solution (pH = 3). After washing with cold PBS, the cells were harvested for western blotting with anti-N, anti-FLAG and anti-β-actin
antibodies. The levels of mViperin and N protein were quantified by immunoblot scanning and normalized with respect to the amount of β-actin (lower
panel) (A). Marc-145 cells were infected with 0.01 MOI PRRSV BB0907. At indicated times the ratio of the virus N protein in supernatants and cell lysates
were determined by western blotting (B). In another experiment, after being transfected with pVAX-mViperin and pVAX-1, Marc-145 cells were infected
with PRRSV (MOI = 0.01). At 48 h post infected with PRRSV, the ratio of PRRSV RNA copy number between the supernatants and the cell lysates was
detected by Q-PCR (C), and the ratio of the virus N protein in supernatants and cell lysates was determined by western blotting (D). BHK21 cells were
transfected with 1 μg of pVAX-mVIP or pVAX-1 plasmids, individually. After being transfected for 24 h, the cells were subsequently transfected with 1 ug
of PRRSV strain BB0907 infectious cDNA clone. At 48 h post transfection, the cells were harvested and PRRSVORF7mRNA and N protein and
mViperin was detected by quantitative RT-PCR (E) and western blotting (F). Values represent mean ± SEM; *, **, *** indicated a significant difference of
P < 0.05; P < 0.01; P < 0.001, respectively.

doi:10.1371/journal.pone.0156513.g004
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time PCR assay [44]. The results showed the ratios of the RNA level of PRRSV in supernatant
to cell lysates were almost the same between pVAX-mViperin and pVAX-1 transfected cells,
indicating that overexpression of mViperin did not affect virus assembly. Meanwhile, although
the result showed that the amount of N protein in cell lysates were almost 3-fold higher than
that in the cultural supernatants, the ratio between them was not obviously different between
the pVAX-mViperin or pVAX-1 groups. These results suggest that mViperin had no effect on
viral release (Fig 4B, 4C and 4D).

To investigate whether Viperin inhibits PRRSV infection at the levels of viral genomic repli-
cation and translation, BHK21 cells, which have no PRRSV receptors but allow the replication
and translation of the PRRSV genome [45, 46], were co-transfected with pVAX-mVIP and the
plasmid DNA containing PRRSV strain BB0907 infectious cDNA. At 48 hpt, the cells were har-
vested and PRRSV ORF7 mRNA and N protein were detected by qRT-PCR and western blot.
The results showed the intracellular levels of PRRSV RNA and N protein were significantly
lower than those in the pVAX-1 control group (Fig 4E and 4F). These results indicate that
mViperin could inhibit PRRSV genome replication and translation.

mViperin co-localizes with both PRRSV N and GP5 proteins and
interacts with N protein in Marc-145 cells
PRRSV GP5 protein is an important virus structural protein, and plays a key role in cell recog-
nition and binding, apoptosis, and immune protection [47, 48]. The GP5 protein localizes to
the ER in the process of PRRSV assembly and maturation, and a GP5 and M heterodimer is
formed on the ER for transport to the Golgi complex [48, 49]. Meanwhile N protein is also
important in the assembly and replication of PRRSV and often considered an indicator of viral
replication. To determine if mViperin could interact with PRRSV N and GP5 in the process of
PRRSV replication, the distribution of mViperin, PRRSV GP5 and N protein were initially
assessed in Marc-145 cells infected with PRRSV. Marc-145 cells transfected with pVAX-mVi-
perin or pVAX-1 were infected with PRRSV BB0907, and GP5, N protein and mViperin were
detected by confocal microscopy assay using mouse anti-PRRSV N, GP5 and rabbit anti-flag
antibodies. The results revealed that mViperin considerably co-localized with GP5 and N pro-
tein in Marc-145 cells. Meanwhile, overexpressed mViperin also colocalized with the endoplas-
mic reticulum (ER) marker calnexin intracellularly, and this is consistent with the distribution
of Viperin protein of other species (Fig 5A, 5B and 5D).

To further verify the interactions between mViperin and PRRSV GP5 and N protein, co-
immunoprecipitation (Co-IP) experiments were performed by transfection of FLAG-tagged
mViperin expression plasmids in Marc-145 cells and infection with PRRSV BB0907. The result
showed that mViperin interacted with PRRSV N protein, but did not interact with GP5 protein
(Fig 5C).

The N-Terminal of mViperin is necessary and sufficient for antiviral
activity of mViperin
To identify the functional domain of mViperin required for inhibiting PRRSV replication, a
series of mViperin amino-terminal truncations were constructed in this study as shown in Fig
4. Marc-145 cells were respectively transfected with truncated mViperin plasmid DNA as
described above. As shown in Fig 6, the N-terminal truncation in mViperin (5’Δ12, 5’Δ10,
5’Δ8) retained the same antiviral activity as the parent mViperin. In contrast, truncated mVi-
perin (5’Δ17, 5’Δ33) were inactive. Meanwhile, all truncated mViperin proteins were confirmed
to be well expressed by immunoblotting using anti-FLAG-tag. This indicated that the 13–16
amino acids of mViperin plays an important role in suppressing PRRSV replication. In
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addition, the C-terminal truncation mViperin (3’Δ143) still inhibits PRRSV replication, sug-
gesting that the C-terminal region is not necessary for mViperin antiviral activity.

Meanwhile, we observed the effects of the N- and C-terminal of mViperin on the distribu-
tion of mViperin in Marc-145 cells by confocal microscopy assay. The results showed that the
truncation of mViperin (5’Δ17, 5’Δ33) changed the location of mViperin in the cytoplasm to
the entire intracellular region as a granular to uniform dispersal (Fig 6C). This indicated that
the 17 amino acids from the mViperin N-termini played an important role for the distribution
of the protein in the cell.

Discussion
Viperin can be induced by type I, II and III IFN, double-stranded DNA, or double-stranded
RNA analogues, and inhibits the replication of many viruses by apparently diverse mechanisms
[21, 28, 29, 32, 50, 51]. PRRSV is known to inhibit the synthesis of type I IFNs in infected pigs,
and results in the suppression of innate immunity [51–53]. Current vaccination strategies can-
not control this infectious disease. Antiviral therapy should be an effective supplement for the
control of PRRSV infection. However, the role of Viperin in PRRSV infection is scarcely under-
stood. Furthermore, viperin can be up-regulated by both IFN-dependent and IFN-independent

Fig 5. Co-localization of mViperin and PRRSVN or GP5 proteins in Marc-145 cells.Marc-145 cells were transfected with pVAX-mVIP, after being
incubated for 24 h, the cells were infected with PRRSV BB0907 (MOI = 1). At 36 h post infection (hpi), the cells were fixed with 1:1 methanol/acetone and
the mViperin and PRRSV N and GP5 were detected using anti-FLAG and anti-PRRSV N (A) or GP5 (B) protein antibodies, followed by incubation with a
mixture of Alexa Fluor (red)-conjugated donkey anti-rabbit and 488 (green)-conjugated goat anti-mouse secondary antibodies. The nuclei were stained
with DAPI stain (blue), and expression was analyzed by confocal microscopy. (C) mViperin and N interaction by immunoprecipitation. Marc-145 cells
plated onto six-well plates were transfected with or without 4 μg pVAX1-VIP and incubated for 24 h. Cells were infected with or without PRRSV BB0907
strain (1 MOI). At 48 hpi, the cell lysates were immunoprecipitated with anti-FLAG or anti-PRRSV N or GP5 protein antibodies and subjected to western
blotting with antibodies to FLAG and PRRSV N protein. Meanwhile, the co-localization between mViperin and ERmarker calnexin were detected by anti-
FLAG-mViperin and anti-calnexin antibodies (D).

doi:10.1371/journal.pone.0156513.g005
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pathways [17, 18, 23, 28, 29, 34, 36, 50, 54]. Stirnweiss et al. described that IFN-independent
induction of viperin is mediated via IRF-1 during infection of vesiculars tomatis virus (VSV)
[17, 18, 23, 28, 29, 34, 36, 50, 54]. The virus infection can strongly up-regulate viperin gene
transcription by the STAT-IRF1-Viperin pathway [18]. Another report showed that human
cytomegalovirus infection can activate the type I IFN signaling pathway, which enhances
viperin transcription through the STAT1/STAT2/IRF-9 complex termed ISG factor 3 (ISGF3)
by binding to the promoter response element ISRE [55, 56]. JEV was able to induce viperin

Fig 6. The N-terminal regions of the mViperin protein are required for its anti-viral activity. (A) Schematic diagram of mViperin and mutant
derivatives. (B) Marc-145 cells were transfected with the plasmids expressing mutants or wild type mVipeirn. At 24 h post transfection, the cells
were infected with PRRSV BB0907, and at 48 h post infection (hpi), the cells were harvested for western blotting with anti-N, anti-FLAG and anti-
β-actin antibodies. The levels of mViperin and N protein were quantified by immunoblot scanning and normalized with respect to the amount of β-
actin (lower panel). (C) Marc-145 cells were transfected with plasmid expressingWTmViperin or mViperin mutants, and infected with PRRSV. At
36 hpi, the cells were fixed with 1:1 methanol/acetone and detected using anti-FLAG antibodies, followed by incubation with a mixture of Alexa
Fluor (red)-conjugated donkey anti-rabbit and 488 (green)-conjugated goat anti-mouse secondary antibodies. The nuclei were stained with DAPI
stain (blue), and expression was analyzed by confocal microscopy.

doi:10.1371/journal.pone.0156513.g006
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expression through IRF-3 and AP-1. In turn, JEV infection utilized the proteasome-mediated
pathway to degrade the viperin protein for antagonizing the host innate immunity and this
function depends on N-linked glycosylation [32]. In this study, our results show that mViperin
was up-regulated in response to infection with PRRSV in Marc-145 cells, but the level of IFN-α
expression did not change in the cells after infecting with PRRSV, suggesting mViperin is
induced via an IFN-independent pathway. The induction of mViperin may depend on IRF-1.
The exact signaling pathway should be studied in the future.

Meanwhile, our results demonstrate that the expression of mViperin protein was induced
by type I-IFN-α in a dose- and time-dependent manner, and it could inhibit PRRSV replication
in Marc-145 cells. Overexpression of mViperin inhibited PRRSV replication in a dose-depen-
dent manner, whereas knockdown of endogenous mViperin largely recovers PRRSV replica-
tion inhibited by IFN-α. These results suggest that mViperin is an ISG that plays an important
role in the anti-PRRSV activity of IFN-α.

Viperin is a radical S-adenosylmethionine (SAM) domain-containing 2 (RSAD2) enzyme
that is comprised of 361 amino acids and has a molecular mass of approximately 42 kDa [57,
58]. It is anchored to the ER and lipid bodies via a α-helix to induce ER membrane curvature.
The C-terminal of viperin is conserved across species and is relevant in inhibiting the replica-
tion of DENV and HCV [22, 29, 59, 60]. The center region of viperin is highly homologous
with the MoA motif of SAM enzymes, and is essential in affecting Bunyamwera virus replica-
tion and suppressing the HIV egress from cells [26, 34]. The N-terminal of viperin contains an
amphipathic α-helix that is variable among different species, but leucine residues are not con-
served. Some previous studies have shown that the α-helix domain is not related to antiviral
function against HCV, DENV, WNV and HIV [23, 29, 33]. However, another report pointed
out that the N-terminal of viperin was sufficient to suppress the infection of CHIKV, and this
function is related to the localization of viperin to the ER and lipid droplets [38]. In this study,
we also demonstrated that the C-termini of mViperin has no effect on PRRSV replication by
detecting the anti-PRRSV activity of mutant 3’Δ143. And deletion of the 17, 33 and 50 amino
acids from the N-termini significantly abrogated its anti-PRRSV activity individually, suggest-
ing the 13–16 amino acids of the N-termini play an important role in anti-PRRSV replication.

Viperin inhibits virus replication by different mechanisms. For example, viperin inhibited
the synthesis of HCMV-encoded viral protein pp65, gB and pp28 and is redistributed to exert
its antiviral effect [17]. Moreover, viperin also disturbed the interaction between host protein
hVAP-33 and HCV NS5A through binding to hVAP-33 to impact HCV replication at the
RNA level [23]. Furthermore, eViperin distorted ER and damaged protein transportation in
intracellular regions, reducing the efficiency of exporting from cell membrane to suppress the
egress of EIAV Gag protein and inhibit the expression of EIAV Env and its receptor [28]. Here,
our results showed that mViperin co-localizes with endoplasmic reticulum (ER) marker cal-
nexin. And the mViperin could interact with the PRRSV N protein. In addition, co-transfec-
tion of pVAX-mViperin and PRRSV infectious clones in BHK21 cells showed that mViperin
also could inhibit the replication and translation of the PRRSV genome. This suggests the inter-
action between mViperin and PRRSV N affected the synthesis and functions of the PRRSV
genome and structural proteins to suppress PRRSV replication. Of course, further studies of
the viral-host interactions are needed. Meanwhile, we also noted that deletion of the 33 amino
acids from the N-termini shifted the Viperin distribution from a granular distribution in the
cytoplasmic into a uniform dispersal into the entire intracellular region [61]. The deletion of
the 17 amino acids from the N-termini changed the distribution but not the granular morphol-
ogy. The complete α-helix might be necessary for localization and antiviral effects.

Previous studies have demonstrated that viperin suppressed the expression of membrane-
targeting proteins, the EIAV Env protein and virus receptor protein ELR1, blocks the entry of
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EIAV [28]. Viperin can bind and inhibit farnesyl diphosphate synthase (FPPS), which is essen-
tial for isoprenoid biosynthesis, and results in an effect on the formation of lipid rafts which
play an important role in inhibiting the egress and release of HIV and influenza [25, 26]. It has
been proven that lipid rafts, existing in cell plasma membranes, are associated with the receptor
CD163 that interacts with PRRSV GP3 and GP4 to mediate the internalization and fusion of
PRRSV [62]. Meanwhile, cholesterol is also a component of PRRSV virions to sustain integrity,
and depletion of cholesterol, a key component of lipid raft microdomains, could inhibit
PRRSV infectivity due to virion disruption, loss of capsid protein from virions, and blocking of
membrane fusion. In the meantime, there was no obvious difference in the release of PRRSV
when lipid rafts were disrupted, but the abnormal PRRSV particles were enhanced [63, 64]. It
has been reported that reducing FPPS level affects the membrane fluidity to control the HIV
and influenza virus infection [25, 26]. HIV infection led to viperin protein redistribution from
ER to CD81 compartments [26]. Here, we found that overexpression of mViperin blocked an
early step of PRRSV entry, but did not inhibit assembly and release. In view of the above-men-
tioned functions of lipid raft following PRRSV infection, it is possible that mViperin suppresses
the formation of cells and virus lipid rafts to alter virion components and damage integrity,
inhibiting the membrane fusion to impact the infectivity and entry of PRRSV. The interaction
between mViperin and CD163 or GP2/GP3/GP4, and the exact mechanism of mViperin tar-
geting to N protein to inhibit PRRSV replication or internalization should be studied in the
future.

To summarize, in this study it was first found that IFN-α induced mViperin could inhibit
PRRSV replication by blocking the early steps of PRRSV entry and genome replication and
translation. It could interact with N proteins in distinct cytoplasmic loci. The major antiviral
activity determinant residues were located within the 13–16 amino acids of mViperin, and the
N-termini of mViperin determines the distribution of mViperin protein in the cells. These
findings should be useful for the future development of novel antiviral therapies against
PRRSV infection.

Supporting Information
S1 Fig. Detection of the mVipeirn expression in Marc-145 cells transfected with pVAX-
mVIP.Marc-145 cells were transfected with 1 μg of pVAX-mVIP, and mVipeirn in the cells
was detected by IFA with anti-flag antibodies.
(TIF)
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