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Abstract
Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and
neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and
general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and
gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum
disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of
motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular
networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and
default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks
additionally implicated at 24 months. These findings suggest that changes in network-level brain–behavior relationships
underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of
network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical
and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction.
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Introduction
Gross motor behavior is one of the earliest directly observable
elements of adaptive function (Gibson and Pick 2000). The emer-
gence of walking, for example, signals an infant’s growing
autonomy and expanded opportunities for environmental
exploration, perceptual learning, and social interaction (Campos
et al. 2000; Gibson and Pick 2000). Although detailed behavioral
characterization of gross motor development in infants and tod-
dlers has contributed to clinically useful behavioral measures
(Mullen 1995), studies of the neural correlates of early gross
motor abilities are substantially more limited, particularly given
the methodological challenges of task-based imaging in infants.
The neurobiology underlying motor development can provide
important insights into mechanisms of cognitive development,
as motor learning requires multiple cognitive operations,
including perception and action planning (von Hofsten 2004;
Leisman et al. 2016). Further, brain regions supporting motor
function, such as the cerebellum (Dosenbach et al. 2007) and
dorsolateral prefrontal cortex (Niendam et al. 2012), are also
implicated in cognitive control (Diamond 2000), and early motor
development correlates with later cognitive outcomes, including
academic achievement and executive function (Murray et al.
2006; Bornstein et al. 2013; Ghassabian et al. 2016). Gross motor
dysfunction, in turn, is associated with several neurodevelop-
mental disorders involving deficits in cognition, including
autism spectrum disorder (ASD) (Fournier et al. 2010), attention
deficit/hyperactivity disorder (Kaiser et al. 2014), and language
disorder (Hill 2001). In the case of ASD, gross motor delays, such
as infant head lag (Flanagan et al. 2012), and lower overall gross
motor function (Lloyd et al. 2013; Estes et al. 2015), are among
the earliest risk markers for subsequent diagnosis. Therefore,
elucidating the relationship between key aspects of early gross
motor development and brain function will not only inform
future research on neural systems contributing to typical cogni-
tive development, but may also guide novel interventions tar-
geting atypical development.

In the past decade, tremendous progress has been made in
the application of resting state functional connectivity MRI
(fcMRI) to studies of brain development in infancy (for review,
see Graham et al. 2015; Gao et al. 2016). By quantifying the cor-
related spontaneous fluctuations in the blood oxygen level
dependent (BOLD) signal across the entire brain, fcMRI allows
investigation of the functional architecture of neural systems

(Biswal et al. 1995). Infant fcMRI studies have demonstrated
that functional networks are readily identifiable in infancy
(Fransson et al. 2011; Smyser et al. 2011; Gao et al. 2015a) and
have begun to characterize early maturational profiles of sev-
eral networks, including the sensorimotor network (Gao et al.
2015a). In older children and adults, fc within the motor net-
work, as well as connectivity across networks, has been impli-
cated in motor performance (Barber et al. 2012; Seidler et al.
2015), and interregional and intraregional alterations in fc have
been linked to motor deficits in ASD (Nebel et al. 2014b; Carper
et al. 2015; Khan et al. 2015). However, it is unknown whether
the emergence and advancement of gross motor skills in early
development is correlated with connectivity within and across
networks, and if so, which networks are strongly involved. The
application of network-based analyses to fcMRI thus provides
an important avenue for clarifying functional neural systems
underlying early gross motor behavior, as well as the develop-
mental course of these brain–behavior relationships.

To characterize relationships between functional brain
architecture and the development of walking and general gross
motor ability, we examined data from the Infant Brain Imaging
Study (IBIS), a longitudinal, prospective study of brain and
behavior development in infants at high and low familial risk
for ASD. Because children at high risk for ASD also exhibit more
developmental delays (Messinger et al. 2013), this unique sam-
ple, which included longitudinal and cross-sectional subjects to
maximize experimental power, provided sufficient variation in
motor ability to detect evolving brain–behavior relationships.
Scores for walking and gross motor function were analyzed in
relation to network-level fc based on fcMRI data acquired from
infants and toddlers during natural sleep. We adapted enrich-
ment analysis, a data-driven statistical method from genetic
association studies (Rivals et al. 2007; Backes et al. 2014; Khatri
et al. 2012), which afforded a brain-wide approach to identify
networks with a significantly increased density of connections
strongly related to the studied behaviors. We hypothesized that
(1) this strategy would allow identification of specific brain–
behavior relationships for walking and general gross motor
function, (2) motor network(s) would be engaged in several of
these network-level relationships, and (3) differences in
network-level relationships would be identified between 12 and
24 months, in line with the rapid progression of walking and
gross motor skills during this epoch.
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Materials and Methods
Participants

IBIS is a longitudinal multisite (National Institute of Health-
funded Autism Centers of Excellence Network) imaging study
of infants at increased familial risk for ASD (high-risk infants:
HR), defined as such by virtue of having an older sibling with
a diagnosis of ASD, together with a low-risk comparison
group of infant siblings with no family history of ASD (low-
risk: LR) (see Hazlett et al. 2012; Wolff et al. 2012; Estes et al.
2015 for additional background and information on sample
outcomes). This sample allows investigation of brain–behav-
ior relationships across a broad continuum relevant to both
typical and atypical developmental outcomes. Participants
were enrolled at the following sites: the University of North
Carolina, the University of Washington, Children’s Hospital
of Philadelphia, and Washington University in St. Louis; the
Montreal Neurological Institute serves as the data coordina-
tion center. Analyzed participants (n = 187) had both gross
motor assessments and neuroimaging data at 12 and/or 24
months (Table 1), ages associated with measurable variation
in walking abilities. Exclusion criteria included comorbid
medical or neurological diagnoses influencing growth, devel-
opment, or cognition; known genetic conditions; gestational
age < 36 weeks or birth weight < 2000 g; maternal substance
abuse during pregnancy; contraindication for MRI; and a first
degree relative with psychosis, schizophrenia, or bipolar dis-
order (Wolff et al. 2012). A clinical best estimate procedure
(Estes et al. 2015) determined whether criteria for ASD
(autistic disorder or pervasive developmental disorder NOS)
were met using the DSM-IV-TR checklist at 24 months
(American Psychiatric Association 2000). Children in the
low-risk group who obtained ASD diagnoses were removed
from analysis, as a goal of IBIS is to examine ASD-related
factors in the context of high familial risk. Informed consent
approved by each site’s Human Subjects Review Board was
obtained for all families.

Mullen Scales of Early Learning

The Mullen (Mullen 1995) is a direct behavioral assessment of
cognitive development based on demonstration of develop-
mental milestones. Raw scores used in analyses involved 2 sets
of items: (1) a “walking score,” comprised of items describing
walking-related behaviors (gross motor items 14, 16, 20, 24, 25,
28, 29, 30) and (2) the Mullen gross motor subscale, a standard-
ized index of general gross motor development including walk-
ing items as well as items pertaining to postural control,
sitting, and running. The gross motor scale is validated up to 33
months of age in typically developing populations and has
shown convergent validity with other developmental motor
scales (Shank 2011).

Imaging Acquisition

Infants were scanned during natural sleep on identical, cross-
site calibrated 3-T Siemens TIM Trio scanners (Siemens Medical
Solutions, Malvern, PA) equipped with standard 12-channel
head coils. Neuroimaging sequences included T1-weighted and
T2-weighted anatomical imaging and fcMRI. This study used
the 3-D sagittal T2-weighted sequence for coregistration with
the BOLD scan (TE = 497ms, TR = 3200ms, matrix 256 × 256 ×
160, 1mm3 voxels). fcMRI functional images were collected as a
gradient-echo echo planar image (EPI), sensitive to changes in
T2* BOLD signal (time echo [TE] = 27ms, time repetition [TR] =
2500ms, voxel size 4 × 4 × 4mm3, flip angle 90°, field of view
256mm, matrix 64 × 64, bandwidth 1906Hz). Cross-site fcMRI
quality control (QC) was performed (Pruett et al. 2015). All ana-
lyzed infants provided at least 2 fMRI runs, each run comprising
130 temporally contiguous frames (6.25min).

fMRI Preprocessing

Data were preprocessed to reduce artifacts using previously
described procedures (Smyser et al. 2010), including sinc inter-
polation to compensate for slice-dependent time shifts,

Table 1. Participant characteristics

12-Month age group (n = 130) 24-Month age group (n = 99)

Age in months 12.4 (0.4) 24.5 (0.5)
[11.7–14.5] [23.5–25.9]

Sex [n (% males)] 86 (66.2%) 56 (56.6%)
Outcome group (%)
Low-risk negative (no ASD) 37 (30.8) 23 (23.5)
High-risk negative (no ASD) 72 (60.0) 59 (60.2)
High-risk positive (has ASD) 11 (9.2) 16 (16.3)

Site
CHOP 18 5
UW 23 18
WUSTL 71 53
UNC 18 23

Mullen early learning composite 99.5 (13.7) 99.0 (20.5)
[64–132] [49–137]

Mullen raw gross motor score 16.3 (2.5) 26.1 (2.5)
[9–22] [18–31]

Mullen walking item score 1.4 (0.9) 4.7 (1.1)
[0–3] [2–7]

Characteristics of 12 and 24-month age groups are shown for subjects with motor and neuroimaging data. Forty-two subjects had data at both ages, 88 subjects had

data at 12 months only, and 57 subjects had data at 24 months only. Standard deviations are in parentheses except where indicated. Ranges are in brackets. Negative

and positive refer to absence or presence of an ASD diagnosis. CHOP refers to Children’s Hospital of Pennsylvania. UW refers to University of Washington. WUSTL

refers to Washington University in St. Louis. UNC refers to University of North Carolina.
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correction of systematic odd–even slice intensity differences
from interleaved acquisition, spatial realignment to compen-
sate for head motion, and within-run intensity normalization
to a whole brain mode value of 1000 (Ojemann et al. 1997).

The fMRI data for each participant were spatially registered
to an atlas using a sequence of affine transformations. To
account for morphological changes across development (Fonov
et al. 2011), this affine transformation was calculated by
combining a transform from the subject-specific space to age-
specific atlas-representative targets (constructed from IBIS sub-
jects) and the transform from the age-specific targets to the
final atlas target used at the Washington University School of
Medicine’s Neuroimaging Laboratory (Smyser et al. 2010). After
fMRI to T2-weighted atlas transform composition, the volumet-
ric time series were resampled in atlas space (3mm × 3mm
voxels). Finally, to exclude any additional errors, each atlas-
transformed functional dataset was visually inspected in sagit-
tal, transverse, and coronal views.

Definition of Regions of “Noninterest” in Atlas Space

White matter and CSF regions were manually defined in atlas-
transformed T1-weighted images, which represented 15 sub-
jects in each age group (Pruett et al. 2015). To reduce the risk of
intruding on gray matter, regions were eroded using a 2.5mm
Gaussian blurring kernel. The intersection over each age group
was computed to create white matter and CSF regions.

Frame Censoring

A rigorous motion-correction algorithm based on the frame-to-
frame displacement measure, which records head movement
from one volume to the next, was applied to eliminate BOLD
frames with frame displacement (FD) > 0.2mm. The FD mea-
sure was calculated as the sum of the absolute values of the 6
different realignment estimates (X ,Y, Z, pitch, yaw, roll) at
every time point (Power et al. 2014). Temporally isolated (fewer
than 6 contiguous) FD < 0.2mm frames were also censored and
runs with <30 uncensored frames were discarded. To control
for potential biases attributable to the amount of data per
cohort, 150 noncensored (retained) fMRI frames were used, pri-
oritizing runs with the most retained frames, for correlation
analysis in each subject. In total, 82% of participants with
usable scans passed QC for scrubbing at 12 months and 81%
passed QC for scrubbing at 24 months. Rates of scans passing
QC did not differ by high and low-risk outcome groups (12
months: χ2(2) = 1.89, P = 0.39; 24 months: χ2(2) = 4.59, P = 0.10).

fcMRI Preprocessing

Data were demeaned and detrended at every voxel within runs,
minus censored frames (Power et al. 2014). To mitigate artifacts
related to motion, which confound interpretations of fc, particularly
in studies of development where age is a factor of interest (Power
et al. 2012; Satterthwaite et al. 2013; Yan et al. 2013; Tyszka et al.
2014), nuisance waveforms were regressed voxelwise. These
included time series derived from three translation (X, Y, Z) and
three rotation (pitch, yaw, roll) estimates derived by retrospec-
tive head motion correction, as well as Volterra expansion deri-
vatives (24 total motion regressors) (Friston et al. 1996) and
time series derived from the whole brain, white matter, and
cerebrospinal fluid and their first derivatives. Data in censored
frames were replaced by interpolated values computed by least-
squares spectral analysis (Mathias et al. 2004; Power et al. 2014).

Interpolated data were only included for bandpass filtering and
did not factor into time-series correlations. The data were tem-
porally filtered to retain frequencies in the 0.009Hz < f < 0.08Hz
band and then spatially smoothed using a 6mm full-width at
half maximum (FWHM) isotropic Gaussian kernel.

Definition of ROIs and Correlation Computation

Regions of interest (ROIs) were selected based on 280 ROIs
pooled from (1) meta-analyses of task data and cortical func-
tional areal parcellations obtained in healthy adults (Cohen
et al. 2008; Power et al. 2011) and (2) a meta-analysis of autism
studies (Philip et al. 2012). These well-validated, functionally
defined ROIs, which reflect the underlying functional organiza-
tion of the brain (Power et al., 2011), were identified in indivi-
duals with and without ASD, consistent with the current
sample, and were selected to enhance the neurobiological
validity and generalizability of findings relative to well-vetted
task-based data from the literature. Fifty ROIs were removed
for lying partially outside the whole brain mask or for showing
inconsistent gray matter coverage across age. The final 230
usable ROIs (Fig. 1) included 218 from Power et al. (2011) and 12
from Phillip et al. (2012), which have been applied in three pre-
viously published analyses of IBIS data (Pruett et al. 2015;
Eggebrecht et al. 2017; Emerson et al., 2017). ROI time series
were calculated as the average of the time series of each voxel
contained within the 10mm-diameter sphere at a given ROI
center. Fc values were calculated as the pairwise zero-lag
Pearson correlations for each of the 26 335 ROI pairs and then
Fisher-z transformed to improve normality.

Derivation of Putative Functional Networks

To create an infant/toddler network model (Fig. 1a), the com-
plete set of ROI-pair fc correlations (Fisher-z values) for 48 IBIS
subjects with fcMRI data at both 12- and 24-month visits
(including subjects without motor scores) were averaged across
subjects, producing a 230 × 230 connection matrix (nodes =
ROIs, edges=correlation coefficients). The averaged set of corre-
lations was thresholded and binarized at multiple thresholds to
generate connection matrices with sparseness ranging from 1%
to 10% of all possible surviving connections at steps of 0.1%,
yielding 91 total edge density thresholds. Connections between
ROI pairs separated by <20mm were removed to minimize the
effects of blurring in the fMRI data. The Infomap community
detection algorithm (Rosvall and Bergstrom 2008), which assigns
ROIs to communities of putative networks based on maximiza-
tion of within-module random walks in the connection matrix,
was then applied to connection matrices at each threshold.
Communities with ≤5 ROIs were labeled “Unassigned” and
removed. Solutions for each threshold were combined using an
automated “consensus” procedure to provide a single model of
the community structure by maximizing the normalized mutual
information of groups of neighboring solutions and then maxi-
mizing modularity (Eggebrecht et al. 2017). This cross-age,
infant–toddler network solution (Fig. 1), which included infants
at high and low risk of ASD, provided a network model to facili-
tate enrichment analyses for each age group as well as compari-
son of brain–behavior correlations across 12 and 24 months (see
below). As adult brain networks have been more extensively
characterized than infant networks, an additional network
structure applying the same 230 ROIs was generated from a pre-
viously published fcMRI dataset of typical adults (Power et al.
2011) to provide a secondary comparison (Fig. 1b).
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Statistical Analysis

Enrichment Analysis
Analyses were conducted in Matlab 15. We closely followed the
procedure recently published by Eggebrecht et al. (2017).
Enrichment analysis is an established data-driven statistical
method from genome-wide association studies (Rivals et al.
2007; Backes et al. 2014; Khatri et al. 2012). It detects differential
involvement of factors related to an outcome of interest, while
constraining the burden of multiple comparisons, a frequent
challenge for brain-wide neuroimaging analyses. We chose a
brain-wide approach because of the limited infant literature on
brain–behavior relationships for motor function. We applied
enrichment analysis to identify networks with a significantly
increased density of connections (i.e., between pairs of ROIs
either within or across networks), whose fc strongly correlated
with motor behavior. Results are reported in terms of signifi-
cantly enriched network blocks, which consist of either a single
network or pair of brain networks, thereby describing intranet-
work and internetwork fc-motor relationships.

Separate enrichment analyses were performed for walking,
the primary analysis, which involved a specific behavior, and
for gross motor behavior, the secondary analysis, which pro-
vided a greater dynamic range of scores representing multiple
aspects of gross motor function. Spearman correlations were
used for fc-motor correlations given the non-normal distribu-
tion of motor scores. Brain–behavior correlation values for ROI
pairs were thresholded and binarized at an uncorrected
P-value ≤ 0.05. Two complementary test statistics, a 1-degree
of freedom χ2 test and a hypergeometric statistic, were used
to test for enrichment of network blocks (see Eggebrecht et al.
2017 for further details). Network blocks considered enriched
were required to be significant on both tests, as a conservative
threshold. The McNemar χ2 statistic was used to test for

significant differences in network enrichment between 12 and
24-month age groups.

As a second stage of analysis, permutation testing was con-
ducted to determine empirical significance level for results from
the χ2, hypergeometric, and McNemar tests (Eggebrecht et al.
2017). This empirical significance level represents the 5% false
positive rate for enrichment. In permutation testing, the fcMRI-
motor data pairing, which preserved fc correlations and missing-
data patterns, was randomized for each of 100 000 iterations. At
each iteration, permutations of complete fcMRI matrices were
conducted separately on subjects with data at 12-month only,
24-month only, or repeated measures at both time points.
Longitudinal subjects were then recombined with cross-sectional
subjects to produce 2 separate brain-wide null distributions—
one per time point. The permutation-based false-positive-rate
did not exhibit any correlation with the number of ROIs within a
network pair (Walking 12 months: r = 0.0050, P = 0.96; Walking
24 months: r = −0.12, P = 0.25; Gross Motor 12 months: r = −0.031,
P = 0.77, Gross Motor 24 months: r = −0.15, P = 0.17), confirming
that the size of the network pair does not bias results.

To qualify as significant in the enrichment analysis, an
enriched network block had to show either enrichment at both
time points, or enrichment at one time point plus a significant
difference from a null finding of no enrichment at the other
time point. Network blocks enriched at one time point only and
not significantly different from the other time point represent
discovery results for future hypothesis generation.

Neurosynth Review

The online Neurosynth platform (www.neurosynth.org)
(Yarkoni et al. 2011) contains a database of activation coordi-
nates from over 11 406 published studies (as of 16 September

Figure 1. Infomap-derived network models based on infant/toddler and adult data. (a) Putative infant–toddler networks were derived from participants with fcMRI data at 12

and 24 months (n = 48). The 230 functionally defined ROIs comprising these networks are colored by network assignment. Naming of networks was informed by previously

published adult networks. (b) A mean fcMRI adjacency matrix for 12-month data displays the 230 ROIs sorted by network. (c) An adaptation of previously published adult net-

works (Power et al. 2011) is based on the same 230 ROIs. (d) A mean 12-month fcMRI adjacency matrix using the adult networks is shown.
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2016). The database provides a metric for the likelihood of the
association between functional activation at an ROI’s coordi-
nates and prespecified search terms. Publications reporting
activation at an ROI can also be searched for the high-
frequency use of specific behavioral terms of interest.

Searches for frequently connected ROIs, specified as the top
25% of ROIs contributing to enriched network blocks, were
conducted in Neurosynth to systematically explore whether
these ROIs were implicated in studies of motor function. MNI
coordinates for these highly connected ROIs were entered into
Neurosynth to determine the likelihood of association with
the search term “motor,” which also referenced words or
phrases containing “motor,” for example, “sensorimotor” and
“motor performance.” The standard search setting of 6mm
was used to identify functional activations for each ROI. For
each motor-related term, Neurosynth provided a posterior
probability value indicating the likelihood of that term being
frequently used in a manuscript reporting activation at a given
ROI (Yarkoni et al. 2011). Posterior probabilities for general
motor terms (e.g., “sensorimotor”) and terms indicating a motor
behavior (e.g., “motor response”) were ranked separately. For
these 2 categories, terms with the top 3 posterior probabilities
>0.5 were reported for each ROI (Table S2). Next, publications
containing a functional activation for a given ROI were searched
for whether they included the following motor-related terms:
motor, walk, gait, or biological motion. Each identified study
was reviewed to confirm the relevance of the functional activa-
tion at that ROI for motor behavior.

Results
Participant Characteristics and Motor Score
Distributions

Participant characteristics for this sample of LR and HR infants
(n = 130 at 12 months, n = 99 at 24 months, with n = 42 having
data at both time points) are shown in Table 1 (see supplement
for analyses comparing characteristics at each time point). The
distribution of walking item scores at 12 months showed low
values, consistent with emergence of this skill (Fig. 2), while
the distribution at 24 months showed higher scores (t[227] =
−25.01, P < 0.0001), consistent with developmental progress.
Raw gross motor scores, which index several gross motor beha-
viors and include walking items, demonstrated a continuous,
unimodal distribution at both time points (Fig. 2) and higher
scores at 24 months (t[227] = −29.39, P < 0.0001).

Enrichment Analysis: Walking Scores at 12 and 24
Months

At 12 months, 4 network blocks were enriched (Fig. 3, Table S1
for enrichment statistics): tDMN–SMN, temporal default mode–
somatomotor 2 (tDMN–SMN2), tDMN (tDMN–tDMN), and SMN 2
(SMN2–SMN2). At 24 months, 4 nonoverlapping network blocks
were enriched, which implicated a greater variety of networks
than at 12 months: dorsal attention–posterior cingulo-opercular
(DAN–pCO), DAN–cingulo-opercular (DAN–CO), visual-salience
(Vis-Sal), and posterior cingulate default mode–posterior fronto-
parietal (pcDMN–pFPC).

The nonoverlapping findings at 12 and 24 months suggest
that network profiles of enrichment differ across age. Significant
differences in levels of enrichment were observed at 12 versus 24
months (Fig. 3e) and included network blocks also enriched at
either 12 or 24 months (Fig. 3f). Three of the 4 network blocks

identified at 12 months, tDMN–tDMN, tDMN–SMN, and tDMN–

SMN2, also showed differences in enrichment compared with 24
months and therefore constituted significant findings. Only one
network block found at 24 months, DAN–pCO, differed signifi-
cantly from 12 months and qualified as significantly enriched.
Network blocks enriched at a single age without a significant dif-
ference across time points (e.g., SMN2–SMN2), are presented in
figures as discovery results.

Enrichment analyses using Infomap-derived communities
from previously published adult data (Fig. 1b) identified 2 net-
work pairs at 12 months which also differed in levels of enrich-
ment from 12 to 24 months (and were therefore significant
findings): motor–DMN and motor–ventral attention (Fig. S1;
enrichment statistics in Table S1). At 24 months, a single
enriched network pair, salience–frontoparietal, similarly quali-
fied as a significant finding.

fc-Walking Relationships Within and Across Networks

We next examined whether correlations between fc and walk-
ing score were positive or negative in enriched network blocks.
Among significant network blocks at 12 months, tDMN–tDMN
showed uniformly negative brain behavior relationships (blue
lines), whereas tDMN–SMN, and tDMN–SMN2 showed predomi-
nantly positive brain–behavior relationships (red lines) (Fig. 4).
Hence, within the tDMN, lower fc values were associated with
higher walking scores, whereas for tDMN–SMN and tDMN–

SMN2, greater fc values were associated with higher walking
scores. At 24 months, DAN–pCO, the one significant network
block, exhibited ROI pairs with largely negative fc-walking rela-
tionships (Fig. 4).

Figure 2. Walking and gross motor scores are dimensionally distributed at 12

and 24 months. Distributions of raw scores are shown for subjects with brain

and behavioral data at 12 (n = 130) and 24 months (n = 99). (a) 12-month walking

scores display a range of low values, consistent with emergence of walking at

this age. (b) Greater walking scores at 24 months confirm developmental prog-

ress. (c) 12-month gross motor scores represent behaviors in addition to walk-

ing and show a broader continuous distribution. (d) 24-month gross motor

scores are greater than 12-month scores.
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We additionally evaluated whether ROI pairs contributing to
enriched network blocks exhibited predominantly positive or
negative fc values, reflecting a history of coactivation or anti-
correlated activity, respectively. Both positive and negative fc
values were observed at ROI pairs contributing to enriched net-
works (Supplemental results, Fig. S2).

Enrichment Analysis: Gross Motor Scores at 12 and 24
Months

As a secondary analysis, fc-behavior relationships were exam-
ined for raw scores on the Mullen gross motor subscale, permit-
ting comparison of brain–behavior findings for walking to a

more comprehensive representation of gross motor ability.
Because walking items contributed to gross motor scores, we
anticipated some similarity in enriched networks but not com-
plete overlap.

At 12 months, 5 network blocks were enriched and consti-
tuted significant findings: tDMN (tDMN–DMN), tDMN–SMN, ante-
rior default mode–SMN, SMN–SMN2, and SMN2–SMN2 (Fig. 5).
Three of these 5 blocks, tDMN–tDMN, tDMN–SMN2, and SMN2-
SMN2, were also identified in analyses for walking. None of these
blocks were enriched at 24 months, and all showed significantly
different levels of enrichment between 12 and 24 months.

At 24 months, 5 network blocks qualified as significantly
enriched: DAN–pCO, which was also significant for walking at

Figure 3. Enrichment analyses show specific brain–behavior relationships for walking scores at 12 and 24 months. (a) A color-coded key of 13 putative infant/toddler

networks is shown. (b) Matrices describe relationships between functional connectivity (fc) and walking score. Data at 12 and 24 months are shown in the top and bot-

tom rows, respectively (b–d). The 230 ROIs comprising these networks are sorted by assigned network along the X and Y axes. Hot colors indicate strong positive rela-

tionships of fc to walking score; whereas cool colors indicate strong negative fc-walking relationships. (c) The fc-walking matrices for 12 and 24 months are

thresholded to show ROI pairs with fc-walking correlations significant at an uncorrected threshold of P ≤ 0.05. (d) Matrices are colored by P-values for enrichment.

Enriched blocks are labeled with an asterisk. For simplicity, results for χ2-square testing, which are comparable to the hypergeometric test, are shown in all figures.

(e) This matrix is colored by P-values for the McNemar test, which evaluated differences in the level of enrichment at 12 versus 24 months. Asterisks indicate signifi-

cant differences. (f) Blocks are colored based on whether they are enriched at a given time point and whether their level of enrichment also differs between time

points. Here, significant network blocks (dark blue and red squares) are enriched at either 12 or 24 months and significantly different between 12 and 24 months.

Other findings are discovery results.

Figure 4. The sign of fc-walking relationships is generally consistent within enriched network blocks. Locations and signs of brain–behavior relationships are illus-

trated for ROI pairs contributing to enrichment. Spheres represent ROIs. Red and blue sticks represent positive or negative brain–behavior relationships, respectively,

between functional connectivity (fc) for an ROI pair and walking scores. (a) At 12 months, all enriched network blocks show primarily positive or negative fc-walking

relationships. (b) Similar uniformity occurs at 24 months, with the exception of DAN–CO. Hatched boxes enclose significant versus discovery results.
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24 months, DAN–DAN, pcDMN–SMN, pcDMN–pFPC, and poste-
rior frontoparietal–subcortical (pFPC–SubCtx) (Fig. 5). All blocks
showed differences in enrichment between 12 and 24 months.
Similar to findings for walking, no network blocks overlapped
at 12 and 24 months, although the SMN was part of enriched
network blocks at 12 and 24 months. Increased involvement of
attentional and task control networks was observed at 24
months, as seen in fc-walking analyses. In contrast to infant–
toddler networks, enrichment analyses using adult networks
showed no significant findings (Fig. S4).

Fc-Gross Motor Relationships Within and Across
Networks

Similar to walking results, positive and negative fc-gross
motor relationships were found at 12 and 24 months, and the
sign of fc-gross motor relationships for ROI pairs contributing
to enrichment was generally consistent within network
blocks (Fig. 6). The predominant sign of these relationships
was the same for all significant network blocks from both
walking and gross motor analyses (i.e., tDMN–tDMN, tDMN–

SMN at 12 months, and DAN–pCO at 24 months). In blocks
involving the SMN, both positive fc-gross motor relationships
(i.e., aDMN–SMN, tDMN–SMN, SMN2–SMN2, and pcDMN–SMN)
and a negative fc-gross motor relationship (SMN–SMN2) were
observed. At 24 months, a positive fc-gross motor relationship
was noted for pFPC–SubCtx, which included SubCtx ROIs
located in the basal ganglia and cerebellum, regions associ-
ated with motor function. Information on the sign of fc for
ROI pairs contributing to enrichment is available in supple-
mental material (Figs S5 and S6).

ROI-Level Associations With Motor Behavior

Because enrichment analyses implicated motor networks as
well as networks less directly associated with motor behavior,
we investigated whether ROIs contributing to enriched network
blocks for walking, the primary behavior analyzed, were associ-
ated with motor function according to prior literature. To sys-
tematize our literature search, we selected those ROIs
demonstrating a high frequency of connections in significantly
enriched network blocks (Materials and Methods) and reviewed
these ROIs in Neurosynth (Yarkoni et al. 2011), a database con-
taining information on whether functional activations of these
ROIs is associated with motor-related behaviors. Our search
confirmed associations with several motor-related behaviors,
including motor execution (Fink et al. 1997; Zapparoli et al.
2013; Gandolla et al. 2014), action observation (Iseki et al. 2008;
Wagner et al. 2008; Villiger et al. 2013), visuomotor integration
(Iacoboni and Zaidel 2004; Martuzzi et al. 2006), biological
motion detection (Vaina et al. 2001; Bidet-Caulet et al. 2005),
motor learning (Sacco et al. 2009; Lungu et al. 2014), motor inhi-
bition (Nakata et al. 2008, Cai et al. 2014), and motor imagery
(Cremers et al. 2012; van der Meulen et al. 2014; Taube et al.
2015) (Table S2). Further, ROIs from several networks were
associated with behaviors relevant to walking, including motor
execution involving the leg or ankle, motor imagery related to
gait, and biological motion detection of walking.

Discussion
Here we applied a data-driven approach in a large sample to
provide an initial description of brain–behavior relationships
for network-level fc and walking and gross motor function at

Figure 5. Enrichment analyses show specific brain–behavior relationships for gross motor scores at 12 and 24 months. (a) A color-coded key of 13 putative infant/tod-

dler networks is shown. (b) Matrices describe relationships between functional connectivity (fc) and gross motor score. Data at 12 and 24 months are shown in the

top and bottom rows, respectively (b–d). The 230 ROIs comprising the networks are sorted by assigned network along the X and Y axes. Hot colors indicate strong pos-

itive relationships of fc to gross motor score; whereas cool colors indicate strong negative fc-gross motor relationships. (c) The fc-gross motor matrices for 12 and 24

months are thresholded to show ROI pairs with fc-gross motor correlations significant at an uncorrected threshold of P ≤ 0.05. (d) Matrices are colored by P-values for

enrichment. Enriched blocks are labeled with an asterisk. (e) This matrix is colored by P-values for the McNemar test, which evaluated differences in the level of

enrichment at 12 versus 24 months. Asterisks indicate significant differences. (f) Blocks are colored based on whether they are enriched at a given time point and

whether their level of enrichment also differs between time points. Here, significant network blocks (dark blue and red squares) are enriched at either 12 or 24 months

and significantly different between 12 and 24 months.
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ages 12 and 24 months, a period of rapid development. Our
findings indicate that (1) subsets of infant/toddler networks
show strong relationships of fc to walking and gross motor
scores, (2) the profile of these networks differs at 12 and 24
months, (3) these network profiles involve both positive and
negative brain–behavior relationships, and (4) highly connected
ROIs from networks associated with walking have been impli-
cated in the execution and regulation of motor activities in the
adult literature. Network profiles were similar but not identical
for walking and gross motor function, suggesting the enrich-
ment analysis detected differences related to unique variance
from these behavioral measures. Recently published work in an
overlapping sample from IBIS also supports the specificity of
our findings, as a distinct profile of enriched networks was
related to initiation of joint attention, a pivotal feature of social
development (Eggebrecht et al. 2017).

Age-related differences in enriched networks suggest that
network substrates of these behaviors are dynamic in early life,
while the observed positive and negative brain–behavior rela-
tionships additionally imply that increases and decreases in
network-level connectivity may underlie the characteristic
developmental progression of these behaviors. Interestingly,
although network-level brain–behavior relationships differed at
ages 12 and 24 months, highly connected ROIs in enriched net-
works were associated with motor function in adults. Thus,
brain–behavior relationships at distinct levels of neural archi-
tecture, in this case networks and ROIs, may provide a mecha-
nism for both change and continuity in neural substrates of
behavior during development.

Results of Enrichment Analysis Demonstrate Face
Validity

Because the somatomotor networks derived for this study span
known areas of somatosensory and motor cortex (S1, M1, and
other regions in the precentral and postcentral-gyri—Fig. 1), we
could evaluate the face validity of findings from enrichment
analysis, an approach recently adapted for neuroimaging data
(Eggebrecht et al. 2017). Consistent with our hypothesis, motor
network involvement was observed for walking and gross motor
scores at 12 months and gross motor scores at 24 months.

Further, the Neurosynth review demonstrated that highly con-
nected ROIs in enriched network blocks from walking analyses
have been implicated in motor function. These results thus sup-
port the utility of enrichment analysis both for the identification
of network-level brain–behavior relationships, and as a data
reduction approach to identify ROI-level brain–behavior relation-
ships, which would not have otherwise survived corrections for
multiple comparisons.

Enrichment analyses using adult networks for walking scores
confirmed motor network involvement while demonstrating a
gross degree of somatotopic specificity, since the “motor mouth”
network, which lacks lower limb ROIs, was not enriched. Use of
adult networks in secondary analyses of gross motor scores,
however, failed to detect any significant brain–behavior relation-
ships. Given the strong face validity of findings with the infant/
toddler networks, this discrepancy highlights the importance of
using developmentally specific networks to enhance the sensi-
tivity of the enrichment analysis.

Infant/Toddler Findings Parallel and Extend Existing
Motor Literature

Work in both human and nonhuman primates has shown that
brain bases of motor behavior include primary motor areas,
such as primary motor cortex, and more broadly distributed
nonprimary motor areas, including somatosensory cortex, sup-
plementary motor areas, premotor cortex, dorsal cingulate
regions, and parietal regions, as well as the cerebellum (Fink
et al. 1997; Rizzolatti and Luppino 2001; Hanakawa et al. 2003).
These regions contribute directly to the execution of motor
activities and to aspects of perception and cognition important
for motor function. Walking and gross motor findings were
both consistent with the prevailing literature, in that they
revealed involvement of networks encompassing primary and
nonprimary motor areas. Examination of highly connected
ROIs in significantly enriched networks for walking confirmed
an association with motor execution, including gait and foot
movement, as well as motor inhibition and motor learning. The
striking convergence of motor associations in adults for ROIs
identified in our infant/toddler analyses implies continuity at

Figure 6. The sign of fc-gross motor relationships is generally consistent in enriched network blocks. Locations and signs of brain–behavior relationships are illus-

trated for ROI pairs contributing to enrichment. Spheres represent ROIs. Red and blue sticks represent positive or negative brain–behavior relationships, respectively,

between functional connectivity (fc) for an ROI pair and gross motor scores. At 12 months (a) and 24 months (b), all network blocks show primarily positive or negative

relationships between fc and gross motor scores. Hatched boxes enclose significant versus discovery results.
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the level of individual ROIs for fc-motor relationships originat-
ing early in development.

The motor network relationships involving the DMN, observed
in both walking and gross motor analyses, were unexpected. At
12 months, intranetwork fc within the tDMN was negatively asso-
ciated with walking and gross motor function, whereas internet-
work fc between the tDMN and motor networks was positively
associated with walking and gross motor function. Thus, the
tDMN demonstrated a pattern of inverse intranetwork and inter-
network fc-motor relationships, whereby increases in fc within
the tDMN were associated with less advanced motor function,
while increases in fc between the tDMN and motor networks
were associated with more advanced motor function. These
inverse relationships operated at the level of specific tDMN ROIs
which contributed to both intranetwork enrichment in the DMN
and cross-network enrichment of tDMN and SMN and SMN2 (see
Supplemental Results).

Associations of the DMN with motor function are infrequent
in the literature, in contrast to the DMN’s postulated role in
self-referential processing (Raichle 2015). Interestingly, ecologi-
cal theories of perceptual development have proposed an inter-
relationship between early gross motor development and
self-perception, by positing that gross motor skills, including
walking, enhance children’s ability to obtain information from
the environment and to perceive themselves in the process
(Gibson and Pick 2000). Our finding of frequent associations for
highly connected tDMN ROIs and motor imagery further sup-
port an intersection of motor abilities and self-perception, as
motor imagery requires imagining oneself performing motor
actions. Thus, the strong findings for the DMN may reflect a
developmental link between acquisition of early gross motor
skills and aspects of self-referential processing.

Networks Linked to Higher-order Cognition Play a Role
in Later Gross Motor Development

SMN and tDMN were strongly implicated in walking and gross
motor function at 12 months, but not at 24 months. Rather, net-
works associated with higher-order cognition, namely DAN and
pCO, a task control network, exhibited cross-network connectiv-
ity related to both walking and gross motor function, with fc of
another task control network, the pFPC network, being related
specifically to gross motor function. This qualitative difference
corresponds to dramatic developmental advances encompass-
ing the emergence, refinement, and elaboration of walking and
gross motor skills. Cognitive processes mediated by the DAN
and task control networks, including orientation towards exter-
nal stimuli (Corbetta and Shulman 2002) and regulation of goal-
directed behavior (Dosenbach et al. 2007), respectively, may
therefore be important for the progression of walking and gross
motor abilities.

The cross-age shift to networks linked to higher-order cogni-
tive processes also parallels other investigators’ findings about
developmental courses of the networks, themselves. Prior work
in infants has shown that motor networks mature initially, fol-
lowed by networks mediating higher-order cognitive functions in
adults (Gao et al. 2015b). This maturational difference addition-
ally corresponds to differences in network-level properties in
adults. The DMN and motor network, both enriched at 12
months, have previously been described in adults as “proces-
sing” networks, which are locally well-integrated and relatively
isolated in relation to other functional systems (Power et al.
2011). In contrast, the FPC network, enriched in the 24-month
gross motor results, displayed less local integration and greater

participation with other functional systems in adults (Power
et al. 2011). Earlier acquisition of gross motor skills is thus associ-
ated with fc of networks which are ultimately more self-
integrated, whereas elaboration of these skills involves networks
whose architecture ultimately favors cross-network integration,
a characteristic thought to promote the accommodation of a
wider range of tasks.

Lastly, differences in the sign of fc-gross motor relationships
for the tDMN and DAN beg consideration of previously
described differences in the roles of these networks. At 12
months, the tDMN displayed a negative intranetwork brain–
behavior relationship, whereas at 24 months, the intranetwork
brain–behavior relationship for DAN was positive. In adults, an
anti-correlated relationship for the DMN and DAN has been
reported during specific task-based activities, with DMN
belonging to the “task negative” system (Raichle et al. 2001;
Lin et al. 2011) and DAN being associated with the “task posi-
tive” system (Fox et al. 2005; Power et al. 2011). Anti-correlated
resting state fc has also been demonstrated for these networks
(Corbetta and Shulman 2002), and recent evidence supports the
emergence of these resting state anticorrelations across age in
infants (Gao et al. 2013). Our findings raise the question of
whether inverse functional relationships for the DMN and
DAN, which occur during task-related activation and at rest,
may also support early gross motor development.

fc-Motor Relationships Promote Insight Into ASD

Gross motor delays in infancy have been associated with later
ASD diagnosis (Lloyd et al. 2013; Estes et al. 2015), as well as defi-
cits in early social communication (LeBarton and Iverson 2016),
implying that neural systems supporting gross motor develop-
ment could contribute to social impairment in ASD, which gener-
ally manifests in toddlerhood. Consistent with this notion,
several networks identified in the enrichment analyses, includ-
ing the SMN, DMN, and DAN, have shown altered connectivity in
ASD (Mostofsky et al. 2009; Fitzgerald et al. 2015; Jann et al. 2015;
Abbott et al. 2016), and connectivity of the DMN (Yerys et al.
2015) and motor network (Nebel et al. 2014a, 2016) have also
been correlated with core social symptoms. The basal ganglia, a
known regulator of motor execution, was identified via the sub-
cortical network in fc-gross motor analyses at 24 months and
has been implicated in altered social reward processing in ASD
(Scott-Van Zeeland et al. 2010). Highly connected ROIs in our
study were also related, per the literature, to cognitive processes
disrupted in ASD, including visuomotor learning, a motor deficit
specific to ASD (Nebel et al. 2016), as well as biological motion
detection, action observation, and imitation, which have been
hypothesized to promote social communication. The identifica-
tion of these associations by age 12 months suggests that neural
networks underlying gross motor development may contribute
to the emergence of ASD. Infant brain-behavioral studies of
motor development could thus illuminate neural markers of
ASD risk and inform future motor-based, early interventions tar-
geting experience-dependent development of vulnerable neural
networks in ASD.

Limitations

Enrichment analysis identified networks most strongly related
to walking and gross motor behavior, and complementary
methods could reveal additional fc-motor relationships not
detected with this method. Network solutions were based on
functionally defined ROIs from older subjects rather than
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infants (as were findings from Neurosynth) due to limited task-
based fMRI data in infants. A compelling future direction
involves extending enrichment analyses to developmentally
specific ROIs using infant and toddler functional areal parcella-
tions, once such techniques have been realized.

Our fMRI processing included global signal regression, an
established approach to reliably remove motion-related artifacts
from fMRI data (Yan et al. 2013; Power et al. 2014). Recent work
involving rigorous head-to-head comparisons in 14 models with
and without GSR (Ciric et al. 2017) has demonstrated that GSR in
combination with volume censoring (a technique also used in
this study) is superior for removing motion-related artifact and
that other denoising procedures are relatively ineffective at
removing motion-related artifact. However, one limitation of GSR
is that current processing techniques cannot also rule out the
concomitant removal of genuine neural signal. Because motion-
related artifacts present a major confound in fc analyses, particu-
larly when age is a variable of interest (Power et al. 2012;
Satterthwaite et al. 2013; Yan et al. 2013; Tyszka et al. 2014), we
elected to conservatively account for motion-related artifacts to
minimize the risk of spurious interpretations of fc-behavior rela-
tionships. Future development of more sophisticated processing
methods capable of distinguishing artifacts from genuine global
neural signal, as well as better tools to deal with motion during
data collection, will be important steps in advancing the under-
standing of functional brain–behavior relationships.

By including participants with longitudinal and cross-sectional
data, these analyses maximized power for the purposes of scien-
tific discovery at each time-point, but cross-age comparisons
involved some nonoverlapping subjects. Replication is therefore
warranted to test for generalization of our findings to a large,
purely longitudinal sample, as well as a large low-risk sample,
since brain–behavior relationships may differ in children at
high versus low risk for ASD. The current sample, while rela-
tively large, contained few children with ASD (Table 1) and
was thus underpowered to test for potential group differences
in brain–behavior relationships. Finally, fcMRI data were col-
lected during natural sleep, which may influence underlying fc
versus the awake state; these results are nevertheless infor-
mative for describing the history of functional brain activa-
tions vis-a-vis behavior.

Future Directions

Exciting future directions include applying this approach to
longitudinal populations over broader age ranges to compare
brain–behavior trajectories among typical and atypical popula-
tions, and groups receiving motor interventions. Evaluating
ASD-related group differences in an adequately powered sam-
ple at younger ages could reveal a predictive neural signature
promoting early identification of children who would benefit
from interventions, while analyzing aspects of motor function
specifically impaired in ASD (e.g., visuomotor integration) could
clarify neural systems contributing to ASD’s emergence.
Overlap analyses of enrichment for motor abilities and other
behavioral domains (e.g., language and joint attention) could
illuminate shared neurodevelopmental mechanisms relevant
to both typical and atypical development, leading to novel,
high impact motor-based interventions capable of stimulating
growth in multiple aspects of adaptive function.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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