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Mitigating the loss of brain tissue due to age is a major problem for an ageing population. Improving cardiorespiratory fitness has

been suggested as a possible strategy, but the influenceon brain morphology has not been fully characterized. To investigate the de-

pendent shifts in brain tissue distribution as a function of cardiorespiratory fitness, we used a 3D transport-based morphometry ap-

proach. In this study of 172 inactive older adults aged 58–81 (66.5 6 5.7) years, cardiorespiratory fitness was determined by VO2

peak (ml/kg/min) during graded exercise and brain morphology was assessed through structural magnetic resonance imaging.

After correcting for covariates including age (in the fitness model), gender and level of education, we compared dependent tissue

shifts with age to those due to VO2 peak. We found a significant association between cardiorespiratory fitness and brain tissue dis-

tribution (white matter, r¼ 0.30, P¼ 0.003; grey matter, r¼ 0.40, P< 0.001) facilitated by direct visualization of the brain tissue

shifts due to cardiorespiratory fitness through inverse transformation—a key capability of 3D transport-based morphometry. A

strong statistical correlation was found between brain tissue changes related to ageing and those associated with lower cardio-

respiratory fitness (white matter, r¼ 0.62, P< 0.001; grey matter, r¼0.74, P< 0.001). In both cases, frontotemporal regions

shifted the most while basal ganglia shifted the least. Our results highlight the importance of cardiorespiratory fitness in maintain-

ing brain health later in life. Furthermore, this work demonstrates 3D transport-based morphometry as a novel neuroinformatic

technology that may aid assessment of therapeutic approaches for brain ageing and neurodegenerative diseases.
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Introduction
Late adulthood is marked by a host of physical changes

and brain atrophy is one of the most ubiquitous.

Specifically, after the age of forty, brain volume declines

at a rate of about 5% per decade.1,2 Furthermore, age-

ing-related shifts in brain morphology are associated with

concomitant declines in cognitive performance.3 As our

population ages, there is paramount interest in strategies

to potentially mitigate the brain tissue loss that occurs

with ageing. In recent research, cardiorespiratory fitness

(CRF) has been described to be neuroprotective in older

adults.4–10 As CRF can be influenced through exercise

intervention, there may be future potential for these

therapies in mitigating neurodegeneration.

However, the influence of CRF on brain tissue has not

been fully characterized quantitatively. Tissue atrophies in

the ageing brain non-uniformly across multiple regions.11

Multiple studies have demonstrated that both ageing and

decreased CRF are associated with non-uniform

declines.5,12 Yet, prior studies investigating associations

with CRF have not characterized differential atrophy and

degeneration across the brain. First, conventional statistic-

al methods comparing regional volumes10 and voxelwise

metrics11,13,14 are insufficiently sensitive to the spatial

interdependence in brain tissue, and its nonlinearity.

Indeed, regional volumes have led to varying reports of

the degree to which tissue shifts dependent on age and

those dependent on CRF overlap.14,15 In contrast, new

techniques that measure spatial variation in brain tissue

as mathematical distributions can directly measure these

diffuse, non-linear processes. Second, while regional vol-

umes and voxelwise metrics are basic statistical descrip-

tors, they do not correspond to any biophysical

properties of brain tissue. In other words, these descrip-

tors cannot be used to construct a visualizable brain

phenotype for interpretation—that is, they are not genera-
tive. Third, previous approaches required numerical

descriptors (i.e. region-of-interest volumes, voxelwise sta-

tistics, etc.) to be specified by the user a priori. However,

automated pattern analysis can enable the discovery of

complex phenomena that numerical descriptors cannot

capture and may allow for expanded analysis.

In recent work, the authors developed an automated

approach to discover discriminant phenotypic patterns

from brain images by directly measuring the spatial tissue

distribution. This approach enabled biophysical properties

of the brain to be modelled as mass transport, and also

yielded a generative approach. The technique is called 3D

transport-based morphometry (TBM).16 This paper

applies the novel TBM approach to extract the perturba-

tions in brain phenotype statistically explainable by CRF.

TBM quantifies the effort required to morph one image

into another by using the mathematics of optimal mass

transport16 to enable discovery of phenotypic patterns

using machine intelligence, in contrast to conventional

methods comparing similarity through statistical descrip-

tors. Finally, because it is generative, models constructed

using TBM may be interrogated using inverse transform-

ation to yield immediately visualizable brain images illus-

trating the biophysical features that cause the relationship

with CRF.
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The goal of this research is to discover and visualize

the shifts in brain tissue distribution that are most strong-

ly associated with CRF in an automated manner using

the TBM technique. Furthermore, this study aims to de-

termine the degree to which the pattern of tissue distribu-

tion with higher CRF overlaps with the distribution of

ageing-related losses. We hypothesize that lower CRF

would be associated with altered tissue distribution in a

regionally specific fashion, disproportionately associated

with the frontal and temporal regions to closely mirror

those changes that undergo characteristic changes in age-

ing. The following are the contributions of this paper:

• We describe a framework for automated discovery

and visualization of latent patterns in brain tissue dis-

tribution using 3D TBM.
• We validate that 3D TBM can uncover characteristic

ageing-related phenotypic changes in an automated

manner.
• We discover the pattern of brain tissue distribution

most strongly associated with CRF using TBM.
• We directly visualize the characteristic phenotypic shift

most associated with CRF in white matter and grey

matter through inverse TBM transformation.
• We determine the degree of statistical overlap between

the dependent phenotypic shifts due to ageing and CRF.

Materials and methods

Participant characteristics

In this study, 172 healthy community-dwelling older

adult subjects were recruited at the University of Illinois.

Informed consent was obtained from all participants.

These subjects were enrolled as part of a randomized

controlled exercise trial. This study focused on a cross-

sectional analysis of their baseline data to assess the rela-

tionship between CRF and brain tissue distribution.

Subject demographics are summarized in Table 1.

Sample structural images are shown in Fig. 1. There was

no significant difference in the range of ages across the

male and female participants of this study (P¼ 0.75).

Results on a small subset of these patients were previous-

ly published by (16). The purpose of the earlier work

was to validate the approach utilized in this paper,

whereas the current study assesses the effects of CRF on

the brain.

Inclusion criteria were as follows: age between 55 and

80 years, being physically inactive as defined by engaging

in � 30 min of exercise each week within 6 months prior

to baseline examination,17 demonstrating strong right

handedness determined by score of �75% on the

Edinburgh Handedness Questionnaire,18 scoring �51 on

Figure 1 Brain images of older adults. High-resolution structural images belonging to 10 individuals. The same axial slice is

displayed for all subjects. The top row illustrates the top 5 most fit individuals in the dataset (average VO2 ¼ 32.2 ml/kg/min) and the bottom

row illustrates the 5 least fit individuals in the dataset (average VO2 ¼ 13.3 ml/kg/min).

Table 1 Subject demographics

Age (years) 58–81 (66.5 6 5.7)

Gender (M:F) 60:112

Education level 2–8 (1¼ 0%; 2¼ 0.6%; 3¼ 0.6%; 4¼ 18.6%; 5¼ 28.5%; 6¼ 19.2%; 7¼ 22.1%; 8¼ 10.5%)

Body mass index (kg/m2) 18.9–42.6 (28.9 6 4.5)

Total brain parenchymal volume (L) 0.75–1.7 (1.2 6 0.2)

There was no significant difference in the range of ages across the male and female participants of this study (P¼ 0.75). Education levels: 1¼ less than 7th grade; 2¼ 9th grade (junior

high); 3¼ partial high school; 4¼ high school graduate; 5¼ 1–3 years of college or 2 year college; 6¼ college/university degree; 7¼master’s degree; 8¼ PhD or equivalent. Study

population demographics are reported as a range, followed by mean 6 standard deviation.
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modified Mini Mental Status Examination19 to rule out

clinical cognitive impairment, normal colour vision and

visual acuity of at least 20/40, and no history of neuro-

psychiatric conditions or neurological diseases, including

Parkinson’s disease, multiple sclerosis, Alzheimer’s dis-

ease, stroke, or infarcts.

Exclusion criteria were as follows: score greater than 3

on the Geriatric Depression Scale that could indicate pos-

sible depression,20 history of cardiovascular disease, evi-

dence of chronic inflammation (i.e. severe arthritis,

psoriasis, inflammatory bowel disease, asthma, polyneuro-

pathies, Lupus) and metal implants as contraindications

for MRI.

MRI acquisition

High-resolution T1-weighted images of the brain were

collected on a 3 T head-only Siemens Allegra MRI scan-

ner at the University of Illinois. Images were acquired

using a 3D MPRAGE (Magnetization Prepared Rapid

Gradient Echo Imaging) protocol in which 144 contigu-

ous axial slices collected in ascending fashion parallel to

anterior posterior commissures. Scan parameters were as

follows: echo time¼ 3.87 ms, repetition time¼ 1800 ms,

field of view¼ 256 mm, acquisition matrix 192 � 192,

slice thickness¼ 1.3 mm, flip angle¼ 8�:21

Cardiorespiratory fitness
assessment

CRF (VO2 peak) was assessed by graded maximal exercise

testing on a motor-driven treadmill. Participants were

required to obtain consent from their personal physician

before CRF testing was conducted. The participant

walked at a speed slightly faster than their normal walk-

ing pace (approximately 30–100 m/min or 1.8–6 km/h)

with increasing grade increments of 2% every 2 min. A

cardiologist and nurse continuously monitored measure-

ments of oxygen uptake heart rate and blood pressure.

Resting heart rate was measured while the participant lay

in the supine position after ECG preparation, and before

the treadmill test began. Oxygen uptake (VO2) was meas-

ured from expired air samples taken at 30-s intervals

until a maximal VO2 was attained or to the point of test

termination due to symptom limitation and/or volitional

exhaustion. VO2 peak was defined as the highest

recorded VO2 value when two of three criteria were sat-

isfied: (i) a plateau in VO2 peak between two or more

workloads; (ii) a respiratory exchange ratio > 1.00; and

(iii) a heart rate equivalent to their age predicted max-

imum (i.e. 220—age).17 The VO2 peak was corrected for

participant body weight. Study participant exercise varia-

bles are summarized in Table 2.

Registration, segmentation and
image pre-processing

The brain images were all co-registered from native space

to the Montreal Neurological Institute space using a 12-

parameter affine transformation. Subsequently, in the pre-

processing phase, images were skull-stripped and seg-

mented into grey matter (GM) and white matter (WM)

component images for all subjects using the Statistical

Parametric Mapping22 software version 12. After segmen-

tation, the respective WM and GM images were

smoothed using a 3D Gaussian filter with full-width-at-

half-maximum 2.35. For subsequent transport-based ana-

lysis, high-resolution structural images were normalized

to have equal total mass. Study population references for

GM and WM images were generated by taking the

Euclidean mean of respective GM and WM images, re-

spectively. Therefore, the images are normalized such thatÐ
I0 xð Þdx ¼

Ð
Ii xð Þdx ¼ 1; where I0 xð Þ is a common ref-

erence for all i ¼ f1; . . . ;Ng images in the study popula-

tion, where N is the number of subjects. The purpose of

the reference images was to enable the metric space in

the transport domain to be defined,16 which is further

described in Automated pattern analysis using 3D TBM.

Anatomic localization was performed using the Montreal

Neurological Institute automated anatomic labelling atlas,

whose details are in Localizing regions of dependent tis-

sue displacement.

Automated pattern analysis using
3D transport-based morphometry

3D TBM measures the structural similarity among brain

images by quantifying the mass distribution of brain tis-

sue. Non-uniform atrophy and degeneration modifies the

relative spatial distribution of tissue across regions (i.e.

lower relative tissue density in areas of atrophy, higher

relative tissue density in areas of preservation). We quan-

tify these structural perturbations using the mathematics

of optimal mass transport23 by measuring relative shifts

in tissue spatial distribution. Mathematically, tissue spa-

tial distribution is quantified using the using the L2-

Wasserstein distance, a nonlinear metric with theoretical

foundations and mathematical guarantees further

described in Supplementary material A3.24–27

As 3D TBM focuses on mass distribution of signal in-

tensity, for each source brain image IiðxÞ, 3D TBM gen-

erates a mapping for each brain image called a transport

Table 2 Exercise variables

Resting systolic blood pressure (mmHg) 100–180 (134 6 15)

Resting heart rate (bpm)a 49–120 (73 6 13)

Resting diastolic blood pressure (mmHg) 54–104 (80 6 8)

Peak systolic blood pressure (mmHg) 132–236 (182 6 21)

Peak heart rate (bpm) 91–234 (158 6 20)

Peak diastolic blood pressure (mmHg) 58–110 (86 6 10)

VO2 rate (L/min) 0.6–3.2 (1.7 6 0.5)

VO2 peak (ml/kg/min) 12.9–34.7 (21.1 6 4.7)

aResting heart rate was missing for one subject. Study population exercise parameters

are reported as a range, followed by mean 6 standard deviation.
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map, which quantifies how to rearrange the source image

to result in template image I0ðxÞ, with the constraint that

the mass moved must be minimized. TBM can be used to

transform the image from its image domain representa-

tion IiðxÞ to its transport domain representation f �i xð Þ
using the TBM equation for analysis.

f � xð Þ ¼ arg min
f2MP

ð
f xð Þ � x
� �2

I0 xð Þdx; (1)

such that det Df xð Þ
� �

I1 f xð Þ
� �

¼ I0ðxÞ
Here, f � xð Þ is a transport map corresponding to

image IiðxÞ. MP defines the space of all mass-preserving

mappings, and D corresponds to the Jacobian operator.

The transport map is a vector field describing how to

morph the brain tissue distribution into the common

reference, capturing complex variations in both shape

and texture. The system diagram is shown in Fig. 2.

GM and WM tissues were analysed separately in this

study.

The mapping from image domain to transport domain

through (1) is a bijective and invertible transformation.

In other words, under a set of constraints that TBM sat-

isfies, each image corresponds to a unique transport map

and vice versa, illustrated in Fig. 2. Furthermore, the

underlying structure of the metric space in the transport

domain is a Riemannian manifold,16 where samples in

the dataset comprise points on the manifold; this enables

the key property of TBM—that it is generative (see

Supplementary material A3). A new point in the trans-

port domain can be interrogated to generate direct visual-

ization of the brain image with phenotypic change.16

Mathematically, a given transport map can be inverted to

visualize the corresponding brain image according to the

synthesis equation.

I xð Þ ¼ det Df�1 xð Þ
� �

I0 f�1 xð Þ
� �

; (2)

where f�1 xð Þ is the inverse mapping of f xð Þ.
Here, I xð Þ is a computer-generated brain image illus-

trating the tissue displacements captured by a given point

in the transport space. Equation (2) enables the key ad-

vance of TBM, which is direct visualization of brain

images illustrating the biophysical perturbations repre-

sented by statistical models in the transport domain,

which makes TBM generative.

Brain tissue distribution captures information not assessed

through volume measures alone (Supplementary Fig. A1)

and better characterizes the underlying structural variation16

compared to deformation-based measures such as in voxel-

based morphometry13 and the original image domain

(Supplementary material A4). Unlike numerical descriptors

in traditional methods which are often defined on an ad

hoc basis, 3D TBM is based on a physical model of joint

spatial image intensities, with intensity being proportional

to the probability of observing a particular tissue type at

Figure 2 Transport-based morphometry system diagram. Images are mapped to corresponding transport maps through a unique,

one-to-one transformation using optimal mass transport to facilitate statistical learning and modelling. Modelling functions computed in

transport space can be inverted to visualize and interpret the corresponding images.
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that location. The interested reader is referred to Kundu

et al.16 for further measure-theoretic description.

Statistical analysis: Assessing
statistical relationship with clinical
variables

Transport-maps were vectorized and concatenated as col-

umns of a standard data matrix D 2 R
p�n for subjects

1 . . . n, where p is the number of elements in each trans-

port map. Principal components analysis (PCA) technique

was used to remove the data dimensions with little or no

contribution to the overall data variance before comput-

ing the most correlated direction with CRF according to

the following equation:

D ¼ VKUT ¼ VX: (3)

Here, the columns of matrix V 2 R
p� n�1ð Þ contain the

n� 1 eigenvectors that span the space in which the trans-

port maps lie. According to (3), all the information in

the data matrix D can be summarized by the n� 1

orthonormal eigenvectors. The data matrix is projected

onto the d topmost eigenvectors associated with 90% of

the variance in the dataset, approximating the inflection

of the TBM variance plots in Fig. 3A and B. Thus, we

create the reduced-dimension, centred data matrix

X 2 R
d�n.

The direction in transport domain that best describes

the common tissue shifts associated with an independent

variable v 2 R
n�1 is computed according to the following

equation16,24:

wcorr ¼ arg max
w

wTXvffiffiffiffiffiffiffiffiffiffiffi
wTw
p ¼ Xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vTXTXv
p : (4)

Here, wcorr is a vector field that summarizes the direc-

tion and magnitude by which tissue is displaced as a

function of v. The field wcorr is calculated as a composite

from all brain images and summarizes the specific pheno-

typic shift with respect to the common reference most

explained by linear correlation with independent variable

v. De novo images that visualize the influence of wcorr

are calculated through inverse transformation from the

transport map generated from w in (5). Here,
–
x refers to

the mean transport map across the study population and

t represents the increment or decrement of samples along

the computed direction.

w ¼ –
x þ twcorr: (5)

The main effects of ageing on GM and WM were

assessed by computing the direction in the transport do-

main exhibiting strongest linear correlation with age. Let

y 2 R
n�1 be the column vector representing the ages for

the subjects in the study. The most correlated direction in

transport space is computed by setting v ¼ y in (4).

Assessing brain outcomes associated with

cardiorespiratory fitness

We also assessed the brain tissue outcomes in relation to

CRF. In this case, y is set as the VO2 peak. The influ-

ence of confounding variables of age, gender, and level

of education were removed before performing the regres-

sion analysis using the formula in the following equation:

v ¼ y� Z ZTZð Þ�1
ZTy; (6)

where Z 2 R
n�c is the matrix containing c covariates.

The variable v represents the component of y that is

uncorrelated and orthogonal to the confounding variables

in Z. The analyses were performed separately for GM

and WM tissues. Given that education was reported as a

potential factor to mitigate age-related changes, we

included the latter as a covariate in our model.11

Figure 3 Variance plots. Variance plots showing number of

principal components needed to capture the variation in the data

for (A) grey matter tissue and (B) white matter tissue. Fewer

components are needed to capture the variance in the transport

space compared to the image space, suggesting that the transport

domain features better capture structure in the data.
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Null hypothesis testing

Statistical significance of the computed directions wcorr

were assessed by permutation testing with T¼ 10000

tests to determine what fraction of the time a stronger

correlation could be achieved when labels and transport

maps are randomly assigned.

Assessing interaction between age and

cardiorespiratory fitness

We assessed the degree to which the tissue shifts associ-

ated with increasing age and lower CRF overlap. We cal-

culated the linear dependence between brain tissue

displacements as functions of age and VO2 peak, respect-

ively. Pearson’s correlation coefficient was calculated be-

tween the respective directions computed in the transport

space (tissue displacement versus age and tissue displace-

ment versus VO2 peak). GM and WM tissues were

assessed separately. Statistical significance was assessed

by permutation testing with T¼ 10000 tests.

Next, we studied whether higher CRF could be an ef-

fect modifier on the relationship between decreasing age

and brain tissue distribution. The effect of age x CRF

was assessed by performing regression of brain tissue

distribution in the transport space setting

v ¼ ðage� ageÞðVO2 peak� VO2 peakÞ, where the mean-

subtracted age and VO2 peak were multiplied to test

whether CRF significantly modifies the effect of age on

brain tissue distribution. Covariates of gender and level

of education were included in the model and the partial

effect of age was removed from CRF.

Localizing regions of dependent
tissue displacement

The pattern of dependent tissue displacements with age

and with VO2 peak was localized to specific regions of

interest in the brain. The pattern of tissue displacement

with VO2 peak was corrected for covariation in age, gen-

der, and level of education. The automated anatomic

labelling atlas was used in the Montreal Neurological

Institute space as a reference, with 116 anatomic regions

segmented as described in Tzourio-Mazoyer et al.28 Of

these regions, we selected the 90 regions segmenting the

cerebral cortex. The T1-weighted reference image I0 was

first registered to MNI152 T1 template using FSL FLIRT

(FMRIB’s Linear Image Registration Tool) and was fur-

ther refined using FSL FNIRT (FMRIB’s Non-linear

Image Registration Tool). The affine transformation ma-

trix of linear transformation and non-linear warp coeffi-

cients from non-linear mapping were generated, and the

inverse transformations were computed. The inverse

transformations were applied on automated anatomic

labelling template to transform the ROIs into reference

image space.

The computer-generated image demonstrating character-

istic brain tissue distribution due to a 10-year increase in

age was obtained through inverse TBM transformation.

Similarly, the computer-generated image demonstrating

the effects of a 10 ml/kg/min decrease in VO2 peak was

also produced through inverse TBM transformation. The

fractional change in tissue density per voxel with respect

to the mean image was computed for each of the 116

regions for both characteristic images.

A table was generated displaying the mean fractional

change in tissue density per region due to the 10-year in-

crease in age and due to the 10 ml/kg/min decrease in

CRF. In particular, the fractional change in tissue density

with increasing age and with lower CRF were compared

for linear dependence. The regions exhibiting a statistical-

ly significant linear correlation between age-dependent

fractional density changes and CRF-dependent fractional

density changes were identified through permutation test-

ing with T¼ 10000 tests. The Bonferroni correction was

applied to counteract the effect of multiple comparisons.

The family-wise error rate was set at <0.05.

We implemented all statistical analysis codes in

MATLAB (MathWorks, Natick, MA).

Data availability

Data and code may be available upon reasonable request.

Results

Principal component phenotypes

The transport domain representation for both WM and

GM tissues required fewer principal components to cap-

ture the same fraction of the variance when compared to

the image domain representation. As Fig. 3 illustrates,

the transport approach better characterizes the structure

of the data when compared to the image space represen-

tation of images as pixels on a fixed grid. In the trans-

port domain, 90% of the variance is described by 16

GM components and 32 WM components. In the image

domain, 90% of the variance is described by 131 GM

components and 128 WM components. Therefore, repre-

senting GM and WM tissues in terms of the spatial tissue

distribution in the transport domain enables a sparser

representation of the data.

Age-related brain tissue

Age-related grey matter tissue

TBM identifies a significant positive correlation between

GM tissue distribution and age when assessed in the

transport domain (Pearson’s r¼ 0.35, P< 0.001).

Figure 4A illustrates the dependent shifts in GM distri-

bution between GM and age when the images are pro-

jected onto the most correlated direction. The computed

direction in Fig. 4A is then inverted using inverse TBM

transformation to visualize the dependent shifts in brain

tissue distribution that occur as a function of age. The

images in Fig. 4B are computer-generated by inverse

Fitness preserves brain tissue in older adults BRAIN COMMUNICATIONS 2021: Page 7 of 16 | 7



TBM transformation to visualize the shifts discovered

through automated TBM analysis. Tissue shifts across

varying ages were extrapolated based on the generative

TBM model. Figure 4B shows selected axial slices of

brain images generated by sampling along the line of best

fit. The axial slices that best summarize the differences

are shown, with the mean image in the dataset repre-

sented by projection score zero. The changes correspond

to an average 0.78 mm displacement in GM tissue every

10 years. With increasing age, the density of the cortex

appears to thin. Interestingly, there is visual thinning seen

in the frontal lobes, as evident in slices 54, 62 and 72 of

Fig. 4B. There is marked temporal thinning as well in

slice 54 and slice 72 compared to other areas of the

brain.

Age-related white matter tissue phenotype

We found a significant positive correlation between WM

tissue distribution and age when assessed in the transport

domain (Pearson’s r¼ 0.35, P< 0.001). Figure 5A illus-

trates the images when projected onto the most correlated

direction. The de novo images in Fig. 5B are computer-

generated by inverse TBM transformation to visualize the

shifts discovered through automated TBM analysis. These

images illustrate the changes in WM distribution associ-

ated with advancing age when inverse TBM

Figure 4 Grey matter versus age. (A) Scatter plot showing relationship between subject age and grey matter distribution in the study

cohort (B) synthetic images generated by transport-based morphometry directly visualizing the shifts in grey matter distribution with age

extrapolated from the study population. Voxels have been colorized for ease of interpretation. Select images in the z-plane are shown that

best summarize the differences. Scale bars correspond to the normalized intensity for each generated 3D image.

8 | BRAIN COMMUNICATIONS 2021: Page 8 of 16 S. Kundu et al.



transformation is used to visualize selected axial slices of

brain images generated by sampling along the line of best

fit by varying t in (5). Tissue shifts across varying ages

were extrapolated based on the generative TBM model.

Viewing the WM tissue density in Fig. 5B, we see that

as age increases, there is marked enlargement in the ven-

tricle size. In addition, as particularly evident in slice 73,

it is interesting to see a visual loss of WM density from

the frontal lobes compared to other regions of the brain,

described further in Localizing regions of dependent tissue

displacement. In slice 69, there is loss of tissue mass

from the corpus callosum. The shifts correspond to an

average 0.79 mm displacement in WM tissue every

10 years.

Association of cardiorespiratory
fitness with brain tissue

Cardiorespiratory fitness and grey matter

The partial correlation between GM distribution and

CRF in VO2 peak was found to be statistically significant

after controlling for covariates of age, gender, and level

of education (Pearson’s r¼ 0.40 and P< 0.001)

Figure 5 White matter versus age. (A) Scatter plot showing relationship between subject age and white matter distribution in the study

cohort (B) synthetic images generated by transport-based morphometry directly visualizing the shifts in white matter distribution with age

extrapolated from the study population. Voxels have been colorized for ease of interpretation. Select images in the z-plane are shown that

best summarize the differences. Scale bars correspond to the normalized intensity for each generated 3D image.
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(Fig. 6A). The images corresponding to the statistical re-

lationship in transport domain are shown in Fig. 6B.

The images in Fig. 6B are computer-generated by inverse

TBM transformation to visualize the shifts discovered

through automated TBM analysis. Tissue shifts across

varying CRF levels were extrapolated based on the gen-

erative TBM model. Examining the differences in tissue

distribution from lower to higher CRF after correcting

for covariates, several associations are evident. Notably,

the shifts in tissue distribution with higher fitness levels

overlap with those seen in ageing with opposite direction-

ality, described further in Localizing regions of dependent

tissue displacement. For example, we observe greater

density of GM as a function of CRF preferentially in the

frontal and temporal areas as illustrated most prominent-

ly by slices 55 and 69. The differences correspond to an

average 0.73 mm displacement in GM tissue for every

10 ml/kg/min decrease in CRF.

Cardiorespiratory fitness and white matter

Finally, the association between WM and CRF as meas-

ured in terms of VO2 peak was significant in the trans-

port domain after correcting for covariates of age,

gender, and level of education (Pearson’s r¼ 0.30 and

Figure 6 Grey matter versus cardiorespiratory fitness. (A) Scatter plot showing relationship between subject VO2 peak and grey

matter distribution in the study cohort (B) synthetic images generated by transport-based morphometry directly visualizing the shifts in grey

matter distribution with VO2 peak extrapolated from the study population. Voxels have been colorized for ease of interpretation. The images

have been colorized for ease of interpretation. Scale bars correspond to the normalized intensity for each generated 3D image. Select

interpolated images in the z-plane are shown that best summarize the differences.
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P¼ 0.003) in Fig. 7A. The images in Fig. 7B are com-

puter-generated by inverse TBM transformation to visual-

ize the shifts discovered through automated TBM

analysis. Tissue shifts across varying CRF levels were

extrapolated based on the generative TBM model. We

observe WM density associations in Fig. 7B such that

higher CRF is associated with less peri-ventricular WM

loss. In slice 78, we see mild WM density shifts in the

frontal lobe regions. Again, the pattern of morphologic

associations appears to be opposite those discovered

using TBM between WM and ageing, described further

in Localizing regions of dependent tissue displacement.

There is a 0.58 mm displacement in WM tissue for every

10 ml/kg/min decrease in CRF.

Interaction between
cardiorespiratory fitness and age

Overlap of main effects

As the characteristic tissue displacements with age and

with VO2 peak occur in overlapping brain regions, the

linear dependence between the respective patterns were

measured. Table 3 summarizes the correlation between

Figure 7 White matter versus cardiorespiratory fitness. (A) Scatter plot showing relationship between subject VO2 peak and white

matter distribution with extrapolated ages (B) synthetic images generated by transport-based morphometry directly visualizing the shifts in

white matter distribution with VO2 peak extrapolated from the study population. The images have been colorized for ease of interpretation.

Scale bars correspond to the normalized intensity for each generated 3D image. Select interpolated images in the z-plane are shown that best

summarize the differences.
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the pattern of GM and WM tissue displacement due to a

10-year increase in age and 10 ml/kg/min decrease in

VO2 peak. The pattern of GM and WM tissue displace-

ment with lower CRF was found to overlap significantly

with that seen in healthy ageing, as further elucidated in

Table 4. Correlation across each region of interest was

determined correcting for multiple comparisons. The vari-

ance explained in GM tissue is 55%, whereas that in

WM tissue is 38%. Regional localization of these effects

is summarized in Table 4. A linear regression model fit-

ted with tissue shifts with age versus CRF suggest that a

10-year increase in age correlates to a 3.6 ml/kg/min de-

crease in VO2 peak for WM tissues but 5.9 ml/kg/min de-

crease in VO2 peak for GM tissues.

Summary of age � cardiorespiratory fitness

interaction

When assessing the age � CRF interaction, CRF was

found to weakly modify the relationship between age and

GM tissue distribution (Pearson’s r¼ 0.23, P¼ 0.02)

when correcting for gender and level of education and

removing the partial effect of age from CRF. The vari-

ance explained (R2) was 5%. However, CRF did not sig-

nificantly modify the relationship between age and WM

tissue distribution (Pearson’s r¼ 0.22, P¼ 0.08).

Localizing regions of dependent
tissue displacement

The average redistribution in tissue density was computed

for each of the 90 bilateral regions segmented by the

automated anatomic labelling probabilistic structural

atlas.28 Table 4 summarizes the mean tissue displace-

ment either every 10-year increase in age or every 10 ml/

kg/min decrease in VO2 peak across each region. With

ageing, the areas localizing the greatest tissue shifts were

the middle temporal gyrus, inferior temporal gyrus, mid-

dle occipital gyrus, superior temporal gyrus, precuneus,

postcentral gyrus, lingual gyrus, precentral gyrus, superior

frontal gyrus (dorsolateral). Areas of least tissue shift

with ageing included the amygdala, pallidum, superior

frontal gyrus (orbital part), olfactory cortex and

cingulate.

The regions with the greatest tissue shifts with CRF

were the middle temporal gyrus, middle frontal gyrus, su-

perior frontal gyrus (dorsolateral), superior temporal

gyrus, middle occipital gyrus, inferior temporal gyrus,

postcentral gyrus, precentral gyrus and lingual gyrus.

Similarly, the areas with least tissue shift with CRF were

the frontal gyrus (orbital part), amygdala, pallidum, cin-

gulate and olfactory cortex.

Interestingly, the areas with the highest correlation be-

tween age- and CRF-dependent tissue shift were the thal-

amus, cingulate, caudate, middle temporal gyrus, occipital

gyrus, calcarine cortex, cuneus and lingual gyrus. The

regions with lowest correlation between age- and CRF-de-

pendent tissue shift were rectus gyrus, olfactory cortex,

middle frontal gyrus, precentral gyrus, inferior parietal

(supramarginal and angular gyri), anterior cingulate and

paracingulate gyri and postcentral gyrus. All regions had

a statistically significant correlation between age- and

CRF-dependent fractional tissue density changes.

Although our study reports that disproportionate shift

in frontotemporal cortex and relative preservation in the

basal ganglia occur with both ageing and CRF, the spe-

cific pattern of shift is not perfectly concordant between

the two main effects, as seen in Table 4.

Discussion
Mitigating ageing-related brain tissue decline is of par-

ticular interest for an ageing population. CRF is poten-

tially neuroprotective, yet its influence on brain tissue is

not fully characterized. This study performs a quantitative

investigation of brain tissue distributional changes due to

CRF vis-à-vis ageing using the TBM framework.16 First,

we validated ageing-dependent microstructural shifts using

TBM against known shifts from extant literature.1,29

Next, we investigated the phenotype of CRF-related tissue

loss for the first time. We observed close quantitative

overlap between tissue decline with ageing and decreasing

CRF at a population level. We affirmed the study hy-

pothesis that CRF is associated with disproportionate

shifts in the frontotemporal regions, with relative preser-

vation of the basal ganglia by visualizing biophysical tis-

sue loss enabled by TBM. Tissue displacement may

potentially be used clinically as it can measure variations

in brain morphology in a lossless manner.

This research overcomes methodological limitations of

previous studies by enabling direct examination of tissue

distribution. Prior studies performed volume-

try5,9,10,17,30,31 or voxelwise statistics.11,14 However, as

Supplementary Fig. A1 demonstrates, brain parenchymal

volume has little correlation with brain tissue distribu-

tion. As previous authors noted, volume may not be a

sufficient descriptor of brain tissue preservation.15

Erickson et al.4 reported that structural perturbations in

the striatum were not captured by volume change alone

as a metric. Furthermore, VBM did not fully characterize

the main effect of CRF on brain tissue density.14 In con-

trast, measuring brain tissue distribution using 3D TBM

obviates the need for a priori features. Moreover, the

transport space better characterized the underlying

Table 3 Tissue redistribution due to a 10-year increase

in age versus 10 ml/kg/min decrease in VO2 peak

Tissue Pearson’s correlation coefficient P

Grey matter 0.74 <0.001

White matter 0.62 <0.001

Pearson’s correlation coefficient is computed to assess whether the tissue displace-

ments in transport space due to age and CRF have a linearly dependent relationship.
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structure of the data when compared to voxel-based

morphometry or the original image domain (see

Supplementary material A4). The automated detection of

tissue changes associated with CRF without human guid-

ance is a significant advancement in this study.

Another key contribution of the 3D TBM technique is

direct biophysical interpretation of the discovered pheno-

typic shifts (Figs. 6B and 7B). Traditional voxel-based

methods look at voxelwise metrics which have no physic-

al significance.32 To localize results or connections to

particular areas, VBM methods use saliency maps or heat

maps (see Supplementary material A4). As a result, this

research fills a critical gap in understanding tissue redis-

tribution in ageing and CRF.

Comparative assessment of ageing-related microstruc-

ture against CRF-related microstructure is another contri-

bution of this study. We observed that main effects of

ageing and CRF were not entirely overlapping, as vari-

ance explained in GM tissue was 55%. Fletcher et al.15

also reported discordant changes in certain ROI volumes

between ageing and CRF. TBM discovers that frontotem-

poral regions were most affected by both ageing and

CRF. Previous studies described accelerated age-related

frontotemporal decline33 with relatively preserved limbic

Table 4 Tissue displacement for a 10-year age increase versus 10 ml/kg/min decrease in CRF across regions of

interest

Region Ageing (%) Fitness (%) Pearson correlation coefficient P-value

Precentral gyrus 3.85 3.75 0.15 <0.0001

Superior frontal gyrus (dorsolateral) 3.85 4.57 0.37 <0.0001

Superior frontal gyrus (orbital part) 0.61 1.14 0.51 <0.0001

Middle frontal gyrus 3.54 6.81 0.12 <0.0001

Middle frontal gyrus (orbital part) 0.51 1.03 0.44 <0.0001

Inferior frontal gyrus (opercular part) 1.05 1.42 0.34 <0.0001

Inferior frontal gyrus (triangular part) 2.19 2.44 0.32 <0.0001

Inferior frontal gyrus (orbital part) 1.36 1.83 0.26 <0.0001

Rolandic operculum 1.02 1.39 0.30 <0.0001

Supplementary motor area 3.73 1.63 0.32 <0.0001

Olfactory cortex 0.25 0.34 0.09 <0.0001

Superior frontal gyrus (medial) 2.70 2.72 0.44 <0.0001

Superior frontal gyrus (medial orbital) 0.49 0.88 0.44 <0.0001

Rectus gyrus 0.40 0.76 �0.09 <0.0001

Insula 1.10 2.44 0.31 <0.0001

Anterior cingulate and paracingulate gyri 1.18 1.48 0.22 <0.0001

Median cingulate and paracingulate gyri 3.06 1.70 0.39 <0.0001

Posterior cingulate gyrus 0.59 0.46 0.80 <0.0001

Hippocampus 1.43 1.17 0.55 <0.0001

Parahippocampal gyrus 1.72 1.25 0.62 <0.0001

Amygdala 0.26 0.26 0.36 <0.0001

Calcarine fissure and surrounding cortex 3.72 3.30 0.92 <0.0001

Cuneus 2.20 2.22 0.85 <0.0001

Lingual gyrus 3.98 3.37 0.92 <0.0001

Superior occipital gyrus 2.01 2.04 0.79 <0.0001

Middle occipital gyrus 4.46 4.10 0.70 <0.0001

Inferior occipital gyrus 1.93 1.53 0.89 <0.0001

Fusiform gyrus 3.70 2.92 0.68 <0.0001

Postcentral gyrus 3.98 3.95 0.22 <0.0001

Superior parietal gyrus 2.32 2.35 0.63 <0.0001

Inferior parietal, but supramarginal and angular gyri 1.73 2.44 0.15 <0.0001

Supramarginal gyrus 1.62 2.08 0.28 <0.0001

Angular gyrus 1.58 1.93 0.44 <0.0001

Precuneus 4.00 3.65 0.69 <0.0001

Paracentral lobule 1.57 0.78 0.58 <0.0001

Caudate nucleus 1.87 1.48 0.72 <0.0001

Lenticular nucleus, putamen 0.65 1.29 0.005 0.28

Lenticular nucleus, pallidum 0.20 0.32 0.45 <0.0001

Thalamus 1.55 1.42 0.80 <0.0001

Heschl gyrus 0.26 0.34 0.38 <0.0001

Superior temporal gyrus 4.41 4.39 0.49 <0.0001

Temporal pole: superior temporal gyrus 2.16 2.06 0.60 <0.0001

Middle temporal gyrus 8.34 7.08 0.46 <0.0001

Temporal pole: middle temporal gyrus 1.43 1.40 0.71 <0.0001

Inferior temporal gyrus 5.44 4.08 0.62 <0.0001

Among the tissue shifts in AAL regions-of-interest, the percentage of tissue displacement localizing to each region is reported over a 10-year increase in age or 10-pt drop in CRF.

Statistical significance was determined after correcting for multiple comparisons. AAL ¼ automated anatomic labelling.
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structures34 and relatively greater decline in hippocam-

pus/parahippocampus.35 For CRF, previous studies also

reported that frontal and prefrontal cortex volumes9,14

were disproportionately associated with CRF compared

to other lobes.30 Although there is evidence that CRF is

associated with brain areas involved in executive function

and memory,9,15,17,33,36 association of CRF with other

brain regions has received less attention. Finally, the

dorsolateral frontal cortex, involved in executive function

tasks such as planning and social behaviour,33 demon-

strated relatively larger CRF shifts than other regions.

However, the amygdala and orbital frontal cortex, com-

monly called the limbic frontal lobe,33 showed some of

the smallest shifts with CRF compared to the dorsolateral

part. These are novel findings with future clinical signifi-

cance as we know of few other studies reporting these

changes. Furthermore, these findings may have implica-

tions for frontotemporal dementia; an active lifestyle

slowed clinical deterioration in adults with familial fron-

totemporal dementia.37

TBM reveals novel discordant shifts between ageing

and CRF. Particularly, the middle frontal gyrus, inferior

parietal (supramarginal and angular gyri), and anterior

cingulate/paracingulate gyri all showed markedly greater

shift with CRF than with ageing. Cingulate gyrus was

associated with CRF in volumetric analysis.10 Given the

areas and networks served by the anterior cingulate/para-

cingulate gyri, this research finds that CRF may potential-

ly help maintain functions and behaviours in empathy38

and impulse control.39 CRF may also potentially help

regulate networks and pathways supporting attentional

control and semantic/number processing, memory re-

trieval, and cross-modal information integration through

shifts in the angular gyri40 and middle frontal gyrus.41

Therefore, CRF may provide benefits beyond preserving

brain regions involved in executive function that decline

with age. These findings could potentially generalize to

dementia-affected older adults. For example, in patients

with mild cognitive impairment, facial emotional process-

ing was impaired prior to cognitive deficits.42 Exercise

intervention could possibly help preserve or reduce early

emotional processing deficits during mild cognitive im-

pairment—at a potentially reversible stage of dementia.

This study indicates that both CRF and ageing spare

the basal ganglia, with robust overlap. Previous studies

on the basal ganglia have reported inconsistent results.

While a prior study found no significant relationship be-

tween putamen/globus pallidus volume and cardiovascular

fitness in older adults,43 another study found significant

association of the caudate nucleus, putamen, and globus

pallidus volumes with performance in a Task Switching

paradigm, mediated by CRF.44 Fletcher et al.15 reported

a positive association between basal ganglia and CRF,

but not with age. Our research suggests that ageing and

CRF may influence motor and sensory pathways in

different ways. We find that postcentral gyrus and pre-

central gyrus undergo relatively more discordant shifts

between ageing and CRF, suggesting that CRF may po-

tentially help maintain balance and mobility via more

complex pathways.

Furthermore, as many neurodegenerative disorders such

as Parkinson’s disease exhibit early basal ganglia

changes,45 this research could potentially help identify

early pathologic degeneration. CRF change is an inde-

pendent risk factor in conversion to dementia46 and is

modifiable through exercise intervention including in

Parkinson’s disease.47,48

Animal studies using exercise training paradigms have

largely informed mechanisms by which CRF interacts

with the brain. First, exercise is linked to angiogenesis in

the animal brain.49 In the human brain, blood flow vel-

ocity in the middle cerebral artery declines with age but

increases with endurance-training.50 Other studies

reported increased blood flow to the hippocampus fol-

lowing exercise intervention in humans51 and to anterior

cingulate with exercise training.52 In addition to blood

flow, a second potential mechanism is neurogenesis.14 In

mice, exercise reversed hippocampal neurogenesis de-

cline.53 Third, exercise may increase neural growth factor

expression. In rodent studies, there were reported

increases in both striatal-derived neurotrophic factor and

neural activity in the striatum with exercise.54,55 Several

studies report higher VO2 peak in humans associated

with greater increases in brain-derived neurotrophic factor

concentration following exercise.17,56

There were several limitations of this study. First, this

was a cross-sectional study examining associations be-

tween CRF and brain tissue distribution in older adults.

Longitudinal studies may further elucidate causality of

the relationship between brain tissue distribution and

CRF. Second, this research found that CRF weakly modi-

fies the relationship between age and GM tissue distribu-

tion, accounting for 5% of the variance. Several studies

demonstrated that cross-sectional associations between

CRF, brain morphology, and function overlap, at least in

part, with those that are found in interventions4,5,8,9,14,44.

Thus, a future randomized clinical trial could further elu-

cidate influence of CRF on the trajectory of age-related

GM shifts. Third, we account for covariates of age, gen-

der, levels of education, and total brain parenchymal vol-

ume (Supplementary material A1); there may potentially

be other confounds as well. However, increasing the

number of covariates comes with a trade-off of study

power and multicollinearity.

CRF is mediated by a host of factors, including regularity

of physical activity, genetics, smoking, and metabolic and

cardiovascular comorbidities.57 Future longitudinal studies

could help elucidate the role of exercise intervention in miti-

gating brain tissue losses in both normal ageing and neuro-

degenerative disorders, as it has been shown to increase
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CRF.58 Finally, the ability of 3D TBM as a new neuroin-

formatic technology to bridge structure-function associations

in the brain in a fully automated manner may aid assess-

ment of other therapeutic strategies beyond CRF to mitigate

brain ageing and neurodegenerative diseases.
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Communications online.
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