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Abstract

Background: Analysing kinematic and video data can help identify potentially

erroneous motions that lead to sub‐optimal surgeon performance and safety‐critical
events in robot‐assisted surgery.

Methods: We develop a rubric for identifying task and gesture‐specific executional
and procedural errors and evaluate dry‐lab demonstrations of suturing and needle

passing tasks from the JIGSAWS dataset. We characterise erroneous parts of

demonstrations by labelling video data, and use distribution similarity analysis and

trajectory averaging on kinematic data to identify parameters that distinguish

erroneous gestures.

Results: Executional error frequency varies by task and gesture, and correlates with

skill level. Some predominant error modes in each gesture are distinguishable by

analysing error‐specific kinematic parameters. Procedural errors could lead to lower
performance scores and increased demonstration times but also depend on surgical

style.

Conclusions: This study provides insights into context‐dependent errors that can be
used to design automated error detection mechanisms and improve training and

skill assessment.
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1 | INTRODUCTION

With advances in sensing and computing technology, artificial intel-

ligence, and data science, the next generation of robot‐assisted
surgery (RAS) systems is envisioned to benefit from new capabil-

ities for context‐specific monitoring1 and virtual coaching during

simulation training as well as decision support and cognitive

assistance during actual surgery to improve safety, efficiency, and

quality of care.2 State‐of‐the‐art RAS systems and simulators are

designed with data logging mechanisms to collect system logs, ki-

nematics, and video data from surgical procedures. The recorded

data has been mostly used for offline surgical skill evaluation,3–5 with

the aim of improving surgeons' performance and making evaluations

objective and scalable.
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Current methods for objective assessment of robotic technical

skills can be classified into two general categories: manual assessment

and automated assessment. Manual skill evaluation is usually per-

formed globally, assessing performance over an entire demonstration

using frameworks such asOSATS (Objective StructuredAssessment of

Technical Skills),6 GOALS (Global Operative Assessment of Laparo-

scopic Skills),7 GEARS,8 and R‐OSATS.9 However, manual assessment
methods are subjective, cognitively demanding, and prone to errors.3

In response, automated assessmentmethods utilising kinematic, video,

and system event data10 are being developed to provide objective and

quantitative metrics3 and,11 and explainable feedback.12 Automated

methods also allow the subdivision of demonstrations into subtasks or

gestures, and to base performance assessment and technical skill

evaluation on the quality and/or sequence of these components as

proposed in references1,5,14 Further, some gestures are more indica-

tive of skill level than others.15

The metrics used for surgical skill assessment can be classified

into three broad categories of: (i) efficiency (e.g., path length,

completion time), (ii) safety (e.g., instrument collisions,16 instruments

out of view, excessive force, needle drops, and tissue damage17), and

(iii) task/procedure specific metrics (e.g., task outcome metrics,

camera movement, and energy activation18).

While most previous works focussed on skill evaluation for dis-

tinguishing between expertise levels, less attention has been paid to

identifying specific erroneous surgical motions that contribute to sub‐
optimal performance and potential safety‐critical events. The closest
related works are Moorthy et al.19 and Guni et al.20 which proposed

objective gesture‐based checklists for laparoscopic and robot‐assisted
suturing. Others have proposed general and custom rubrics for eval-

uation of human errors21 and technical errors22 in laparoscopic sur-

gery. Related works on errors in RAS mainly focussed on analysing

adverse events and system malfunctions as reported by the surgical

teamsand institutions.23AugmentingRAS systemsand simulatorswith

mechanisms for monitoring the progress of surgical tasks and

providing early and context‐specific feedback to surgeons on poten-

tially sub‐optimal or unsafe motions could help improve performance
scores in training and prevent safety‐critical events in actual surgery.1

In this study, we take a step towards developing automated

safety monitoring mechanisms for RAS by defining a rubric for iden-

tifying task and gesture‐specific errors based on video and kinematic

data. We use this rubric to analyse recorded dry‐lab demonstrations

of two common tasks (suturing and needle passing) performed on the

da Vinci Surgical System (dVSS). We focus on identifying which parts

of a trajectory (spanning one or more gestures) are potentially erro-

neous (sub‐optimal) versus error‐free (optimal). We then characterise

the erroneous trajectories by identifying the most common types of

errors for each task and gesture, and the kinematic parameters and

surgeon‐specific signatures that distinguish between optimal and sub‐
optimal performance. The results from this study can aid in designing

more efficient training modules, curricula, and simulation tools that

reinforce optimal performance by providing detailed, quantitative,

and context‐specific feedback to surgeons. In summary, we propose a
novel framework for objective evaluation of RAS procedures with the

following key contributions (Our labels, code, and data are available

at https://github.com/UVA‐DSA/ExecProc_Error_Analysis):

– A task and gesture‐specific rubric for identification of executional

and procedural errors using data collected from real or simulated

surgical demonstrations.

– A set of executional error labels based on manual annotation of

video data to augment the suturing and needle passing tasks of the

JIGSAWS dataset.24

– Quantitative analysis methods to characterise gesture‐specific
executional and task‐specific procedural errors using pre‐
collected kinematic data and gesture labels.

– Insights on the types, frequencies, and durations of executional

and procedural errors across tasks and gestures and their corre-

lations with skill levels which can provide a basis for the design of

automated error detection mechanisms.

2 | METHODS

Sources of errors in RAS are diverse and domain‐specific, including
faults in the robotic system software and hardware, or human er-

rors.23 In this study, we focus on errors in the execution of proced-

ures that can be observed in video recordings and detected in

kinematic data. Surgical procedures follow the hierarchy of levels

defined in Neumuth et al.25 which provides context1 for actions

during the operation, as shown in Figure 1. A surgical operation can

involve multiple procedures which are divided into steps. Each step is

subdivided into tasks comprised of gestures (also called sub‐tasks or
surgemes) which are made of motions such as moving an instrument

or closing the graspers. Errors can occur at any level of this hierarchy

and can propagate and cause errors at other levels. We specifically

focus on studying the quality of the task demonstrations at the

gesture level to answer the following research questions:

RQ1: Which tasks and gestures are most prone to errors?

RQ2: Are there common error modes or patterns across ges-

tures and tasks?

RQ3: Are erroneous gestures distinguishable from normal

gestures?

RQ4: What kinematic parameters can be used to distinguish

between normal and erroneous gestures?

RQ5: Do errors impact the duration of the trajectory?

RQ6: Are there any correlations between errors and surgical

skill levels?

2.1 | Rubric for objective assessment of errors in
robotic surgery

Our goal is to define a rubric for identification of errors based on video

and/or kinematic data, which can also be used for automated error
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detection using quantitative measures such as instrument position,

amount of force, travelling distance, and system events. We adopt a

previous categorisation of human errors in laparoscopic surgery

from21 and define two types of errors in our rubric: Procedural errors

and Executional errors. Procedural errors involve ‘the omission or re‐
arrangement of correctly undertaken steps within the procedure,’

while executional errors are ‘the failure of a specific motor task within

the procedure.’ Technical errors are the ‘failure of a planned action to

achieve a goal’, including inadequate (too much/too little) use of force

or distance, inadequate visualization and wrong orientation of in-

struments or dissection plane,28 and are considered a subtype of

Executional errors that can be quantified with thresholds.

In order to generalise these definitions to different procedures

and tasks, we define Executional and Procedural errors at the gesture

level. More specifically, we define a set of Executional error modes

for each gesture as listed in the rubric in Table 1. Some errors are

gesture‐specific such as ‘needle orientation’ which is only defined for

G4 and G8 as those gestures specifically manipulate the needle in

preparation for positioning the needle (G2) and throwing the next

suture (G3), as shown in the grammar graph of Figure 1 (adopted

from13). The standard acceptable practice for those gestures is to

hold the needle in the grasper half to two‐thirds of the way from the

tip of the needle and with the needle perpendicular to the jaws of the

grasper.19 Other gestures that do not purposely alter the orientation

of the needle in the grasper cannot have this error mode. For G3, the

definition of a ‘multiple attempts’ error also includes ‘not moving

along the curve’ of the needle (from19) since these two errors are

very difficult to distinguish and often happen simultaneously. Other

error modes, including ‘multiple attempts’, ‘needle drop’, and ‘out of

view’, could occur at any time during a task and are considered for

every gesture.

We define Procedural errors as any deviation in the sequence of

gestures performed in a demonstration from the standard accepted

gesture sequences defined for that task and shown in the grammar

graphs in Figures 1 and 221 defined several sub‐categories for proce-
dural errors, including adding an unexpected step, skipping a step, out

of order transition, and repetition of steps. These subcategories are

included in our analysis of procedural errors as discussed in Section2.4.

2.2 | JIGSAWS dataset

The JHU‐ISI Gesture and Skill Assessment Working Set (JIGSAWS)24

is a publicly available dataset, collected using the Research API for

the da Vinci Surgical System (dVSS) from eight surgeons of varying

skill levels performing three dry‐lab surgical tasks: Suturing, Knot

Tying, and Needle Passing. These tasks are among the standard

modules in most surgical skills training curricula.

The JIGSAWS dataset includes kinematic and video data from

up to 39 demonstrations (or trials) per task along with manually

annotated gesture transcripts (indicating the sequence of gestures,

with the beginning and end of each gesture and its type) and sur-

gical skill levels for each demonstration. The vocabulary of surgical

gestures used for labelling is shown in Table 1. Surgical skills were

characterised using both self‐proclaimed expertise levels and Global

Rating Scale (GRS) score for each demonstration. Self‐
proclaimed (SP) expertise levels were based on the number of

hours of robotic surgical experience, divided into: SP‐Expert
(>100 h), SP‐Intermediate (10–100 h), and SP‐Novice (<10 h).

GRS scores were given using a modified Objective Structured As-

sessments of Technical Skills (OSATS) approach based on six ele-

ments (on a rating‐scale of 1–5 per element): Respect for tissue,

Surgical 
Procedure

Steps

Tasks

Gestures

Mo�ons

Par�al Nephrectomy

Pa�ent 
prepara�on

… Tumor 
excision

Renorrhaphy Hilar 
unclamping

Tumor 
retrieval

Suture large 
vessels

Secure suture 
with clips

Suture renal 
capsule

Secure suture 
with clips

G1 G5 G8 G2 G3 G6 G9 G4 … G6 G11

Open 
jaws

Move to 
suture

Close 
jaws

Pull 
suture

Execu�onal 
error 

propaga�on

Procedural error

Suturing

F I GUR E 1 Surgical hierarchy (adopted from25) for an example urological procedure of partial nephrectomy (based on26 and27) along with
example gesture‐specific executional and procedural errors
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suture/needle handling, time and motion, flow of operation, overall

performance, and quality of final product.24 We also classified the

demonstrations into three groups based on the GRS scores: GRS‐
Novice (0 ≤ GRS ≤ 9), GRS‐Intermediate (10 ≤ GRS ≤ 19), and

GRS‐Expert (20 ≤ GRS ≤ 30).

Figure 2 shows our overall pipeline for the analysis of execu-

tional and procedural errors in the JIGSAWS dataset. Due to the

limited number of demonstrations for the Knot Tying task in the

dataset, our analysis only focussed on suturing and needle passing.

2.3 | Executional error analysis

Kinematic and video data for each trial were first segmented into

gestures based on the gesture transcript annotations. The video clip

for each gesture was then reviewed and labelled by two to three

independent annotators (with experience in robotic surgery and/or

suturing) as normal or erroneous for each error mode. Final labels for

each error mode were obtained by taking the consensus among an-

notators. A gesture example that exhibited one or more errors was

TAB L E 1 Gesture‐specific executional errors for suturing and needle passing in the JIGSAWS dataset

Error mode

Suturing Needle passing

Gesture description

Total number of

errors

Erroneous

gestures (%)

Total number of

errors

Erroneous

gestures (%)

G1 Reaching for needle with

right hand

Multiple attempts 7 29 (28%) N/A 11/30 (37%)

Needle drop 0 2

Out of view 1 10

G2 Positioning needle Multiple attempts 21 22/166 (13%) 51 55/117 (47%)

Needle drop 0 0

Out of view 1 6

G3 Pushing needle through

tissue

Not moving along the curve/

multiple attempts

80 82/164(51%) 17 17/111 (15%)

Needle drop 0 0

Out of view 2 0

G4 Transferring needle from

left to right

Multiple attempts 19 71/119 (60%) 15 23/83 (28%)

Needle orientation 53 9

Needle drop 0 0

Out of view 14 3

G5 Moving to centre with

needle in grip

Needle drop 1 2/37 (5%) 0 3/31 (10%)

Out of view 1 3

G6 Pulling suture with left

hand

Multiple attempts 8 121/163 (74%) 14 46/112 (41%)

Needle drop 2 0

Out of view 120 37

G8 Orienting needle Multiple attempts 18 28/48 (58%) 1 3/28 (11%)

Needle orientation 22 1

Needle drop 0 0

Out of view 4 2

G9 Using right hand to help

tighten suture

Multiple attempts 3 11/24 (46%) 1 1/1 (100%)

Needle drop 0 1

Out of view 11 0

All

gestures

Total number of

errors across

all gestures

Multiple attempts 156 345/750 (46%) 99 159/513 (31%)

Needle drop 3 3

Needle orientation 75 10

Out of view 154 61

Note: Example videos for each error mode can be found at https://www.youtube.com/watch?v=I7jQ6U9jaoc, https://www.youtube.com/watch?v=V‐
NJjgRu2OI, https://www.youtube.com/watch?v=‐UNNWQ3j0yU, and https://www.youtube.com/watch?v=LhNg8uLRQzI.
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marked as erroneous, otherwise, it was labelled as normal. We then

proceeded with the analysis of the patient‐side manipulator (PSM)

kinematic data corresponding to each gesture for all the normal and

erroneous demonstrations of each task.

2.3.1 | Dynamic time warping

We used dynamic time warping (DTW) to measure the similarity be-

tween normal and erroneous trajectories for each gesture. DTW is an

effective method for aligning two temporal sequences, independent of

the non‐linear variations in time, by minimising the Euclidean distance
between the two signals. In our analysis, we performed independent

DTWoneach variable before summing the returned distances for each

parameter listed in Table 2. We found no significant difference be-

tween this method and dependent DTW where all variables in each

parameter group were warped together yielding a single distance

instead of a sum of distances (similar observations were made in

Shokoohi‐Yekta et al.29). DTWwas performedon every combination of

two example trajectories for each gesture. From this, we obtained

comparisons of normal examples to other normal examples (‘Nor‐Nor’)
and comparisons of erroneous examples to normal examples (‘Err‐
Nor’). The DTW distance samples represented a distribution of dis-

tances for the ‘Nor‐Nor’ and ‘Err‐Nor’ subsets as shown in the

histogram of Figure 2. This resulted in two sets of distance samples for

each parameter, each representing a DTW distribution for a compar-

ison subset.

2.3.2 | Kullback–Liebler divergence

Kullback–Liebler (KL) divergence, also called relative entropy, is a

non‐symmetric measure of the difference between two probability

distributions. The KL Divergence between two identical distributions

is zero. As shown in Equation (1), KL divergence was used to compare

the ‘Err‐Nor’ and ‘Nor‐Nor’ DTW distance distributions for each

gesture to determine which parameters had a significant difference

between the two distributions.

DKL DTWErr−NorkDTWNor−Norð Þ ¼ −ΣDTWErr−Norlog
DTWNor−Nor

DTWErr−Nor

� �

: ð1Þ

2.3.3 | Trajectory averaging

We examined the kinematic data for important parameters to verify

differences between normal and erroneous gestures using a method

based on.30 Each signal was time‐normalized by downsampling the

JIGSAWS Dataset

39 Suturing Trials
28 Needle Passing Trials

Detec!on of Unusual Transi!ons 
in Gesture Transcripts

750 Suturing examples
513 Needle Passing examples 

Trajectory Alignment using 
Dynamic Time Warping (DTW)

Distribu!on Similarity Analysis 
via Kullback-Liebler Divergence

Trial Data
• Video
• Kinema!cs
• Surgical Gesture Transcripts
• GRS Scores
• Self declared levels
• Execu�onal error labels
• Procedural error labels
• Procedural error labels
• Execu�onal error labels

Important
Kinema�c Parameters

Minimally Invasive 
Surgery Literature

Gesture Segmenta!on

Gesture Video Clips

Manual Error Labeling

Gesture Data
• Video Clips
• Kinema!c Samples
• Error labels

Gesture Specific 
Error Rubric

DTW Distance Distribu!ons
• Erroneous-Normal (Err-Nor)
• Normal-Normal (Nor-Nor)

* Procedural Errors (Sec�on 3.2)
- Self-proclaimed Skill Levels
- GRS Skill Levels 
- Trial Dura�on 

Kinema!c Trajectory Averaging 
using Fuzzy C-Means Clustering

Erroneous 
Trajectory
Samples 

Normal 
Trajectory
Samples 

Normal-Normal 
DTW Distance 
Sample

Erroneous-Normal 
DTW Distance 
Sample

Correla�on Analysis

* Execu�onal Errors (Sec�on 3.1)
- Gesture Types
- Surgical Skill Levels 
- Gesture Dura�on 
- Trial Dura�on

Task Grammar 
Graphs

- Suturing
- Needle Passing

G1-G5-
G8-G2-
G3-G6-
G9-G4-
G8-G2-
G3-G6-
G4-G2-
G3-G6-
G4-G2-
G3-G6-
G11

Example 
Gesture 

Transcript

F I GUR E 2 Overall methodology for analysis of executional and procedural errors
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signal by 3 (keeping only every third sample) and then linearly

interpolated to stretch it to the average duration of the normal or

erroneous gesture examples of that task (supported by our analysis

of gesture durations in Section 3.1.4). Then, fuzzy c‐means clustering
was performed on each variable and its normalized time index to

obtain the average normal and erroneous trajectories (represented

by 15 cluster centres), shown with blue (normal) and red (erroneous)

dots in Figure 4B.

2.4 | Procedural error analysis

Previous works proposed modelling the standard acceptable

gesture sequences for a task using a grammar graph that shows

the relationship, order, and flow of gestures13–15 The grammar

graph of a task is a digraph with each vertex representing the set

of gestures for the task and each edge representing a common

transition between two gestures. We adopted the grammar

graphs for suturing and needle passing from13 and included an

additional directed link from G1 to G2 in suturing (see Figures 1

and 2).

We acquired the gesture sequences performed for suturing and

needle passing from the JIGSAWS transcripts. Then we developed a

method for checking if each gesture sequence follows the standard

acceptable sequence of gestures in the grammar graph. As shown in

Algorithm 1, for each gesture we check if it is in the grammar graph

for the task and if it is a valid successor of the previous gesture,

otherwise it is marked as a procedural error. Each transcript can have

multiple, possibly sequential, procedural errors. This algorithm, com-

bined with a gesture segmentation algorithm, can be used for auto-

mated detection of procedural errors in real‐time.
Deviations from the grammar graph might also happen because

of variations in surgical style and expertise, as discussed in

Section 3.2.

TAB L E 2 Kinematic variables in the
JIGSAWS dataset (adopted from24)

Index Description of variables Parameter name

39–41 Right PSM1 tool tip position (xyz) R Pos

42–50 Right PSM1 tool tip rotation matrix (R) R Rot Mat

51–53 Right PSM1 tool tip linear velocity (x0 y0 z0) R Lin Vel

54–56 Right PSM1 tool tip rotational velocity (α0 β0 γ0) R Rot Vel

57 Right PSM1 gripper angle (Θ) R Grip Ang

58–60 Left PSM2 tool tip position (xyz) L Pos

61–69 Left PSM2 tool tip rotation matrix (R) L Rot Mat

70–72 Left PSM2 tool tip linear velocity (x0 y0 z0) L Lin Vel

73–75 Left PSM2 tool tip rotational velocity (α0 β0 γ0) L Rot Vel

76 Left PSM2 gripper angle (Θ) L Grip Ang

Algorithm 1: Procedural Error Detection Algorithm
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3 | RESULTS

This section presents a summary of results and observations from our

analysis of the JIGSAWS dataset.

3.1 | Executional errors

Table 1 lists the number of examples of each error mode as well as

the total number of erroneous examples for each gesture. Note that a

gesture example could exhibit multiple error modes, so the sum of

the total number of errors does not necessarily equal the number of

erroneous gestures.

3.1.1 | Distribution of executional errors among
gestures

Figure 3 shows the distribution of errors of each type for each

gesture from Table 1. If a gesture example had more than one error

label, it was counted under the ‘multiple errors’ category.

We made the following observations:

– G5 for both tasks and G1, G8, and G9 for Needle Passing did not

have enough examples of executional errors, so further analysis

was not performed on these gestures. G8 from needle passing and

G5 from both tasks had the lowest percentage of errors because

they may be less challenging than other gestures.

– G2 and G3 have the most ‘multiple attempts’ errors in both tasks

because they require a high level of accuracy in positioning and

driving the needle though the tissue, respectively. G2 has more

errors in Needle Passing because the eye of the ring is a smaller

target than the dot on the fabric. G3 has more errors in Suturing

because surgeons often tried multiple times to align the tip of the

needle with the exit point while the needle was not visible beneath

the fabric. Comparatively in needle passing, the needle only had to

pass through one point and was always visible.

– G4 and G6 from both tasks, and G8 from Suturing have the most

gestures with multiple errors. G4 and G8 both involve manipu-

lating the needle between the graspers and the predominant error

modes were ‘needle orientation’ and ‘multiple attempts’ likely due

to issues with hand coordination. For G6, the main error modes

were ‘out of view’ and ‘multiple attempts’ due to multiple attempts

TAB L E 3 Kinematic parameters with the greatest KL

divergence distinguishing errors in different gestures

Task Gesture Parameters

Suturing G1 Right gripper angle

Right linear velocity

Right position

G3 Right linear velocity

Right rotational velocity

Right gripper angle

G6 Left position

G8 Right position

Left gripper angle

Left linear velocity

Right gripper angle

G9 Left gripper angle

Needle passing G2 Left rotational velocity

Left linear velocity

G3 Left rotational velocity

Right rotation matrix

Right gripper angle

G1 G2 G3 G4 G5 G6 G8 G9

Suturing Gestures
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F I GUR E 3 Distribution of errors for each gesture
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at grasping the needle and pulling it through the ring or tissue and

then moving off‐camera to pull the suture through.

– G6 has a large number of ‘out of view’ errors especially in suturing

possibly because surgeons could not move the camera for the

trials in the JIGSAWS data set. However, a different technique to

pull the suture could have been used such as hand‐over‐hand or

the pulley method that would have kept the tools within view.

3.1.2 | Kinematic parameters for distinguishing
errors in each gesture

We performed a comparative analysis of KL divergence values for

parameters in each gesture and identified the kinematic parameters

that are associated with error occurrence as listed in Table 3. The

following are key observations from this analysis:

– For G1 in suturing, the predominant error mode was ‘multiple

attempts’ at picking up the needle. Figures 4B and 5 show that

erroneous gestures exhibited a second opening and closing of the

grasper and a large difference in Y position trajectories. This ex-

plains the large KL divergences for those right hand parameters in

Figure 4A.

– For G2 in needle passing, Figure 6 shows a large difference in KL

divergence for left rotational and linear velocities which may be

due to the active role the left hand plays in stabilizing the ring

unlike in suturing. This is an important contextual difference be-

tween tasks.

– The main error mode for G3 was ‘not moving along the curve/

Multiple attempts’. Erroneous gestures in suturing were caused

by lateral, instead of characteristically rotational, movements of

the needle while in the fabric. In surgery, lateral movements

may tear tissue and contribute to a safety‐critical event. This
explains the high KL divergences for the parameters listed in

Table 3 and shown in Figure 7A and is consistent with31 who

found that the rate of orientation change during needle inser-

tion (i.e. rotational velocity during G3) was higher for experi-

enced surgeons.

However, needle passing shows nearly the opposite result in

Figure 7B. Upon reviewing the gesture clips for both tasks, we

noticed that clips for suturing showed the right grasper driving the

needle through the fabric and the left grasper pulling it through, but

clips for needle passing began with the needle halfway through the

ring and only showed the left grasper pulling the needle through. Due

to the large difference in KL divergences between the two tasks, we
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see that the part of G3 that involves driving the needle with the right

grasper is important to this gesture's correct execution.

– In both tasks, G4 had KL divergences below 0.6 for all parameters

meaning normal and erroneous examples have very similar

kinematics.

– G6 in suturing had the most errors with primarily ‘out of view’

errors. Figure 8 shows that final Y and Z positions for the left

grasper were much larger for erroneous gestures as the left

grasper exceeded the threshold for visibility while pulling the su-

ture. This explains the large KL divergence for the left position

parameter in Figure 9.
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– There were two main error modes for G8 in suturing: ‘multiple

attempts’ and ‘needle orientation’. Figure 10 shows a comparison

of DTW and KL divergence analysis for G8 from suturing for all

errors, for ‘multiple attempts’ versus all other examples, and for

‘needle orientation’ versus all other examples. The ‘needle

orientation’ error alone had the greatest KL divergence and

contributed the most to the results for all errors. For the ‘multiple

attempts’ error, both the left and right position parameters had

the highest KL divergence which suggests that hand coordination

is important in this gesture. Since this gesture includes the right

gripper moving to grasp the needle, we see that right position is an

important parameter in the ‘multiple attempts’ error both in G1

and G8.

3.1.3 | Executional errors and skill levels

We analysed the relationship between executional errors and sur-

gical skill levels. Based on self‐proclaimed expertise levels,

Figure 11A shows a clear difference in the number of errors across

different self‐proclaimed expertise groups for Suturing. However, no

similar pattern was seen in needle passing. This might be because

suturing is a more difficult task so the number of executional errors is

more reflective of self‐proclaimed skill levels in suturing. For GRS‐
defined skill levels, the total number of executional errors per trial

was larger for GRS‐Novices than for GRS‐experts in needle passing

(Figure 11B), which is consistent with our expectation that experts

with high GRS scores make fewer executional errors than novices.
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However, since there was only one GRS‐Novice trial for Suturing, we
did not observe clear differences.

3.1.4 | Executional errors and gesture duration

We compared erroneous and normal gesture durations using a one‐
tailed t‐test. The null hypothesis is that normal and erroneous ges-

tures have similar durations. The alternative hypothesis is that

erroneous gestures are longer than normal gestures. Figures 12 and

13 respectively show average durations and several examples of

differences in durations (along with the p‐values from the hypothesis

test) for normal and erroneous gestures in both tasks.

We observed that some error types increase the gesture dura-

tion, for example, ‘multiple attempts’ for G1, G2, G3, and G8 in su-

turing, and G2 and G3 in needle passing; and ‘out of view’ for G6 and

G9 for suturing, and G4 in needle passing. Erroneous gestures with

‘out of view’ errors are longer because the distance travelled by the

tool is larger, while the speed is similar. We rejected the null hy-

pothesis and found that erroneous gestures are longer than

normal gestures for all gestures of both tasks. There is a relatively

large p‐value (p = 0.308) for G4 compared to other p‐values. This
could be because ‘needle orientation’ is the primary error mode in G4

and an erroneous needle orientation takes comparable time as a

normal needle orientation.

3.1.5 | Executional errors and trial duration

For each trial, we summed the executional errors of all gestures in the

trial. Then we analysed the correlation between the total number of

executional errors per trial and the duration of the trial (in number of

F I GUR E 1 3 Erroneous versus normal gesture durations for suturing and needle passing
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frames). Figure 14 shows that there is a significant positive correlation

for suturing (r= 0.837, p= 6.18e−12), but no significant correlation for
needle passing. This is likely due to the limited number of trials and

fewer errors for needle passing in the JIGSAWS dataset (see Table 1).

3.2 | Procedural errors

We analysed the numbers and patterns of procedural errors by task,

skill level, and subject. We hypothesise that the number of proce-

dural errors is inversely proportional to surgical experience and

negatively correlated with the demonstration duration.

3.2.1 | Procedural errors and self‐proclaimed skill
levels

We compared the percentage of erroneous trials for SP‐Novice, SP‐
Intermediate, and SP‐Expert groups. As shown in Table 4, we observe
that for both tasks, SP‐Expert surgeons on average had more pro-

cedural errors compared to SP‐Intermediate surgeons. For Needle

Passing, SP‐Intermediate surgeons made more errors than SP‐Novice
surgeons. This could be due to variations in surgical style especially in

more experienced surgeon groups. For example, our analysis of error

patterns by subject showed that one of the SP‐Expert subjects

consistently made G9–G11 transitions in different trials of suturing

(see Figure 1). This is a unique non‐safety‐critical pattern that was

not observed in the trials by other subjects. However, procedural

errors by SP‐Novice subjects were more random and did not follow

specific patterns.

Of the two tasks, the longest erroneous gesture sequence is G4–

G5–G6–G2 in Suturing performed by an SP‐Novice surgeon. Upon

review of the video, G5 may be a typo in the transcript.

3.2.2 | Procedural errors and GRS skill levels

We analysed the correlation between the number of procedural errors

and GRS score (Table 5). The strongest negative correlation between

the number of procedural errors, GRS score, and GRS sub‐scores is in

TAB L E 4 Procedural errors and self‐proclaimed skill levels

Task—skill level

Total number of

procedural errors

Percentage of

erroneous trials

Longest erroneous

gesture sequences

Suturing—SP‐Expert 11 6/10 G9–G6–G2

Suturing—SP‐Intermediate 2 2/10 G3–G11

Suturing—SP‐Novice 23 10/19 G4–G5–G6–G2

Needle passing—SP‐Expert 11 6/9 G2–G6–G10

Needle passing—SP‐Intermediate 9 5/8 G6–G8–G6

Needle passing—SP‐Novice 7 4/11 G6–G5–G6

Total 63 33/67 –

TAB L E 5 Correlation between
number of procedural errors and GRS
sub‐scores for suturing and needle

passingGRS sub‐score

Suturing Needle passing

Correlation

p value

Correlation

p valueCoefficient Coefficient

Respect for tissue −0.41 0.009 −0.12 0.528

Suture and needle handling −0.50 0.001 −0.26 0.184

Time and motion −0.55 <0.001 −0.11 0.594

Flow of operation −0.43 0.006 −0.22 0.268

Overall performance −0.62 <0.001 −0.16 0.412

Quality of final product −0.26 0.115 −0.02 0.920

GRS score −0.51 <0.001 −0.15 0.434
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suturing. Among the sub‐scores of suturing, overall performance has
the strongest negative correlation with procedural errors. This could

happen because an inefficient procedure has the greatest impact on

overall performance in suturing. Needle passing has a weaker negative

correlation between procedural errors and GRS score. The needle

handling sub‐score has the highest negative correlation with

the number of procedural errors. This is expected as needle handling is

the main component of the needle passing task and poor performance

due to procedural errors will lead to a lower score.

3.2.3 | Procedural errors and trial duration

In suturing, there is a significant positive correlation between pro-

cedural errors and the duration of the trials, so more procedural

errors lead to longer trials. However, there is no significant correla-

tion in needle passing possibly because needle passing is an easier

task (Table 6).

4 | DISCUSSION

We used our insights from the analysis of executional and procedural

errors in the JIGSAWS dataset to answer the research questions

posed in Section 2:

RQ1: Which tasks and gestures are most prone to errors?More

challenging gestures in each task that require a high level of accuracy

and hand coordination were more prone to executional errors. As

shown in Table 1, suturing is more difficult than needle passing and

had a greater number of executional errors. G6, G3, and G4 had the

greatest number of executional errors in suturing while G2 and G6

had the greatest number of executional errors in needle passing.

However, procedural errors were almost equally likely in both

tasks. 18/39 suturing trials and 15/28 needle passing trials contained

procedural errors (Table 4).

RQ2: Are there common error modes or patterns across ges-

tures and tasks? Within each task, each gesture had a different

predominant error mode that correlated with the challenging aspects

of performing the gesture. For both tasks, G2 and G3 had a large

number of ‘multiple attempts’ errors, G5 had the fewest errors, G6

had the largest number of ‘out of view’ errors, and G4 and G6 had the

greatest number of gestures with multiple errors. Thus, executional

errors are context‐specific and their type and frequency depend on

both task and gesture.

RQ3: Are erroneous gestures distinguishable from normal

gestures? KL divergence magnitude provides insight into which

gestures have the greatest difference between normal and erroneous

examples. We found that G9 from suturing, G2 from needle passing,

and G3 from suturing had the three greatest KL divergences for any

parameter. However, upon examination of kinematic data for the left

gripper angle of G9 from suturing, the large KL divergence for this

gesture could be due to the effect of three outlying gestures on an

already relatively small sample of only 24 examples.

RQ4: What kinematic parameters can be used to distinguish

between normal and erroneous gestures? Table 3 lists the parame-

ters with the greatest KL divergence for each gesture and task which

can be used to develop automated error detectors. Focussing on a

subset of variables for a given task and gesture may enable and

improve real‐time error detection and skill‐assessment by reducing

processing time and providing context. Our KL divergence analysis

approximated the DTW distance distributions as Gaussian, which

might not be always accurate. Future work will focus on further

refining our analysis method to address this limitation.

RQ5: Do errors impact the duration of the trajectory? Execu-

tional and procedural errors often lead to lengthier trials, especially

during more complicated tasks such as suturing. Timely detection and

correction during training or surgery will enable more efficient and

safer patient care, and aid in reducing learning curves and time to

certification.

RQ6:Are there any correlations between errors and surgical skill

levels? The total number of executional errors made per trial could

help differentiate skill levels. We found this to be true for self‐
proclaimed skill levels in Suturing andGRS skill levels in needle passing.

There was a significant negative correlation between overall GRS

scores and sub‐scores and the total number of procedural errors

made per trial in Suturing meaning a greater number of procedural

errors contributes to a lower GRS score. After examining procedural

error patterns, we noticed that self‐proclaimed novice surgeons tend
to closely follow the grammar graph, but experts have unique sig-

natures that deviate from the graph. This motivates developing

automated gesture identification and procedural error detection

techniques based on grammar graphs for training novice surgeons in

simulation experiments. Further verification of the correlation be-

tween errors and skill levels requires access to larger datasets rep-

resenting more tasks and surgeons. Additionally, the grammar graphs

cannot completely capture all possible valid gesture sequences and

surgeon‐specific signatures, and manual labelling may introduce er-

rors in the gesture transcripts (e.g., incorrectly adding or missing

some gestures) that might lead to incorrect detection of errors.

5 | CONCLUSION

We presented a new rubric and method for objective evaluation of

RAS procedures with a focus on gesture and task‐specific executional
and procedural errors. We used the proposed rubric to evaluate dry‐
lab demonstrations of Suturing and Needle Passing tasks. Our anal-

ysis identified the most common error modes and their correlations

with skill levels and demonstration times as well as important error‐

TAB L E 6 Correlation between procedural errors and trial
durations

Task r p value

Suturing 0.71 <0.001

Needle passing 0.17 0.399
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specific kinematic parameters that distinguish erroneous gestures.

This study is a step towards developing methods for automated error

detection and providing real‐time context‐dependent feedback for

performance improvement. Future work will extend the error rubric

and analytic methods to larger datasets and other surgical tasks.
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