

Received 25 June 2015 Accepted 11 September 2015

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; aluminium; indolyl; C—H··· π interactions

CCDC reference: 1423793 Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, characterization and crystal structure of a 2-(diethylaminomethyl)indole ligated dimethylaluminium complex

CrossMark

Logan E. Shephard and Nicholas B. Kingsley*

Department of Chemistry and Biochemistry, 556 MSB, 303 E. Kearsley, Flint, MI 48502, USA. *Correspondence e-mail: kingsley@umflint.edu

The title compound, $[Al(CH_3)_2(C_{13}H_{17}N_2)]$ (systematic name; {2-[(diethyl-amino)methyl]indol-1-yl- $\kappa^2 N, N'$ }dimethylaluminium), was prepared by methane elimination from the reaction of 2-(diethylaminomethyl)indole and trimethylaluminium. The complex crystallizes readily from a concentrated toluene solution in high yield. The asymmetric unit contains two crystallographically independent molecules. Each molecule has a four-coordinate aluminium atom that has pseudo-tetrahedral geometry. $C-H\cdots\pi$ interactions link the independent molecules into chains extending along the *b*-axis direction.

1. Chemical context

Organoaluminium chemistry has a long history of active research that has led to numerous applications in industry (Mason, 2005). Organoaluminium compounds have garnered much attention in recent years for their use in the formation of polyactides, (Liu et al., 2010; Chisholm et al., 2003, 2005; Zhang et al., 2014; Chen et al., 2012; Schwarz et al., 2010) and hydroamination (Koller & Bergman, 2010a,b; Khandelwal & Wehmschulte, 2012). While many varieties of ancillary ligands on aluminium have been employed in such reactions, a majority of these systems have nitrogen-donor arms as a component. Our group is interested in particular in the use of 2-(dialkylaminomethyl)indoles (Nagarathnam, 1992) as ligands for organoaluminium complexes. Herein we report the synthesis, characterization and crystal structure of the first 2-(dialkylaminomethyl)indolyl-aluminium complex, [Al(CH₃)₂(C₁₃H₁₇N₂)].

OPEN 👌 ACCESS

2. Structural commentary

The asymmetric unit of the title complex contains two independent molecules (Fig. 1). They are structurally different with regard to the chelate rings that are formed around the aluminium atoms by the indolyl moiety. The most obvious difference between the two crystallographically independent molecules is the displacement of the Al atom from the plane of the chelate ring. Al1 deviates by 0.6831 (5) Å from the plane

Figure 1

A view of the asymmetric unit of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

defined by atoms N1/C10/C1/N2 while Al1*A* deviates by 0.6150 (5) Å from the plane N1*A*/C10*A*/C1*A*/N2*A*. Each molecule contains a four-coordinate, pseudo-tetrahedral, aluminium atom. There are two distinct bond lengths for the Al–N bonds in the molecule. The Al–N_{indolyl} bond lengths are 1.8879 (14) Å for Al1–N1 and 1.8779 (15) Å for Al1*A*–N1*A*. These lengths are in the range expected for anionically bound indolyl or pyrrolyl moieties (Huang *et al.*, 2001). As expected, these lengths are significantly shorter than those found for the dative Al–N_{imine} bonds, 2.0355 (15) Å for Al1–N2 and 2.0397 (16) Å for Al1*A*–N2*A* [see Huang *et al.* (2001) for typical values].

Figure 2 Crystal packing diagram of the title compound viewed along the *a* axis.

Figure 3 C-H··· π interactions between molecules in the asymmetric unit.

3. Supramolecular features

The crystal packing is illustrated in Fig. 2. In the crystal, molecules associate *via* three different types of $C-H\cdots\pi$ interactions, as shown in Figs. 3 and 4. There is one interaction between the methyl proton H5A and the centroid of the (C12A-C17A) aromatic ring of 2.57 Å (Table 1) and another between the methylene proton H4D and the aromatic C14 of 2.88 Å. The third interaction is between H2B and the centroid of C12Aⁱ-C17Aⁱ [Table 1; symmetry code: (i) 1 - x, $-\frac{1}{2} + y$, 1 - z]. This interaction links the two independent molecules in the asymmetric unit into chains that extend along the *b*-axis direction.

Figure 4 All C-H··· π interactions between molecules of the title compound. [Symmetry code: (i) 1 - x, $-\frac{1}{2} + y$, 1 - z.]

research communications

Table	1			
$C-H \cdot$	$\cdot \cdot \pi$ int	eractions	(Å,	°).

Cg1 is the centroid of the C12A-C17A ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5A\cdots Cg1$	0.98	2.57	3.470 (2)	153
$C2-H2B\cdots Cg1^{1}$	0.99	2.55	3.434 (2)	149

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, -z + 1.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) for indolyl gave 500 hits. A search for indolide generated 18 hits. Neither of these sets of hits included structures involving indolyl moieties bound to aluminium. A substructure search for N-bound indolylcoordinating aluminium complexes resulted in only five hits (Kingsley *et al.*, 2010), all of which contained bridging $\mu^2:\eta^1:\eta^1$ coordination modes. The title compound is the first structurally characterized complex with a monomeric $\mu^1:\eta^1$ coordinating indole moiety to aluminium.

5. Synthesis and crystallization

To a 100 mL side-arm flask was added 2-(diethylaminomethvl)indole (0.402 g, 2.0 mmol) and 25 mL of toluene. A toluene solution of trimethylaluminium (1.0 mL, 2.0 M, 2.0 mmol) was added via syringe. The reaction solution turned bright yellow, which darkened as the solution was stirred for 12 h. The solvent was then removed in vacuo resulting in a yellow solid, which was dissolved in a mixture of 10 mL of hot toluene, followed by cooling to 243 K for 48 h. The resulting yellow crystalline material was isolated by filtration. Yield: 0.462 g, 1.78 mmol, 90%. ¹H NMR (CDCl₃, 600 MHz): δ 7.55 (d, ³J_{HH} = 7.8 Hz, 1H, H16), 7.36 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, H13), 7.07 (t, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, H15), 7.00 (t, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, H14), 6.31 $(s, 1H, H11), 4.00 (s, 2H, indole CH_2), 2.88 (q, {}^{3}J_{HH} = 7.2 \text{ Hz},$ 4H, amino CH_2 CH₃), 1.13 (t, ${}^{3}J_{HH} = 7.2$ Hz, 6H, amino CH₂CH₃), -0.59 (s, 6H, AlCH₃). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 150.8 MHz): δ 141.7 (C17), 139.4 (C10), 131.8 (C12), 120.2 (C15), 119.6 (C16), 118.5 (C15), 113.7 (C14), 98.1 (C11), 53.2 (indole CH_2), 44.7 (amino CH_2CH_3), 8.3 (amino CH_2CH_3), -11.10 (br, AlCH₃) (Kingsley et al., 2010). Analysis calculated for C₁₅H₂₃N₂Al: C, 69.74; H, 8.97; N, 10.84. Found: C, 69.67; H, 8.70; N, 10.63.

X-ray quality crystals were grown from a concentrated solution in hot toluene followed by slow cooling to room temperature followed by storage at 243 K for 72 h.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Al(CH_3)_2(C_{13}H_{17}N_2)]$
M _r	258.33
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	150
a, b, c (Å)	9.7467 (5), 14.1245 (7), 10.9866 (5)
β (°)	94.206 (1)
$V(A^3)$	1508.42 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.12
Crystal size (mm)	$0.20 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2003)
T_{\min}, T_{\max}	0.697, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13157, 5440, 5366
R _{int}	0.025
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.624
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.068, 1.05
No. of reflections	5440
No. of parameters	333
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.21, -0.19
Absolute structure	Flack x determined using 2203 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.05 (3)
`	

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010)..

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model with C–H = 0.05-0.99 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Acknowledgements

The authors would like to thank the University of Michigan-Flint Office of Research and Sponsored Programs for their support of this project. Special acknowledgement is given to Dr Chris Gianopoulos for assistance in data collection and structure refinement and to the University of Toledo Instrumentation Center for the use of their Bruker APEXII diffractometer.

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Chen, H.-L., Dutta, S., Huang, P.-Y. & Lin, C.-C. (2012). Organometallics, **31**, 2016–2025.

- Chisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B. T. (2003). *Dalton Trans.* pp. 406–412.
- Chisholm, M. H., Patmore, N. J. & Zhou, Z. (2005). Chem. Commun. pp. 127–129.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Huang, J., Chen, H., Chang, C., Zhou, C., Lee, G. & Peng, S. (2001). Organometallics, **20**, 2647–2650.
- Khandelwal, M. & Wehmschulte, R. J. (2012). J. Organomet. Chem. 696, 4179–4183.
- Kingsley, N. B., Kirschbaum, K. & Mason, M. R. (2010). Organometallics, 29, 5927–5935.
- Koller, J. & Bergman, R. G. (2010a). Chem. Commun. 46, 4577-4579.
- Koller, J. & Bergman, R. G. (2010b). Organometallics, 29, 5946–5952.

- Liu, Z., Gao, W., Zhang, J., Cui, D., Wu, Q. & Mu, Y. (2010). Organometallics, 29, 5783–5790.
- Mason, M. R. (2005). *Encyclopedia of Inorganic Chemistry*, Vol. 1, 2nd ed., edited by B. King, pp. 185–210. Hoboken, NJ: Wiley.
- Nagarathnam, D. (1992). Synthesis, pp. 743-745.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Schwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246–1260.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, W., Wang, Y., Wang, L., Redshaw, C. & Sun, W.-H. (2014). J. Organomet. Chem. 750, 65-73.

supporting information

Acta Cryst. (2015). E71, 1222-1225 [doi:10.1107/S2056989015017053]

Synthesis, characterization and crystal structure of a 2-(diethylaminomethyl)indole ligated dimethylaluminium complex

Logan E. Shephard and Nicholas B. Kingsley

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *publCIF* (Westrip, 2010)..

${2-[(Diethylamino)methyl]indol-1-yl-\kappa^2N,N'}dimethylaluminium$

Crystal data	
$[Al(CH_3)_2(C_{13}H_{17}N_2)]$ $M_r = 258.33$ Monoclinic, $P2_1$ a = 9.7467 (5) Å b = 14.1245 (7) Å c = 10.9866 (5) Å $\beta = 94.206$ (1)° V = 1508.42 (13) Å ³ Z = 4	F(000) = 560 $D_x = 1.138 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5904 reflections $\theta = 2.4-26.4^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 150 K Irregular, yellow $0.20 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{\min} = 0.697, T_{\max} = 0.745$ 13157 measured reflections	5440 independent reflections 5366 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.3^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -12 \rightarrow 10$ $k = -16 \rightarrow 17$ $l = -13 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.068$ S = 1.05 5440 reflections 333 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0388P)^{2} + 0.2513P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 2203 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons <i>et al.</i> , 2013) Absolute structure parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
All	0.49235 (5)	0.10530 (4)	0.05845 (4)	0.01712 (12)
AllA	0.00034 (5)	0.32156 (4)	0.44114 (4)	0.01652 (12)
N1	0.29822 (14)	0.10862 (11)	0.04241 (13)	0.0187 (3)
N1A	0.19261 (14)	0.30931 (11)	0.44801 (12)	0.0185 (3)
N2	0.46863 (14)	0.02289 (10)	0.20745 (13)	0.0166 (3)
N2A	0.02362 (15)	0.42016 (11)	0.30859 (12)	0.0185 (3)
C1	0.33910 (17)	-0.03044 (13)	0.16893 (16)	0.0194 (3)
H1A	0.3588	-0.0811	0.1105	0.023*
H1B	0.3005	-0.0598	0.2408	0.023*
C2	0.58090 (17)	-0.04771 (13)	0.23735 (16)	0.0210 (4)
H2A	0.5922	-0.0876	0.1647	0.025*
H2B	0.5532	-0.0896	0.3035	0.025*
C3	0.7178 (2)	-0.00237 (15)	0.2769 (2)	0.0311 (4)
H3A	0.7883	-0.0516	0.2893	0.047*
H3B	0.7099	0.0322	0.3534	0.047*
H3C	0.7439	0.0417	0.2136	0.047*
C4	0.44570 (18)	0.08681 (13)	0.31419 (15)	0.0201 (3)
H4A	0.3664	0.1285	0.2912	0.024*
H4B	0.5276	0.1278	0.3291	0.024*
C5	0.4190 (2)	0.03699 (15)	0.43275 (17)	0.0319 (4)
H5A	0.4053	0.0843	0.4960	0.048*
H5B	0.4981	-0.0030	0.4585	0.048*
H5C	0.3365	-0.0025	0.4202	0.048*
C6	0.57142 (19)	0.23092 (14)	0.09103 (18)	0.0263 (4)
H6A	0.6534	0.2252	0.1478	0.039*
H6B	0.5035	0.2713	0.1272	0.039*
H6C	0.5969	0.2592	0.0144	0.039*
C7	0.58197 (19)	0.02303 (15)	-0.05668 (16)	0.0254 (4)
H7A	0.6789	0.0143	-0.0284	0.038*
H7B	0.5760	0.0524	-0.1377	0.038*
H7C	0.5357	-0.0386	-0.0613	0.038*
C10	0.23890 (17)	0.03923 (13)	0.11001 (15)	0.0190 (3)
C11	0.10054 (18)	0.05168 (13)	0.11525 (16)	0.0215 (4)
H11	0.0391	0.0126	0.1559	0.026*
C12	0.06711 (17)	0.13596 (14)	0.04673 (16)	0.0204 (4)
C13	-0.05440 (18)	0.18738 (15)	0.01868 (16)	0.0256 (4)
H13	-0.1397	0.1651	0.0442	0.031*
C14	-0.0484 (2)	0.27035 (16)	-0.04612 (17)	0.0283 (4)
H14	-0.1304	0.3053	-0.0655	0.034*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C15	0.0767 (2)	0.30439 (15)	-0.08420 (16)	0.0281 (4)
H15	0.0783	0.3624	-0.1277	0.034*
C16	0.19806 (19)	0.25458 (14)	-0.05925 (16)	0.0238 (4)
H16	0.2827	0.2777	-0.0852	0.029*
C17	0.19268 (17)	0.16992 (13)	0.00483 (15)	0.0188 (3)
C1A	0.14884 (18)	0.38445 (14)	0.24981 (15)	0.0219 (4)
H1D	0.1228	0.3324	0.1924	0.026*
H1E	0.1900	0.4361	0.2037	0.026*
C2A	0.05447 (18)	0.51442 (13)	0.36912 (15)	0.0216 (4)
H2D	0.1376	0.5072	0.4258	0.026*
H2E	-0.0229	0.5309	0.4187	0.026*
C3A	0.0777 (2)	0.59665 (15)	0.28370 (18)	0.0299 (4)
H3D	0.0966	0.6543	0.3317	0.045*
H3E	-0.0047	0.6061	0.2284	0.045*
H3F	0.1563	0.5826	0.2359	0.045*
C4A	-0.09529 (19)	0.42606 (15)	0.21401 (16)	0.0252 (4)
H4D	-0.1106	0.3629	0.1764	0.030*
H4E	-0.0714	0.4704	0.1490	0.030*
C5A	-0.2272 (2)	0.45879 (17)	0.26472 (19)	0.0327 (5)
H5D	-0.3030	0.4539	0.2013	0.049*
H5E	-0.2173	0.5248	0.2914	0.049*
H5F	-0.2470	0.4190	0.3343	0.049*
C6A	-0.0962 (2)	0.21207 (14)	0.36621 (17)	0.0259 (4)
H6D	-0.1936	0.2277	0.3485	0.039*
H6E	-0.0880	0.1582	0.4225	0.039*
H6F	-0.0553	0.1955	0.2902	0.039*
C7A	-0.06954 (18)	0.37556 (15)	0.58896 (16)	0.0234 (4)
H7D	-0.1698	0.3820	0.5775	0.035*
H7E	-0.0281	0.4380	0.6048	0.035*
H7F	-0.0456	0.3337	0.6585	0.035*
C10A	0.25049 (18)	0.34955 (13)	0.34895 (15)	0.0198 (3)
C11A	0.39089 (18)	0.34640 (14)	0.36008 (16)	0.0223 (4)
H11A	0.4520	0.3707	0.3042	0.027*
C12A	0.42739 (18)	0.29896 (12)	0.47316 (16)	0.0202 (4)
C13A	0.55142 (18)	0.27146 (14)	0.53626 (18)	0.0261 (4)
H13A	0.6369	0.2843	0.5032	0.031*
C14A	0.54780 (19)	0.22547 (15)	0.64699 (18)	0.0284 (4)
H14A	0.6316	0.2067	0.6899	0.034*
C15A	0.4220 (2)	0.20598 (14)	0.69735 (17)	0.0256 (4)
H15A	0.4225	0.1744	0.7737	0.031*
C16A	0.29816 (18)	0.23198 (13)	0.63774 (16)	0.0205 (3)
H16A	0.2135	0.2192	0.6723	0.025*
C17A	0.30091 (17)	0.27766 (13)	0.52507 (15)	0.0179 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
All	0.0165 (2)	0.0158 (3)	0.0194 (2)	0.00128 (19)	0.00356 (18)	0.00057 (19)

Al1A	0.0162 (2)	0.0184 (3)	0.0150 (2)	-0.00063 (19)	0.00145 (18)	-0.00094 (19)
N1	0.0183 (6)	0.0191 (8)	0.0189 (7)	0.0012 (6)	0.0020 (5)	0.0021 (6)
N1A	0.0193 (7)	0.0195 (8)	0.0168 (6)	0.0008 (6)	0.0031 (5)	0.0009 (6)
N2	0.0177 (6)	0.0129 (7)	0.0192 (6)	0.0013 (6)	0.0003 (5)	-0.0014 (6)
N2A	0.0219 (7)	0.0181 (7)	0.0152 (6)	0.0007 (6)	0.0000 (5)	-0.0016 (5)
C1	0.0208 (8)	0.0148 (8)	0.0225 (8)	-0.0028 (7)	0.0007 (6)	0.0005 (6)
C2	0.0212 (8)	0.0159 (9)	0.0258 (8)	0.0046 (7)	-0.0001 (7)	0.0011 (7)
C3	0.0231 (9)	0.0283 (11)	0.0409 (11)	0.0037 (8)	-0.0039 (8)	0.0035 (9)
C4	0.0265 (8)	0.0148 (9)	0.0191 (8)	0.0010 (7)	0.0022 (6)	-0.0021 (6)
C5	0.0516 (12)	0.0236 (10)	0.0216 (9)	-0.0026 (9)	0.0099 (8)	-0.0019 (8)
C6	0.0255 (9)	0.0194 (10)	0.0348 (10)	-0.0016 (7)	0.0083 (8)	0.0002 (8)
C7	0.0277 (9)	0.0250 (10)	0.0241 (9)	0.0055 (8)	0.0061 (7)	0.0005 (7)
C10	0.0209 (8)	0.0165 (8)	0.0194 (7)	-0.0024 (7)	0.0012 (6)	-0.0009 (6)
C11	0.0194 (8)	0.0227 (10)	0.0225 (8)	-0.0037 (7)	0.0024 (6)	-0.0004 (7)
C12	0.0194 (8)	0.0235 (9)	0.0182 (8)	0.0007 (7)	0.0011 (6)	-0.0046 (7)
C13	0.0211 (8)	0.0341 (11)	0.0216 (8)	0.0050 (8)	0.0013 (7)	-0.0061 (7)
C14	0.0283 (9)	0.0345 (11)	0.0216 (8)	0.0148 (8)	-0.0018 (7)	-0.0042 (8)
C15	0.0390 (10)	0.0253 (10)	0.0201 (8)	0.0117 (8)	0.0026 (7)	0.0031 (7)
C16	0.0275 (9)	0.0256 (10)	0.0189 (8)	0.0042 (7)	0.0048 (7)	0.0027 (7)
C17	0.0206 (8)	0.0206 (9)	0.0152 (7)	0.0024 (7)	0.0011 (6)	-0.0019 (6)
C1A	0.0253 (8)	0.0244 (9)	0.0166 (8)	0.0014 (7)	0.0053 (6)	0.0000(7)
C2A	0.0268 (8)	0.0181 (9)	0.0197 (8)	-0.0009(7)	0.0006 (7)	-0.0026 (7)
C3A	0.0372 (10)	0.0223 (10)	0.0301 (9)	-0.0035 (8)	0.0034 (8)	0.0017 (8)
C4A	0.0296 (9)	0.0271 (10)	0.0177 (8)	-0.0012 (8)	-0.0064 (7)	0.0010 (7)
C5A	0.0275 (9)	0.0354 (12)	0.0338 (10)	0.0040 (8)	-0.0064 (8)	0.0004 (9)
C6A	0.0291 (9)	0.0246 (10)	0.0237 (9)	-0.0051 (8)	-0.0004 (7)	-0.0022 (8)
C7A	0.0211 (8)	0.0295 (10)	0.0198 (8)	-0.0006 (7)	0.0034 (6)	-0.0037 (7)
C10A	0.0239 (8)	0.0183 (8)	0.0177 (8)	-0.0005 (7)	0.0063 (6)	-0.0015 (6)
C11A	0.0225 (8)	0.0211 (9)	0.0244 (8)	-0.0027 (7)	0.0097 (7)	-0.0041 (7)
C12A	0.0209 (8)	0.0158 (9)	0.0242 (8)	-0.0003 (6)	0.0050 (7)	-0.0067 (6)
C13A	0.0182 (8)	0.0244 (10)	0.0358 (10)	0.0015 (7)	0.0040 (7)	-0.0085 (8)
C14A	0.0227 (9)	0.0277 (10)	0.0335 (10)	0.0079 (7)	-0.0063 (7)	-0.0081 (8)
C15A	0.0307 (9)	0.0213 (10)	0.0239 (8)	0.0056 (8)	-0.0031 (7)	-0.0024 (7)
C16A	0.0226 (8)	0.0172 (9)	0.0218 (8)	0.0021 (7)	0.0028 (6)	-0.0024 (6)
C17A	0.0188 (8)	0.0148 (8)	0.0203 (8)	0.0008 (6)	0.0021 (6)	-0.0047 (7)

Geometric parameters (Å, °)

Al1—N1	1.8879 (14)	C12—C17	1.422 (2)	
All—C6	1.957 (2)	C13—C14	1.375 (3)	
All—C7	1.9686 (19)	C13—H13	0.9500	
Al1—N2	2.0355 (15)	C14—C15	1.403 (3)	
Al1A—N1A	1.8779 (15)	C14—H14	0.9500	
Al1A—C6A	1.960 (2)	C15—C16	1.386 (3)	
Al1A—C7A	1.9610 (18)	C15—H15	0.9500	
Al1A—N2A	2.0397 (16)	C16—C17	1.391 (3)	
N1-C10	1.382 (2)	C16—H16	0.9500	
N1—C17	1.384 (2)	C1AC10A	1.501 (2)	

N1A—C17A	1.378 (2)	C1A—H1D	0.9900
N1A—C10A	1.384 (2)	C1A—H1E	0.9900
N2—C2	1.499 (2)	C2A—C3A	1.521 (3)
N2—C1	1.504 (2)	C2A—H2D	0.9900
N2—C4	1.510 (2)	C2A—H2E	0.9900
N2A—C4A	1.501 (2)	C3A—H3D	0.9800
N2A—C2A	1.509 (2)	СЗА—НЗЕ	0.9800
N2A—C1A	1.509 (2)	C3A—H3F	0.9800
C1—C10	1.500 (2)	C4A—C5A	1.511 (3)
C1—H1A	0.9900	C4A—H4D	0.9900
C1—H1B	0.9900	C4A—H4E	0.9900
C2—C3	1.515 (3)	C5A—H5D	0.9800
C2—H2A	0.9900	C5A—H5E	0.9800
C2—H2B	0.9900	C5A—H5F	0.9800
С3—НЗА	0.9800	C6A—H6D	0.9800
С3—Н3В	0.9800	С6А—Н6Е	0.9800
С3—НЗС	0.9800	C6A—H6F	0.9800
C4—C5	1.520 (2)	C7A—H7D	0.9800
C4—H4A	0.9900	C7A—H7E	0.9800
C4—H4B	0.9900	C7A—H7F	0.9800
C5—H5A	0.9800	C10A—C11A	1.366 (2)
С5—Н5В	0.9800	C11A—C12A	1.433 (3)
C5—H5C	0.9800	C11A—H11A	0.9500
С6—Н6А	0.9800	C12A—C13A	1.404 (2)
С6—Н6В	0.9800	C12A—C17A	1.428 (2)
С6—Н6С	0.9800	C13A—C14A	1.382 (3)
С7—Н7А	0.9800	C13A—H13A	0.9500
С7—Н7В	0.9800	C14A—C15A	1.409 (3)
С7—Н7С	0.9800	C14A—H14A	0.9500
C10—C11	1.365 (2)	C15A—C16A	1.380 (2)
C11—C12	1.433 (3)	C15A—H15A	0.9500
C11—H11	0.9500	C16A—C17A	1.398 (2)
C12—C13	1.404 (2)	C16A—H16A	0.9500
N1C6	111 01 (8)	C14_C13_C12	119 17 (18)
N1 - A11 - C7	116.33 (8)	C14 - C13 - C12 C14 - C13 - H13	120.4
C6-A11-C7	117 73 (8)	C12-C13-H13	120.4
N1N2	85 25 (6)	$C_{12} = C_{13} = C_{15}$	120.4 121 16 (17)
C6-A11-N2	115.96(7)	C_{13} C_{14} H_{14}	119.4
$C7_A11_N2$	115.90(7) 105.14(7)	C15 - C14 - H14	119.4
N1A = A11A = C6A	103.14(7) 113.03(8)	C_{16} C_{15} C_{14} C_{14}	120.99 (19)
N1A = A11A = C7A	113.03(8) 114.12(7)	C16-C15-H15	120.99 (19)
C6A = A11A = C7A	117.12 (7)	C14—C15—H15	119.5
N1A = A11A = N2A	85 91 (6)	$C_{14} = C_{15} = -1115$ $C_{15} = C_{16} = C_{17}$	119.5
C64 = A114 = N2A	108 30 (7)	C15 - C16 - H16	120.9
C7A = A11A = N2A	112 91 (8)	C17_C16_H16	120.9
C10 N1 $C17$	105 83 (13)	N1-C17-C16	120.7
C10 N1 A11	112 84 (11)	N1 = C17 = C10	129.33(10) 100.32(16)
C10— 1 N1— $A11$	112.04 (11)	111 - 01/ - 012	109.52 (10)

C17—N1—Al1	139.57 (13)	C16—C17—C12	121.28 (16)
C17A—N1A—C10A	106.15 (14)	C10A—C1A—N2A	108.11 (13)
C17A—N1A—Al1A	140.50 (12)	C10A—C1A—H1D	110.1
C10A—N1A—Al1A	113.18 (11)	N2A—C1A—H1D	110.1
C2—N2—C1	108.22 (13)	C10A—C1A—H1E	110.1
C2—N2—C4	112.02 (12)	N2A—C1A—H1E	110.1
C1—N2—C4	110.43 (13)	H1D—C1A—H1E	108.4
C2—N2—Al1	115.63 (10)	N2A—C2A—C3A	115.85 (14)
C1—N2—Al1	101.69 (10)	N2A—C2A—H2D	108.3
C4—N2—Al1	108.35 (10)	C3A—C2A—H2D	108.3
C4A—N2A—C2A	112.02 (14)	N2A—C2A—H2E	108.3
C4A—N2A—C1A	109.27 (13)	C3A—C2A—H2E	108.3
C2A—N2A—C1A	110.02 (13)	H2D—C2A—H2E	107.4
C4A—N2A—AllA	114.30 (11)	C2A—C3A—H3D	109.5
C2A—N2A—AllA	108.47 (10)	С2А—С3А—Н3Е	109.5
C1A—N2A—Al1A	102.31 (11)	H3D—C3A—H3E	109.5
C10—C1—N2	107.43 (14)	C2A—C3A—H3F	109.5
C10—C1—H1A	110.2	H3D—C3A—H3F	109.5
N2—C1—H1A	110.2	H3E—C3A—H3F	109.5
C10—C1—H1B	110.2	N2A—C4A—C5A	113.37 (15)
N2—C1—H1B	110.2	N2A—C4A—H4D	108.9
H1A—C1—H1B	108.5	C5A—C4A—H4D	108.9
N2—C2—C3	113.28 (15)	N2A—C4A—H4E	108.9
N2—C2—H2A	108.9	C5A—C4A—H4E	108.9
C3—C2—H2A	108.9	H4D—C4A—H4E	107.7
N2—C2—H2B	108.9	C4A—C5A—H5D	109.5
C3—C2—H2B	108.9	C4A—C5A—H5E	109.5
H2A—C2—H2B	107.7	H5D—C5A—H5E	109.5
С2—С3—НЗА	109.5	C4A—C5A—H5F	109.5
С2—С3—Н3В	109.5	H5D—C5A—H5F	109.5
НЗА—СЗ—НЗВ	109.5	H5E—C5A—H5F	109.5
С2—С3—Н3С	109.5	Al1A—C6A—H6D	109.5
НЗА—СЗ—НЗС	109.5	Al1A—C6A—H6E	109.5
НЗВ—СЗ—НЗС	109.5	H6D—C6A—H6E	109.5
N2—C4—C5	115.68 (15)	Al1A—C6A—H6F	109.5
N2—C4—H4A	108.4	H6D—C6A—H6F	109.5
C5—C4—H4A	108.4	Н6Е—С6А—Н6Г	109.5
N2—C4—H4B	108.4	Al1A—C7A—H7D	109.5
C5—C4—H4B	108.4	Al1A—C7A—H7E	109.5
H4A—C4—H4B	107.4	H7D—C7A—H7E	109.5
C4—C5—H5A	109.5	Al1A—C7A—H7F	109.5
C4—C5—H5B	109.5	H7D—C7A—H7F	109.5
H5A—C5—H5B	109.5	H7E—C7A—H7F	109.5
C4—C5—H5C	109.5	C11A—C10A—N1A	112.32 (15)
Н5А—С5—Н5С	109.5	C11A—C10A—C1A	132.80 (16)
H5B—C5—H5C	109.5	N1A—C10A—C1A	114.84 (14)
Al1—C6—H6A	109.5	C10A—C11A—C12A	106.03 (15)
Al1—C6—H6B	109.5	C10A—C11A—H11A	127.0

H6A—C6—H6B	109.5	C12A—C11A—H11A	127.0
Al1—C6—H6C	109.5	C13A—C12A—C17A	118.82 (17)
Н6А—С6—Н6С	109.5	C13A—C12A—C11A	135.04 (17)
Н6В—С6—Н6С	109.5	C17A—C12A—C11A	106.14 (15)
Al1—C7—H7A	109.5	C14A—C13A—C12A	119.22 (17)
Al1—C7—H7B	109.5	C14A—C13A—H13A	120.4
H7A—C7—H7B	109.5	C12A—C13A—H13A	120.4
Al1—C7—H7C	109.5	C13A—C14A—C15A	121.12 (17)
H7A—C7—H7C	109.5	C13A—C14A—H14A	119.4
H7B—C7—H7C	109.5	C15A—C14A—H14A	119.4
C11—C10—N1	112.64 (15)	C16A—C15A—C14A	121.18 (18)
C11—C10—C1	132.87 (16)	C16A—C15A—H15A	119.4
N1-C10-C1	114.36 (14)	C14A—C15A—H15A	119.4
C10—C11—C12	105.78 (15)	C15A—C16A—C17A	118.04 (17)
C10-C11-H11	127.1	C15A—C16A—H16A	121.0
C12—C11—H11	127.1	C17A—C16A—H16A	121.0
C13—C12—C17	119.11 (18)	N1A—C17A—C16A	129.05 (16)
C13—C12—C11	134.47 (17)	N1A—C17A—C12A	109.34 (15)
C17—C12—C11	106.40 (15)	C16A—C17A—C12A	121.61 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12A–C17A ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5 <i>A</i> ··· <i>Cg</i> 1	0.98	2.57	3.470 (2)	153
C2—H2 B ···Cg1 ⁱ	0.99	2.55	3.434 (2)	149

Symmetry code: (i) -x+1, y-1/2, -z+1.