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Abstract

Early detection of oral cancer necessitates a minimally invasive, tissue-specific diagnostic

tool that facilitates screening/surveillance. Brush biopsy, though minimally invasive,

demands skilled cyto-pathologist expertise. In this study, we explored the clinical utility/effi-

cacy of a tele-cytology system in combination with Artificial Neural Network (ANN) based

risk-stratification model for early detection of oral potentially malignant (OPML)/malignant

lesion. A portable, automated tablet-based tele-cytology platform capable of digitization of

cytology slides was evaluated for its efficacy in the detection of OPML/malignant lesions

(n = 82) in comparison with conventional cytology and histology. Then, an image pre-pro-

cessing algorithm was established to segregate cells, ANN was trained with images (n =

11,981) and a risk-stratification model developed. The specificity, sensitivity and accuracy

of platform/ stratification model were computed, and agreement was examined using Kappa

statistics. The tele-cytology platform, Cellscope, showed an overall accuracy of 84–86%

with no difference between tele-cytology and conventional cytology in detection of oral

lesions (kappa, 0.67–0.72). However, OPML could be detected with low sensitivity (18%) in

accordance with the limitations of conventional cytology. The integration of image process-

ing and development of an ANN-based risk stratification model improved the detection sen-

sitivity of malignant lesions (93%) and high grade OPML (73%), thereby increasing the

overall accuracy by 30%. Tele-cytology integrated with the risk stratification model, a novel
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strategy established in this study, can be an invaluable Point-of-Care (PoC) tool for early

detection/screening in oral cancer. This study hence establishes the applicability of tele-

cytology for accurate, remote diagnosis and use of automated ANN-based analysis in

improving its efficacy.

Introduction

Oral cancer accounts for 30% of cancer-related death in low and middle-income countries [1].

Risk stratification of oral potentially malignant lesions (OPML) and early malignant lesions

may help to initiate therapeutic intervention and may improve the prognosis. Biopsy and his-

topathology-based grading of OPML is the current standard of care. However, due to the inva-

sive nature of biopsies and lack of related expertise, this is neither feasible nor readily utilized

as a screening tool. These issues are owed to the scarcity of trained specialists such as patholo-

gists or surgeons in low-resource-settings. The studies shows that less than 65% of primary

care centres have access to reliable pathology services in low-middle income countries[1–3].

Hence, a tele-cytology platform that provides reliable, remote connectivity to frontline health

workers (FHW) and specialists may improve early detection of oral cancer.

Oral cytology, is considered an effective tool for the large-scale screening of high-risk popu-

lations [4, 5]. Telemedicine platforms have been used in cytology with proven benefits in

remote diagnosis of cervical [6], lung [7, 8], breast [9, 10], and thyroid malignancies [11, 12].

Additionally, automated analysis of tele-cytology images using machine learning is an aspect

that will impart a Point-of-Care (PoC) applicability to the system and is increasingly required

wherein additional skilled manpower is not available. The applications of ANN have been pre-

viously explored for the classification of oral diseases [13] and cytopathology diagnosis of cer-

vical [14–16], breast[17, 18], and blood malignancies [19]. Combining tele-cytology along with

ANN will be a step towards translating the platform into a point of care application in oral

cancer.

The platform used in this study (Fig 1) was an iPad tablet-based version of the “CellScope”

mobile microscope [20], capable of automated focusing of cells, scanning of cytology slides,

and uploading the captured images to a specialized web-based server. Our initial study showed

the feasibility of tele-cytology in connecting FHW with pathologists [20]. In this study, we

explored the clinical utility/efficacy of this portable, automated system in combination with

Convolutional Neural Network (CNN) for classification of atypical cells [21] and subsequent

training of the ANN, Inception V3 architecture [22]. We hypothesize that integration of ANN

with the tele-cytology platform may improve risk stratification of OPML. This pilot study vali-

dates the risk stratification model prior to implementation in a low resource setting.

Materials and methods

Study population and data acquisition

The study was carried out among subjects attending the out-patient clinics of Department of

Oral Medicine and Radiology, KLES Institute of Dental Sciences, Bangalore and Head and

Neck Oncology Department, Mazumdar Shaw Medical Center, Bangalore, India for a period

of 24 months from October 2014 to September 2016. The Narayana Health Medical Ethics

Committee has approved the study (NHH/MEC-CL-2014/222) and the subjects clinically

diagnosed with OPML and malignant lesions were recruited, while those who did not consent
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and/or had undergone biopsy previously were excluded from the study. Sample collection and

slide preparation was carried out as reported previously [20].

High resolution cytology images (2592 x 1936) of 24-bit depth with optical resolution of 1.9

pixel/micrometre (optical resolution 200X) were captured using the CellScope as described

previously [20] (S1A and S1B Fig). This platform captured the fields (100–125) in a raster scan

pattern, the images were connected to the clinical/demographic data of the patients entered

into the iPad application. (S2A Fig). For remote diagnosis, the pathologists utilized a custom,

web portal interface for blind review of images [20], which enabled them to zoom into the

image and visualize the morphological features without loss of resolution (S2B–S2E Fig). The

overall quality of the images of each subject (n = 32, 3200 images) were assessed by recording

the following parameters: i) overall image quality (good, adequate and poor), ii) diagnostic

capability (diagnostic and non-diagnostic) and iii) time taken for diagnosis (<5 minutes, 5–10

minutes and>10 minutes).

Pathological review pipeline

Two board-certified pathologists conducted a blinded, review of the slides using tele-cytology

and direct-microscopy and documented the following features: multi-nucleation, mitotic fig-

ures, prominent nucleoli, altered nuclear-cytoplasmic ratio, hyper-chromatic nucleus, irregu-

lar nuclear membrane and any additional features as per their discretion. These features,

adapted from the oral/pharyngeal cytological scoring system [23], were confirmed after a con-

sensus from both the pathologists.

Tele-cytology diagnosis (remote diagnosis). The two pathologists logged onto the secure

server, demarcated specific cells in the uploaded images as region of interest (ROI) and

Fig 1. Study design. Microscopic slides were prepared (a) using liquid based cytology and slides were reviewed by (b) conventional direct

microscopy. Images were captured using CellScope (c) and sent to remote server (d). Tele-cytology diagnosis (f) were performed by pathologist.

Image pre-processing algorithm were developed, and ANN based cytology diagnostic platform were developed (g) and validated. Conventional

cytology diagnosis, tele-cytology diagnosis and ANN based diagnosis were compared with histopathology.

https://doi.org/10.1371/journal.pone.0224885.g001

ANN-based oral tele-cytology platform
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documented its abnormal features. The subjects were annotated as ‘most likely positive’ or

‘most likely negative’ or ‘unable to interpret’.
Cytology diagnosis (direct microscopy). Cytology diagnosis by direct microscopy was

diagnosed by indicating the presence (1)/absence (0) of atypia on the basis of the cytological

characters mentioned above. The cytology score was calculated for each case by the sum of the

individual scores and compared with the histological diagnosis.

Histopathology diagnosis. The specimens were evaluated by routine histopathology and

diagnosis was reported according to WHO criteria [24, 25]. Hyperkeratosis with epithelial

hyperplasia and mild dysplasia were considered as low-grade dysplasia (LGD), while moderate

dysplasia, severe dysplasia and carcinoma-in-situ were categorized as high-grade dysplasia

(HGD) based on the binary system of classification [26].

Automated diagnosis and ANN workflow

A subset of subjects (n = 60) was selected for development and validation of a risk stratification

model. Tele-cytology images were segmented to detect and segregate cells and labelled as atyp-

ical or normal by a pathologist (S3 Fig). These images were used for training an existing ANN

(Inception V3) using transfer learning. All programming related to the ANN was implemented

in Python (Google’s TensorFlow library; https://github.com/tensorflow/tensorflow). The

learning was done for 4000 epochs with a learning rate of 0.01, wherein 90% of the dataset

were used for training and 10% for validation. After training, each of the patients’ extracted

cells was fed to the ANN to generate a score between 0 and 1. (0: most likely normal, 1: most

likely atypical). The results of individual cells were aggregated for each patient; cells with scores

above 0.5 (out of 1) were taken as atypia. The percentage of atypical cells, mean score of all

cells and the mean score of atypical cells of individual patients were calculated. A classification

learner model was developed using these values and validated.

Statistical analysis

The minimum sample size was calculated for screening study[27]. The prevalence of expected

neoplastic and high grade dysplastic lesions were approximately 80% [20]. We expected 15%

improvement in sensitivity [20, 28], considering the alpha value of<0.05, power of 80% and

drop out (50%) the minimum sample size required for the study was 98.Therefore 100 subjects

were recruited for the study including OPML and Malignant lesions.

Descriptive statistics were used to summarize details of patient demography, clinical fea-

tures, and pathological diagnosis Normal distribution of continuous variables were tested

using Kolmorgorov-smirnov test [29]. All statistical comparisons between multiple groups

were assessed by one-way analysis of variance (ANOVA; Kruskal-Wallis test). Pearson correla-

tion coefficient was used to find the correlation between the variables. The specificity, sensitiv-

ity and accuracy of tele-cytology, direct cytology and risk stratification model were computed.

McNemar test was used to compare the proportions. The agreement between diagnoses was

examined using Kappa statistics [30, 31]. ROC curve analysis was performed to find the cut-off

score. P value less than 0.05 was considered statistically significant in all analyses. All statistical

analyses were done using SPSS version 23 and MedCalc v14.8.1.

Results

Clinical and pathological details of the patients

Subjects recruited for the study were largely from southern states of India, including Karna-

taka, Tamil Nadu, and Kerala. A total of 100 patients were recruited for the study after written

ANN-based oral tele-cytology platform
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informed consent. The protocol, merits and confidentiality of the study was explained to all

subjects in their native language. The consent form was provided to the patient in their respec-

tive language and was signed by them, their physician and the study investigator. Among 100

patients, biopsy could not be performed for 16 subjects, while two were rejected due to low cell

number. Eighty-two patients were hence selected for further analysis; majority of the subjects

were males (males: 78%; females: 22%) with a mean age of 45.4 years. Eighty-four percent

(n = 69) subjects reported at least one of the high-risk habits: chewing, smoking or alcohol

consumption. Demographic details were given in S1 Table. Patient consort chart indicating

pathological diagnosis is provided (S4 Fig).

Tele-cytology shows good agreement with direct microscopy

The quality assessment of the tele-cytology images (n = 2880) in the patient cohort (n = 32)

indicated that 96% (n = 2765) were of good quality. Assessment of time taken for diagnosis

showed that the majority of the patients could be diagnosed within 10 minutes (61%), whereas

conventional cytology-based evaluation recorded an average time of 15 minutes for diagnosis.

Additionally, the diagnosis of carcinoma could be arrived at with a lesser number of images

(n = 20) as compared to dysplasia (n = 100).

Remote diagnosis showed an overall average sensitivity of 81% (85–76) and average speci-

ficity of 90% (84–96) in detecting atypical cells (OSCC/HGD Vs LGD) when compared with

direct microscopy (gold standard) (Table 1). Tele-cytology diagnosis revealed high PPV (90%;

86.7–93.3) and NPV (82%; 81.1–82.7). There was no significant difference in tele-cytology and

conventional cytology diagnosis of either pathologist (McNemar’s test; pathologist I p-value: 1;

pathologist II p-value: 0.06) with the Kappa value (0.67–0.72; p<0.05) indicating good agree-

ment [30, 31].

Assessment of the efficacy of diagnosis between OPML and malignant lesions (OSCC) sepa-

rately indicated a higher accuracy of diagnosis in malignant cases with both methods. Among

the malignant lesions diagnosed by conventional cytology (35/38); 80–97% were diagnosed by

tele-cytology (pathologist I: 97%; pathologist II: 80%), indicating a nearly perfect concordance

between the two techniques. However, in the case of HGD, the diagnostic efficacy was only

comparable between the two methods. Pathologist I diagnosed 25% (8/32) of HGD as atypia

by conventional cytology, out of which 38% (3/8) were detected using tele-cytology. Notably, 3

Table 1. Sensitivity, specificity and accuracy of Tele-cytology and direct microscopy.

Test Vs reference standard Pathologist I Pathologist IIa

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

OSCC / HGD Vs LGDb
Tele-cytology Vs direct microscopy 84.8 83.3 84.1 75.7 95.6 86.6

Direct microscopy Vs HPc 61.4 75 63.4 67.9 96.6 78.1

Tele-cytology Vs HP 60 75 62.2 54.7 96.6 69.5

OSCC Vs LGD

Tele-cytology Vs direct microscopy 94.7 72.7 89.8 77.8 93.3 84.9

Direct microscopy Vs HP 92.1 72.7 87.76 92.1 96.4 93.9

Tele-cytology Vs HP 94.7 72.7 89.8 76.3 96.4 84.85

HGD Vs LGD

Tele-cytology Vs direct microscopy 45.5 87.5 76.7

Direct microscopy Vs HP 25 72.7 37.2

Tele-cytology Vs HP 18.8 72.7 32.6

aPathologist II couldn’t detect atypical cells in HGD, LGD using cytology.
bOSCC = Oral squamous cell carcinoma, LGD = Low grade dysplasia, HGD = High grade dysplasia.
cHP = Histopathology diagnosis

https://doi.org/10.1371/journal.pone.0224885.t001
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cases of HGD missed by conventional cytology were diagnosed using tele-cytology, indicating

a comparable overall detection efficacy (19%; 6/32). Pathologist II did not detect any of the

HGD lesions by tele-cytology (Table 1).

Tele-cytology and direct microscopy correlate with neoplastic histology

In the diagnosis of the malignant cases (n = 38) both pathologist, pathologist I (95%, n = 36)

and pathologist II (76%, n = 29), showed good sensitivity (76–95%) and specificity (73–96%)

in comparison with histology. Tele-cytology diagnosis of HGD lesions (Pathologist I; 32/43)

revealed a sensitivity and specificity of 18.8% and 72.7% respectively. The overall efficacy (in

detecting OSCC and HGD lesion) of tele-cytology with histology as the gold standard were

62% and 69.5% respectively (Table 1).

The efficacy of conventional cytology using direct microscopy when compared to histology

as the gold standard indicated that, as observed in the case of tele-cytology, the discrepancies

were in the diagnosis of HGD. Among the 38 neoplastic cases, 92% (n = 35) of cases were diag-

nosed by both pathologists by direct microscopy. However, pathologist I and II detected atypia

in only 25% (n = 8/32) and 7% (n = 1/15) of HGD lesions respectively by direct microscopy,

when compared to their individual histological assessment.

To assess the efficacy of the cytology features adapted from the oral and pharyngeal cytolog-

ical scoring system [23], each of them were individually assigned a score and total manual

cytology score calculated for each subject. The most important cytological features sufficient

for diagnosis were irregular nuclear membrane, abnormal cell shape and increased nuclear-

cytoplasmic ratio (S2C–S2E Fig). Comparison of the cytology score with the histology diagno-

sis indicated that although these features could significantly delineate malignant patients from

those with dysplasia (p<0.0001), they could not demarcate between HGD and LGD (p = 0.32).

Image processing algorithm to obtain individual cells

Each of the tele-cytology images were passed into an image processing algorithm (Fig 2A and

2B, S3 Fig) (ImageJ) wherein the cells were segmented, Field of View (FoV) boundaries

detected and the cells masses (S5 Fig) detected based on the highest contrast in the green chan-

nel (RGB colour space). In case of presence of clumped cells, a watershed algorithm was used

to approximately disconnect them [32].

These images were further analysed with a particle analysis algorithm (ImageJ) and individ-

ual cells’ region of interests (ROIs) obtained. Each ROI was then cropped and verified against

a set of criteria (S5 Fig and S6 Fig) [33]. Finally, these thresholded images were passed through

the particle analysis tool to check the presence of a nucleus. The images of cells, which passed

these quality checks, were then fed to the neural network for classification (S3 Fig). A total of

11,981 cell images from 60 patients were segmented, and an average of 200 cells per patient

were obtained. Each tele-cytology image took less than a second to be segmented into individ-

ual cells (Fig 2B).

ANN scoring and risk stratification model correlate with tissue-specific

diagnosis

The training set included cell images (normal: 252; atypical: 280) labelled by the pathologist as

atypical (Fig 3A) or normal (Fig 3B) and taken randomly from six subjects (LGD: 3; OSCC: 3).

These images were removed from the validation dataset. The images were augmented to gener-

ate a larger training set (n = 12,768 augmented images). The ANN (S7 Fig) was trained for

4000 epochs (Fig 2C) with final validation accuracy of 95%. Each cell takes approximately one

second to get classified and on average 3 minutes for categorizing all cells of a patient. Cells

ANN-based oral tele-cytology platform
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that gave scores above 0.5 were assumed to be atypical cells. An increasing abnormality of the

cell was correlated with increase in atypical scores (Fig 3C–3G). The percentage of atypical

cells, mean score of all cells and the mean score of atypical cells were calculated for each patient

by below formula.

Percentage of atypical cells ¼
Number of cells having score above 0:5

Total number of cells
� 100 ð1Þ

Mean score of atypical cells ¼
Sum of scores of atypical cells

Number of atypical cells
ð2Þ

Mean score of all cells ¼
Sum of score of all cells
Total number of cells

ð3Þ

The average percentage of atypical cells in benign (BNG)/LGD, HGD and OSCC were 14%,

16% and 39%, respectively. Manual cytology score calculated by adding cytological features

(Fig 4A), the mean score of all cells (Fig 4B) and percentage of atypical cells (Fig 4C) showed a

Fig 2. Workflow of image processing and ANN. Complete workflow (a) diagram of the automated diagnosis system; The cells are extracted from the

tele-cytology images and are fed into a neural network and the values from all the cells in a patient are aggregated and used for developing risk

stratification model. Image pre-processing algorithm (b) consisting of Field of View (FOV) extraction from the tele-cytology images, detection of

contrasting cellular mass from the background, detachment of connected Region of Interests (ROIs), removing the artefacts outside the ROIs, and

extracting cell ROIs. The graph represents validation accuracy during training (epochs = 4,000) of the ANN (c).

https://doi.org/10.1371/journal.pone.0224885.g002

ANN-based oral tele-cytology platform
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statistically significant difference between dysplasia (HGD or LGD) and OSCC (p<0.005), but

no significant difference between LGD and HGD (p>0.05). The mean score of atypical cells

(Fig 4D) showed statistically significant difference between LGD and HGD (p<0.05). These

three parameters were considered to make the risk stratification model.

The risk stratification model included two tests; initially, a model was developed to delin-

eate OSCC from HGD/LGD/Benign using the classification learner module (MatlabR2018a).

The mean score of cells and percentage of atypical cells (which showed strong correlation;

r = 0.992) of 50% patients (n = 30) were randomly selected for training classification model

(Fig 5A). The model was then validated with another 30 patients using holdout validation.

Among the linear models (MatlabR2018a classifier documentation) trained and compared

(Support Vector Machine (SVM), Random forest, Logistic regression, Linear Discriminant

Analysis and K-Nearest Neighbour) [34] (S2 Table), the SVM model gave the best accuracy,

with a sensitivity and specificity of 93% (n = 14/15) and 88% (n = 13/15) respectively (Test 1,

Fig 3. A batch of trained and validated cell images. Images of atypical cells(a) and normal cells (b) used for training the ANN. Cells classified by ANN:

cells having atypical score less than 0.3 (c) from benign subjects, cells with atypical score between 0.3 to 0.5 from LGD patients(d), cells with atypical

score between 0.5 to 0.7 (e) from HGD patients, cells with atypical score between 0.7 to 0.9 (f) from OSCC patients and cells with atypical score greater

than 0.9 (g) from OSCC patients.

https://doi.org/10.1371/journal.pone.0224885.g003

ANN-based oral tele-cytology platform

PLOS ONE | https://doi.org/10.1371/journal.pone.0224885 November 15, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0224885.g003
https://doi.org/10.1371/journal.pone.0224885


Fig 5C). The patients that the model predicted as positive were considered to have a high risk

of OSCC, while the patients that predicted as negative were passed through the second test.

Fig 4. Distribution of manual and ANN cytology scores. Box and whisker plot represent (a) cytology score of direct

microscopy method (n = 82), OSCC (4.08±1.92) score shows significant difference from (�p<0.005) LGD (0.63±1.12)

and HGD lesions (1±1.05). ANN Scoring (n = 60): The mean score of all cells (b) shows statistical significance between

dysplasia (HGD, LGD) and OSCC (0.40±0.08, �p<0.005), but does not show significant difference between LGD (0.17

±0.09) and HGD (0.21±0.08). The percentage of atypical cells (c) OSCC (0.38±0.11) shows significant difference from

dysplasia (�p<0.005) but not show significant between HGD (0.17±0.09), and LGD (0.17±0.09). The mean atypical

score of atypical cells (cells having score>0.05) (d) in each patient demonstrating statistical significance between

dysplasia (HGD, LGD) and OSCC (0.71±0.02, �p<0.005) and also between LGD (0.78±0.03) and HGD (0.76±0.03)

(��p<0.05). The mean and standard deviation values are provided in brackets.

https://doi.org/10.1371/journal.pone.0224885.g004

Fig 5. Risk stratification model. Scatter plot (a) representing percentage of atypical cell and mean score of all cells

(n = 60) showing high correlation (r = 0.992, CI = 0.986–0.995) and these variables used for test 1, in risk stratification

model (SVM). The cut-off value of ROC curve analysis (b) in delineating OSCC from LGD were used in risk

stratification model as test 2 (c).

https://doi.org/10.1371/journal.pone.0224885.g005
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The optimal threshold cut-off value for delineating OSCC from LGD was calculated from

the mean score of atypical cells alone (Fig 5B). This cut-off was used to delineate HGD from

LGD (Test 2, Fig 5C). The data from the subjects showing positive results were considered

most likely to have HGD and OSCC. The negative subjects were considered to have LGD or

Benign lesions (Fig 5C). The test gave a sensitivity and specificity of 73% (8/11) and 100% (3/

3) respectively for delineating HGD from LGD/Benign. The entire model had an accuracy of

90% in delineating OSCC and HGD from LGD with 89% sensitivity, while the direct micros-

copy (same cohort, n = 30) had 59% sensitivity with an accuracy of 60% (Table 2).

Discussion

The estimated delay in diagnosis of oral cancer from the time a patient seeks medical assistance

is three months [35]; lack of specialists’ expertise at the primary care settings being a major fac-

tor. Brush biopsy and cytology, are readily adaptable in primary health care centres [36] and

are currently being investigated as a tool for oral cancer risk-stratification [37, 38]. The preci-

sion in detection and risk stratification can be further improved using machine learning algo-

rithms, which also detaches the subjectivity of cytology interpretation. In this study, we

evaluated the efficacy of a tele-cytology platform for oral cancer screening and developed a risk

stratification model using an Artificial Neural Network. The results of the study the clinical

efficacy of the platform and an improved accuracy in the diagnosis of OSCC/HGD with inte-

gration of ANN indicated that automated image capture/analysis provided the requisite infor-

mation essential for point-of care remote diagnosis.

We have previously reported the feasibility of remote pathology diagnosis in oral cytology

using a mobile and automated tele-cytology device [20], CellScope. This study showed that in

addition to the high efficacy in capturing images (96% of images were of diagnostic quality),

tele-cytology also showed high sensitivity/specificity in the diagnosis with good agreement (К
= 0.68–0.72) with the conventional direct microscopy-based method. Similar ranges of agree-

ment (К = 0.47 to 0.77) have been reported in tele-cytology-based diagnosis of cervical cancer

[30, 38]. While the previous tele-cytology studies, necessitated a specialist intervention at the

PoC [30, 38, 39], the tele-cytology pipeline detailed in this study enabled remote diagnosis

facilitating risk stratification and appropriate triaging of patients by a FHW. The images could

be transferred using the mobile cellular network with an adequate resolution of the cellular

morphology for accurate interpretation, making it a potential tool in a low-resource setting.

This prospective, blinded study using a tele-cytology platform, also showed a high level of con-

cordance with conventional cytology by direct microscopy.

Although cytology could diagnose oral cancer with high efficacy, its ability to detect atypia

in HGD lesions was low, which was underscored by the low sensitivity of both tele-cytology

Table 2. Sensitivity and specificity of manual cytology method and risk stratification model.

OSCC Vs HGD/LGD HGD/ LGD OSCC/HGD Vs LGD Accuracy

Cytology Manual Method (n = 30)

Sensitivity 87 (13/15) 25 (3/12) 59 (16/27) 60%

Specificity 73 (11/15) 66 (2/3) 67 (2/3)

Risk stratification model (n = 30)

Test 1a Test 2a

Sensitivity 93 (14/15) 73 (8/11) 89 (24/27) 90%

Specificity 88 (13/15) 100 (3/3) 100 (3/3)

aTest 1 and test 2 explained in risk stratification model (Fig 5)

https://doi.org/10.1371/journal.pone.0224885.t002
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and direct microscopy in patients with HGD. This is in accordance with the poor performance

of manual cytology to diagnose HGD reported in multiple studies [40, 41]. The most common

cytological features considered for diagnosis in this study, though sufficient for the detection

of OSCC (Fig 4A, cytology score >3), were not efficient for detecting HGD. Limitations of the

brush biopsy in obtaining cells from the deeper layers due to high keratinization of stratified

squamous epithelium [42] might be the primary reason, leading to subjectivity in diagnosis.

This platform is hence inefficient in the detection of HGD with current standard cytological

features (sensitivity = 25%). These challenges necessitated the use of objective machine learn-

ing solutions along with the tele-cytology platform to enable better stratification of patients.

Integration of automated diagnosis in this study included development of new image pre-

processing algorithm that segmented individual cells (200-300cells/patient) within each image,

removed clumped cells/artefacts. Further improvements in algorithms that can effectively uti-

lise the clumped cells may increase the number of diagnosable images, however advanced seg-

mentation algorithms available are computationally intensive [43–45]. We have not

implemented such algorithms in the device keeping in mind that there will be low computa-

tional resources available at PoC. The Convolutional Neural Network (CNN) adopted in this

study enables direct image input with the filters being trained to extract features automatically

[21]. This bypasses the need to have well-defined criteria to detect HGD that incapacitated

accurate manual diagnosis. ANN classification is robust in classifying cells that are over-seg-

mented and in this study we used transfer learning, wherein a pre-trained ANN is fine-tuned

using the new dataset, a method well-used for training small data set [46]. Inception V3, used

in this study, was chosen due to its ability to provide better accuracy while using computa-

tional resources effectively [22] and is a network tested in various forms of cancer detection

such as in cervix [47], skin [48], breast [49] and lung [50]. Additionally, if a need arises, the

automated system allows for the images that are classified as atypical to be sent for remote

pathologist review, lowering the network bandwidth required for image transfer and thus

improving the throughput and reach of the pathologist.

The risk stratification model developed in this study adopted a sequential mode for patient

stratification; it first detected malignancy (sensitivity: 93%) using linear SVMs (with 90% accu-

racy) and then delineated HGD (sensitivity = 73%). SVMs were shown to have good perfor-

mance in a previous study for cytopathology-based DNA Index in oral leukoplakia [51]. The

differential efficacy in the diagnosis of OSCC and HGD/LGD might be attributed to the pres-

ence of a higher percentage of atypical cells with a significantly higher mean score of all the

cells imaged (p<0.05). Given this discrepancy in the percentage of atypical cells, in this model,

delineation of HGD and LGD was based on the score of atypical cells alone. These criteria

could distinguish the two dysplastic groups (p = 0.043). The entire automation involving

image segmentation and risk stratification of a patient took around ten minutes making it as

fast and appropriate as a point of care, tele-cytology tool.

Conclusion

The tele-cytology platform evaluated in this study is an effective tool for remote diagnosis

since it could successfully retain features of diagnostic value. ANN-based automated diagnosis

and risk stratification improved the sensitivity in detection of HGD lesions. This, in turn,

increased the overall accuracy of the system by 30% when compared to the manual method. A

study with a larger cohort is required to improve the robustness of the system in low resource

environments. Nevertheless, this pilot study is a significant effort to improve the accuracy of

oral cytology-based risk stratification and for enabling tele-cytology-based point of care

diagnosis.
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Supporting information

S1 Fig. Cellscope slide scanning device. Front View of the device (A) showing the scanning

platform and top view showing the iPad mini 2 (B) as the user interface.

(TIF)

S2 Fig. Web interface used in iPad for entering patient information and representative

images. An image, (A) captured by Cellscope (200X magnification) with resolution of 2592 x

1936 (72dpi) and cell with irregular nuclear membrane, (B, blue arrow). The images were

zoomed in to 200% representing cell with irregular nuclear membrane, (C), abnormal cell

shape, (D) and increased nuclear to cytoplasmic ratio, (E).

(TIF)

S3 Fig. Detailed flowchart for image pre-processing. An Input image, (A) was analysed to

estimate the Field of View (FOV) and was trimmed to contain only the same, (B), once

detected, the green channel from RGB image, (C) was considered to detect areas of cellular

mass owing to its better contrast of cell mass. These images were thresholded, (D) to get cellu-

lar area. The binarized image is then analysed for extracting high level Region of Interests

(ROI), (E) that is used to clear the background, (F). Images were then water segmented, (G)

and again analysed for cellular-level ROIs, (H). Then each ROI, (I) is then extracted as a single

image. The red channel, (J), is then obtained and thresholded, (I) to detect nucleus. The

images are then checked with pass criteria and then saved, (L) into a folder.

(TIF)

S4 Fig. Study consort chart. Distribution of subjects according to clinical and histopatholog-

ical diagnosis. Eighty subjects were included in the analysis, of which, 43 were OPML and 39

were malignant. For automated diagnosis, 22 subjects were excluded since their images were

taken during the developmental stages of the tele-cytology platform and the images were very

different from the final set of images. Thus (n = 60) subjects were considered for development

and validation of ANN based diagnosis. OPML = Oral Potentially Malignant Lesion,

HGD = High Grade Dysplasia, LGD = Low Grade Dysplasia, OSCC = Oral Squamous Cell

Carcinoma.

(TIF)

S5 Fig. Detailed flow chart for FOV estimation. The algorithm finds out 3 pixels at the

edge of the FOV in the input image, (A), Assuming the FOV is circular, the equation of circle

(x−p)2+(x−p)2 = r2 representing the circular edge is solved to obtain the boundary of ROI, (B),

a circular ROI is then extracted, (C).

(TIF)

S6 Fig. Detailed criteria for detecting ROIs containing cells. The first test (A) reduces the

number of clumped cells based on size and aspect ratio. From the passed images, images with

shadow artefacts are removed based on the ratio of mean channel intensities of red and green

channels, (B), which are then again filtered based on Hematoxylin stained area, (C). Finally,

the ROIs are analysed to find the presence of a nucleus, (D).

(TIF)

S7 Fig. Inception v3 architecture. The deep convolutional neural network used here to delin-

eate between normal cells and atypical cells.

(TIF)

S1 Table. Showing demographics of subjects included in study.

(DOCX)
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S2 Table. Machine learning model comparison. Comparison of performance of various

machine learning models used to delineate Oral Squamous Cell Carcinoma (OSCC) from

High Grade Dysplasia (HGD) and Low-Grade Dysplasia (LGD).

(DOCX)
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