
����������
�������

Citation: Liu, H.; Qu, D.; Xu F.; Du,

Z.; Jia, K.; Liu, M. An Efficient Online

Trajectory Generation Method Based

on Kinodynamic Path Search and

Trajectory Optimization for

Human-Robot Interaction Safety.

Entropy 2022, 24, 653. https://

doi.org/10.3390/e24050653

Academic Editor: Geert Verdoolaege

Received: 27 March 2022

Accepted: 27 April 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Efficient Online Trajectory Generation Method Based on
Kinodynamic Path Search and Trajectory Optimization for
Human-Robot Interaction Safety
Hongyan Liu 1,2,3,* , Daokui Qu 1,2,4, Fang Xu 1,2,4, Zhenjun Du 4, Kai Jia 1,2,4 and Mingmin Liu 4

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China; dkqu@siasun.com (D.Q.); xufang@siasun.com (F.X.); jiakai@siasun.com (K.J.)

2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 SIASUN Robot & Automation Co., Ltd., Shenyang 110169, China; duzhenjun@siasun.com (Z.D.);

liumingmin@siasun.com (M.L.)
* Correspondence: liuhongyan@sia.cn

Abstract: With the rapid development of robot perception and planning technology, robots are
gradually getting rid of fixed fences and working closely with humans in shared workspaces. The
safety of human-robot coexistence has become critical. Traditional motion planning methods perform
poorly in dynamic environments where obstacles motion is highly uncertain. In this paper, we
propose an efficient online trajectory generation method to help manipulator autonomous planning
in dynamic environments. Our approach starts with an efficient kinodynamic path search algorithm
that considers the links constraints and finds a safe and feasible initial trajectory with minimal control
effort and time. To increase the clearance between the trajectory and obstacles and improve the
smoothness, a trajectory optimization method using the B-spline convex hull property is adopted to
minimize the penalty of collision cost, smoothness, and dynamical feasibility. To avoid the collisions
between the links and obstacles and the collisions of the links themselves, a constraint-relaxed links
collision avoidance method is developed by solving a quadratic programming problem. Compared
with the existing state-of-the-art planning method for dynamic environments and advanced trajectory
optimization method, our method can generate a smoother, collision-free trajectory in less time with a
higher success rate. Detailed simulation comparison experiments, as well as real-world experiments,
are reported to verify the effectiveness of our method.

Keywords: human-robot interaction; kinodynamic path search; trajectory optimization; real-time
collision avoidance; B-spline; replanning

1. Introduction

Human-robot interactions have been involved in more and more applications, from
automobile assembly to electronic product assembly applications [1,2]. In these applica-
tions, robots act as human partners, with side-by-side or face-to-face working with humans
in shared workspaces to complete specific tasks, and the safety issue of human-robot co-
existence becomes crucial [3,4]. For example, in the electronic product production line’s
common robot pick-place tasks, the arms of human partners may appear on the predefined
motion path of the robot. At this point, it may be inefficient and unsafe for the robot to
simply back off or stop motion. Instead, it may make more sense to adjust online the per-
forming trajectory of the manipulator to avoid potential collisions, while maintaining the
original task undisturbed [5,6]. Therefore, an effective online trajectory generation method
is urgently needed to help a manipulator perform autonomous motion in dynamic and
uncertain environments. For trajectory generation in a dynamic environment, the trajectory
needs to meet safety, smoothness, and dynamic feasibility requirements. In addition, since

Entropy 2022, 24, 653. https://doi.org/10.3390/e24050653 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050653
https://doi.org/10.3390/e24050653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4780-559X
https://doi.org/10.3390/e24050653
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050653?type=check_update&version=2

Entropy 2022, 24, 653 2 of 29

the movements of human partners or dynamic obstacles are highly uncertain, the trajectory
generation process should also meet real-time requirements. To this end, a robust and
efficient online trajectory generation method is designed to acquire a safe, smooth, and
dynamically feasible trajectory in real time.

Many safety-related motion planning methods for dynamic environments have been
developed at different control levels. The reactive planning method using the potential
field concept has the advantages of low computational cost and high speed. Based on
these characteristics, Flacco et al. [7] introduced a collision avoidance method based on the
principle of infinite depth in the depth space. Nascimento et al. [8] proposed a safe contour
collision avoidance method based on the finite depth principle by fusing an external vision
sensor and robot body sensors information. Tulbure et al. [9] proposed a collision avoidance
algorithm that maintains convergence to the goal by combining local reactive planning
with global planning. Lin et al. [10,11] introduced a velocity-based physical human-robot
interaction method for non-redundant robots, which allows the end-effector to track the
human guidance trajectory while avoiding collisions of the links with obstacles. Different
from the potential field method, the danger field is constructed based on the state of the
robot itself rather than the state of obstacles [12], and indicates the degree of danger of
the robot’s current position and velocity to objects. Based on the concept of danger field,
Refs. [13,14] developed novel danger assessment and control methods for the safety of
human-robot coexistence. Compared with the danger field, the safety field is generated
using the obstacle state information and represents the source of danger in a more complete
form [15]. Methods based on potential field and safety/danger field only consider the local
space to avoid obstacles but may cause the robot to get stuck in local minima. Moreover,
when the robot encounters obstacles, it may retreat from the original task instead of finding
a new trajectory to reach the goal.

There are approaches that formulate trajectory planning as an optimization problem
to generate collision-free trajectories. Zucker et al. [16] proposed a trajectory optimization
method based on covariant Hamiltonian optimization (CHOMP), which iteratively opti-
mizes a balance function including smoothness and collision costs to improve the initial
trajectory quality. Schulman et al. [17] developed an efficient motion planning method that
formulates a sequential convex optimization method and considers collision-free constraint
formulae associated with obstacles. Zanchettin et al. [18] proposed a motion planning
method by combining the trajectory planning method with the optimized control strategy.
Ragaglia et al. [19] proposed a collision avoidance framework that takes safety requirements
as constraints and maximizes production efficiency as an optimization goal. Most of these
methods may generate collision-free trajectories with high computational costs and low
success rates.

Learning-based planning methods have been developed for collision-free trajectory
generation. Qureshi et al. [20] proposed a motion planning network (MPNet) that gen-
erates an end-to-end collision-free path from the starting point to the goal by encoding
the workspace. However, this method does not consider dynamic obstacle constraints.
Xu et al. [21] proposed a motion planning method based on a recurrent neural network. It
defines a set of level set functions and virtual fences to encode the workspace to achieve
obstacle avoidance and solves the quadratic programming problem online by a recurrent
neural network to track the reference trajectory. Song et al. [22] proposed a robot trajectory
planning method using a radial basis neural network to improve trajectory planning accu-
racy, but it does not consider obstacle avoidance. Shen et al. [23] proposed a redundant
manipulator collision avoidance method by combining deep reinforcement learning and
gradient projection methods. However, the real-world performance of this method has not
been shown. Although great progress has been made in learning-based planning methods,
considerable challenges remain in highly dynamic environments. Liu et al. [24] proposed a
human-robot collaboration framework, which combined a human motion prediction model
and a task model based on finite state machine to improve the efficiency of human-robot
collaboration. It improves collaboration efficiency by predicting human motion trajectories,

Entropy 2022, 24, 653 3 of 29

and the current work solves the problem of human-robot interaction safety via a hierarchi-
cal online trajectory generation algorithm. Our research method and objective are different
from previous work.

Another class of methods used for motion planning in dynamic environments is
replanning, which can update the robot motion trajectory according to the changes of
dynamic obstacles in the workspace. To this end, Hauser et al. [25] proposed an adaptive
time-stepping architecture for real-time replanning, which dynamically adapts the planning
time and improves the stability of the replanner. Sun et al. [26] proposed a high-frequency
replanning method with kinodynamic RRTs, which computes multiple RRTs in parallel and
executes the first action of the optimal motion plan. Otte et al. [27] proposed a asymptoti-
cally optimal and single-query sampling-based replanning algorithm, which continuously
improves and repairs the search graph during navigation to obtain the shortest path.
Völz et al. [28] developed a predictive path following controller that time-parameterizes
the planned path and computes optimal control actions along the planned path, and a con-
tinuous replanning strategy is invoked at fixed time intervals to avoid dynamic obstacles.
Pupa et al. [29] proposed a safety-aware kinodynamic planning method, which replans the
nominal trajectory by calling the RRT algorithm multiple times and scales the robot velocity
according to safety rules. Most recently, Covic et al. [30] proposed a motion planning
algorithm (DRGBT) dedicated to the fast exploration of dynamic environments by defining
an adaptive horizon and a replanning mechanism. Sampling-based path-planning algo-
rithms are used as initial path generators in these replanning algorithms. Sampling-based
initial path generators are usually asymptotically optimal but computationally expensive.
Moreover, the random behavior of sampling-based methods can also lead to unpredictable
performance, especially with a limited number of samples [31]. Search-based methods play
an important role in replanning due to the consistency of search results [32]. However,
most of the existing search-based replanning methods [33–35] are aimed at robot systems
with non-fixed bases, which may not be directly applicable to multi-joint collaborative
robot systems. Table 1 summarizes and compares the similarities and differences of related
works from five aspects: danger source; obstacle characterization; real-time performance;
whether the collision avoidance trajectory tends to the target point (such as not simply
retreating from the main task); and constraints.

Motivated by the above methods, this paper proposes a complete and efficient online
trajectory generation method to help a manipulator for autonomous planning in highly
dynamic environments. It does not suffer from expensive computational burdens or com-
plex data structures and is suitable for real-time application. Our approach starts with
an efficient kinodynamic path search method using heuristic search and linear quadratic
minimum time control, which finds a safe, feasible, and time-minimized initial trajectory
on voxel grids. Links constraints are introduced into the path search process to avoid
invalid paths where links collide with obstacles. A trajectory optimization method us-
ing the B-spline convex hull property is adopted to post-optimize the initial trajectory to
increase the clearance between the initial trajectory and obstacles and improve the smooth-
ness. To avoid the collisions between the links and obstacles and the robot self-collision,
a constraint-relaxed links collision avoidance method is designed by solving a standard
quadratic programming problem, which minimizes the deviation between the actual trajec-
tory and the back-end optimized trajectory. A derivative control point adjustment method
is designed to eliminate infeasible higher-order derivatives. Finally, the path search module
and the trajectory optimization module are integrated into a receding horizon replanning
framework using a horizon-limited replanning mechanism.

Entropy 2022, 24, 653 4 of 29

Table 1. A brief overview of related methods.

Methods Source of
Danger

Obstacle
Representation Real-Time Convergence

to Goal

Constraint Conditions
(Safety, Smoothness,
Dynamic Feasibility)

Potential field

[7,8]
Obstacle
/human Depth point Y N Safety

[9]
Obstacle
/human Point cloud Y Y Safety

[10]
Obstacle
/human

Predefined
position Y N Safety

Danger field [12–14] Robot Linear Y N Safety

Safety field [15]
Obstacle
/human Triangular mesh Y N Safety

Optimization-
based

[16] Obstacle 3D voxel grids N Y Safety, Smoothness

[19] Human
Human skeleton
swept volumes N N Safety

Learning-
based [20,23] Obstacle

Predefined
position N N Safety

Replanning-
based

[26] Obstacle
Predefined

position Y (Additional GPU) Y Safety

[27] Obstacle
Predefined

position Y Y Safety

[29,30]
Obstacle
/human

Predefined
position Y Y Safety

Ours
Obstacle
/human 3D voxel grids Y Y

Safety, Smoothness,
Dynamic feasibility

Compared with the current state-of-the-art planning methods for fixed-base robots, the
DRGBT algorithm and RRTX algorithm, and the advanced trajectory optimization methods,
the CHOMP algorithm and the TrajOpt algorithm, our method can generate smoother,
collision-free trajectories in shorter time with higher success rates. Numerous simulation
experiments are performed to verify the effectiveness and robustness of the proposed
method. Furthermore, in a real-world pick-place experiment, we also demonstrate that our
method can effectively replan a new trajectory to avoid dynamic obstacles and converge to
the item placement box. The contributions of this paper are summarized as follows:

(1) A complete and effective real-time online trajectory generation framework is devel-
oped bottom-up, which mainly includes kinodynamic path search, B-spline trajectory
optimization, and links collision avoidance optimization.

(2) A path search method considering links constraints and a trajectory optimization
method using the B-spline convex hull property are presented. The former transforms
a position-only geometric search into an efficient kinodynamic search by state-space
motion primitive generation and heuristic cost evaluation. The latter fully considers
dynamic constraints and converges quickly to generate a safe, dynamically feasible,
and smooth trajectory.

(3) A constraint-relaxed links collision avoidance optimization method is adopted, which
effectively avoids link collisions while tracking the optimized task space trajectory.

(4) The proposed algorithm is deployed on a physical collaborative robot experimental
platform. Detailed simulation comparison experiments and real-world experiments
are performed to demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. The key points of the planning problem
are stated in Section 2. Section 3 introduces the links-constrained kinodynamic path search

Entropy 2022, 24, 653 5 of 29

method. Section 4 presents the trajectory optimization method. Section 5 elaborates on
collision avoidance methods for both links and obstacles and robot self-collision, and the fu-
sion process of links collision avoidance optimization and back-end trajectory optimization.
Section 6 presents the experimental results. The conclusion is reported in Section 7.

2. Problem Statement

In this study, we solve an online trajectory generation problem for a manipulator
in dynamic environments. Consider a human-robot collaboration application where an
n-DOF manipulator runs from an initial configuration, qs, to a specified goal configuration,
qg, and a dynamic obstacle, O, may appear on its motion path. Then, the robot’s trajectory,
q(t), is considered to be feasible and collision-free when

d(χlk(qa),O) ≥ d0, d(χlk(qa), χli(qa)) ≥ dl0 ∀qa ∈ q(t)
∀k ∈ {1, . . . , n}, ∀i ∈ {1, . . . , n}
∀q̇a ∈

[
q̇min q̇max

]
∀q̈a ∈

[
q̈min q̈max

] (1)

where χlk(qa) represents the geometric line segment representation of the k-th link when
the robot is in configuration qa, and χli(qa) is the geometric line segment representation of
the links other than the k-th link and not adjacent to the k-th link. d(χlk(qa),O) represents
the minimum distance between the link segments and the obstacles. d(χlk(qa), χli(qa))
represents the minimum distance between the k-th link and the i-th link. d0 is the safe
distance threshold between the links and obstacles, and dl0 is the safe distance threshold
of the self-collision. For this reason, the shared workspace is equipped with a monitoring
system that detects obstacles and estimates the distance between obstacles and the robot.
Several methods for real-time obstacle detection can be found in the literature [36–38].

We aim to design an efficient trajectory generation method to solve the above problems.
There are several key points that need to be addressed:

• A safe and feasible initial trajectory from the starting position to the goal needs to be
searched. Traditional path-planning algorithms such as A*, Dijkstra, and the sampling-
based method RRT usually do not consider the nonstatic initial state of the robot,
so there are problems in replanning. As shown in Figure 1a, the geometric shortest
path may turn sharply, which may lead to the failure of path parameterization. Since
the replanning has non-general dynamic characteristics, it is necessary to use the
kinodynamic planner to achieve a nonstatic initial state to ensure dynamic feasibility.

• Since the initial trajectory search does not consider the distance cost, the initial tra-
jectory tends to be close to obstacles (see Figure 1b). In addition, the uncertainty of
dynamic obstacle motion may also make the initial trajectory unfeasible. Therefore,
trajectory optimization and replanning strategies are necessary.

• Collision avoidance of the robot links needs to be considered. As shown in Figure 1c,
although the red trajectory indicated by “yellow star” is feasible for the end-effector,
the robot links will collide with obstacles if the end-effector runs along with it.

Entropy 2022, 24, 653 6 of 29

Goal pointStart point
Start point Goal point

No Obstacles

Initial trajectory Optimized trajectory

(a) (b) (c)

Start point

Goal point

Links
infeasible
trajectory

Links

Feasible
trajectory

Geometric
path

Kinodynamic
path

Start point

Goal point

X

YZ

Base

Figure 1. (a) The geometric and kinodynamic initial trajectories. (b) The initial and optimized
trajectories. (c) Links-constrained task space trajectories. The red trajectory is collision-free for the
end-effector, but the links may collide with the obstacle.

3. Links-Constrained Kinodynamic Path Search

We propose an efficient links-constrained kinodynamic path search method for the
path search of a fixed-base n-DOF manipulator in a dynamic environment. It fully considers
the link constraints in the path search process and realizes an efficient kinodynamic search
by applying a series of discrete control inputs. Different from the traditional A* algorithm,
nodes are not searched along a straight line but use a set of short-duration motion prim-
itives related to the robot state to generate the edges of the graph. In addition, unlike
quadrotors and unmanned vehicles, whose bodies can move flexibly in three-dimensional
space, multi-joint robots with fixed bases need to fully consider the constraints of obstacles
on the links (see Figure 1c).

The path search process is summarized as Algorithm 1, and the mathematical princi-
ples of the key components of the search algorithm (motion primitive generation, search
cost evaluation) are also explained in detail. We take the robot task space starting state
and goal state, the safe distance threshold, and a set of discrete control inputs as input,
and a safe, feasible, and time-optimal initial trajectory is searched as output. Following
the A* algorithm, we denote open set and closed set as P and C, and current grid node as
pcur. Given the current state, discrete control inputs u , and duration τ, the NodesExpand()
function produces discrete motion primitives (see Section 3.1). Primitive nodes that end in
the same grid with a non-minimum search cost will be removed. The interest points on
the links corresponding to the node that satisfies the feasibility check needs to be collision
detected by Equation (1). The positions of interest points on the links are obtained using
the Kinematicsmodel() function, and the distance between interest points and obstacles
are calculated using the euclidean distance in the Distance() function. Once the minimum
distance between the interest point and the obstacle approaches the safe distance threshold
d0, the collision signal will be output by the CollisionCheck() function (see Section 5),
and the new extended primitive node is marked as infeasible. The minimum search cost
from the starting state to the current state is calculated by minimizing the time cost and
control cost. Heuristic search method using Pontryagin’s minimum principle to minimize
initial trajectory time (Section 3.2). The entire process continues until the robot successfully
reaches the goal region.

Entropy 2022, 24, 653 7 of 29

Algorithm 1 Links-constrained Kinodynamic Path Search Algorithm

Input: Inital and goal state: xs, xg; The safe distance threshold: d0; Obstacle: O; Discretized
control input sets U

Output: Time-optimal initial trajectory: Γ;
1: p0 ← xs, pg ← xg;
2: P← ∅, C← ∅;
3: P.add(p0);
4: while P ! = ∅ do
5: pcur ←P.pop(), C.insert(pcur);
6: if pcur ∈ pnear

g then
7: return Retrieved_Path;
8: end if
9: nodes← NodesExpand(pcur, U, τ);

10: for pi in nodes do
11: interestpoints← Kinematicsmodel(pi);
12: min_dis← Distance(interestpoints, O);
13: sig← CollisionCheck(min_dis, d0);
14: if (sig) then
15: Feasible(pi)← f alse;
16: end if
17: if (pi /∈ C) ∧ Feasible(pi) then
18: gtemp ← pcur.gc + EdgeCost(pi);
19: if pi /∈ P then
20: P.add(pi)
21: else if gtemp ≥ pi.gc then
22: continue;
23: end if
24: pi.parent← pcur, pi.gc ← gtemp, pi. fc ← pi.gc + Heuristic(pi);
25: end if
26: end for
27: end while

3.1. Motion Primitives for Node Expansion

We consider an environment with dynamic obstacles, where a robot with a fixed base
and n joints moves its end-effector from an initial state xs to a goal state xg. Let pe represent
the end-effector position in the task space. The trajectory pe(t) executed by the end-effector
can be decomposed of path-velocity decomposition [39],

pe(t) = pe
(
sµ(t)

)
, sµ(t) =

r

∑
i=0

artr (2)

where sµ(t) is the time law of the given parametric geometric path pe(s), which is generated

by a polynomial of degree r, µ ∈ {x, y, z}. Let x(t) :=
[

pe(t)
T , ṗe(t)

T , · · · , pe
(κ−1)(t)T

]T

be the state of a dynamic system consisting of a position and its κ − 1 order derivative. Let
u(t) = pe

(κ)(t) be the control input and u(t) ∈ U := [−µmax, µmax]
3 ⊂ R3. In this study,

instead of using the control set U directly, we consider a lattice discretization Ud ⊂ U
following [40] for each axis, where each control vector ud ∈ R3 will define a short-duration
motion for the system. The discretized Ud is obtained by choosing a number of samples{
−umax,− `−1

` umax, · · · , `−1
l umax, umax

}
along each axis with discrete steps ∇u = umax

` ,

and results in M = (2`+ 1)3 motion primitives [41]. A simple double integral system is
considered for each axis (e.g., κ = 2), and the discrete state space model can be defined as

xd+1 = Axd + Bud (3)

Entropy 2022, 24, 653 8 of 29

A =

1 0 0 τ 0 0
0 1 0 0 τ 0
0 0 1 0 0 τ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, B=

0 0 0
0 0 0
0 0 0
τ 0 0
0 τ 0
0 0 τ

 (4)

where τ represents the short-duration step. Finally, given the current state of the end-
effector and a set of discrete control inputs, the motion primitives for node expansion can
be obtained.

3.2. Search Cost Evaluation

The search cost from the starting node xs to the current node xc is calculated by
minimizing the time cost and control cost, where the time cost ensures that the time is
minimized, and the control cost makes the state trajectory as smooth as possible. The search
cost function [40] is defined as follows,

min
T
C(T) =

∫ T

0
‖u(t)‖2dt + ρT (5)

where
∫ T

0 ‖u(t)‖
2
dt indicates the smoothness of the trajectory, and ρ ≥ 0 indicates the

importance of the trajectory duration T relative to its smoothness. The cost of the motion
primitive generated by the discrete control input ud and duration τ can be expressed as
gcd =

(
‖ud‖2 + ρ

)
τ. Finally, the total search cost from the initial state xs to the current

state xc is expressed as gc =
M
∑

m=0

(
‖udm‖2 + ρ

)
τ.

The search cost from the current state xc to the goal state xg is obtained using a
heuristic function, which is very useful for accelerating the search speed. Combined
with Pontryagin’s minimum principle [42], the heuristic function is designed to solve the
minimum time cost trajectory, that is,

s∗µ(t) =
[1

6 αµt3 + 1
2 βµt2 + vµct + pµc

1
2 αµt2 + βµt + vµc

]
,

u∗(t) = αµt + βµ

(6)

[
αµ

βµ

]
=

[
− 12

T3
6

T2
6

T2 − 2
T

][
pµg − pµc − vµcT

vµg − vµc

]
(7)

C∗(T) = ∑
µ∈{x,y,z}

(
1
3

α2
µT3 + αµβµT2 + β2

µT
)

(8)

where pµc and pµg represent the current and goal positions, respectively. vµc and vµg
represent the current and goal velocities, respectively. C∗(T) indicates the cost function. By
solving the root Tf of ∂C∗(T)

∂T = 0, the minimum time cost and feasible initial trajectory can
be obtained. C∗(Tf) indicates the minimum search cost [41]. Finally, the total search cost
from the initial state to the goal state is denoted as fc = gc + C∗(Tf).

4. Trajectory Optimization

Although the initial trajectory generated by the kinodynamic path search is dynam-
ically feasible and collision-free, it may be suboptimal due to grids discretization and
distance constraints with obstacles are not considered. In this section, the trajectory op-
timization method using the B-spline convex hull property is adopted to improve the
smoothness of the trajectory and increase the clearance between the initial trajectory and
obstacles. To adjust the infeasible high-order derivatives, an infeasible derivative control

Entropy 2022, 24, 653 9 of 29

point adjustment method is designed using the derivative B-spline-bounded sufficient
condition [43] and convex hull property. Furthermore, the planned initial trajectory may
also become invalid as dynamic obstacles may appear at any time. To this end, a receding-
horizon replanning strategy is utilized to generate a new trajectory to reach the goal.

4.1. B-Spline Curve Formulation

A B-spline curve c(t) [44] of degree k is defined by the linear combination of a set of
control points {cp0, cp1, · · · , cpn} and the B-spline basis functions Bi,k, i.e.,

c(t) =
n

∑
i=0

Bi,k(t)cpi (9)

where the B-spline basis functions Bi,k can be computed by the fast and efficient de Boor
algorithm [45] on a non-decreasing knot vector {t0, t1, · · · , tm}. The number of knots, the
degree, and the number of control points satisfy the relationship m = n + k + 1. For a
uniform B-spline, its knot vector is uniformly divided by ∆t = tm+1 − tm, where the i-th
knot span is [ti, ti+1). In addition, each knot span is also normalized by ξ = (t− ti)/∆t so
that the knot vector covers the interval [0, 1]. On the i-th knot span [ti, ti+1), at most k + 1
basis function is nonzero, namely, Bi−k,k(u), Bi−k+1,k(u), · · · , Bi,k(u), corresponding to k + 1
control points cpi−k, cpi−k+1, ..., cpi. Furthermore, CPi−k =

[
cpi−k, cpi−k+1, · · · , cpi

]T is
defined as the s-th control point span including k+ 1 continuous control points. The general
matrix representation of B-spline is described in [46]. Then, the position and lth-order
derivative [43] of the B-spline curve can be expressed as

cs(ξ) = b>MkY s

dcs(ξ)

dldξ
=

1
(∆t)ld

db>

dldξ
MkY s

(10)

where
b =

[
1 ξ ξ2 · · · ξk]>

Mk = (mi,s) ∈ R(k+1)×(k+1)

mi,s =
1
k!

(
k

k− i

) k

∑
r=s

(−1)r−s
(

k + 1
r− s

)
(k− r)k−i

Y s = CPi−k

(11)

In addition, b is the basis vector, and Mk denotes a blending matrix. When ld is equal to
zero, the upper and lower equations of Equation (10) are equivalent.

4.2. Optimization Approach

One of the important properties of B-spline is the strong convex hull property. As
shown in Figure 2a, all points on a B-spline curve lie within the union of all convex hulls
consisting of n + 1 successive control points. More precisely, if t ∈ [ti, ti+1), then c(t) is
in the convex hull of control points

{
cpi−k, cpi−k+1, cpi

}
. Another important property of

B-spline is that the d-th derivative of a k-degree B-spline is a (k− d)-degree B-spline on
the original knot vector with a new set of (n− d + 1) control points

{
cp0, cp1, · · · , cpn−d

}
.

For example, the velocity-spline curve shown in Figure 2b. Moreover, the control points of
velocity vi ∈ {[vmin, vmax]}, acceleration ai ∈ {[amin, amax]}, and jerk ji ∈ {[jmin, jmax]} are
defined as

vi =
cpi+1 − cpi

∆t

ai =
vi+1 − vi

∆t

ji =
ai+1 − ai

∆t

(12)

Entropy 2022, 24, 653 10 of 29

where each knot span ∆t is the same.

(a) (b)

1

2

3 4

5

6
7

8

1
2

3

45

6

7

Figure 2. Illustration of the B-spline convex hull property. (a) Green square points indicate control
points. (b) Yellow diamonds are derivative control points corresponding to the left image. The spline
curves lie within the union of convex hulls of the control points. Moreover, the entire curve is feasible
if all control points are within the feasible bounding box (red dashed box).

In the current work, three cost terms related to safety, smoothness, and feasibility are
used to model the trajectory cost, where the safety term indicates the cost of approaching
obstacles, the smooth term indicates the trajectory smoothness cost, and the feasible term
indicates the dynamic feasibility cost. Then, the objective function is written as

min
p

C = ϕsCs + ϕcCc + ϕdCd (13)

where Cs represents smoothness cost, Cc is collision cost, and Cd is for feasibility cost.
The weight coefficients ϕs, ϕc, and ϕd trade off each cost term to minimize the final
optimization cost.

(1) Smoothness costs: For the smoothness penalty term, an elastic band function is de-
signed to describe the smoothness of the position control points, which only uses
the geometric information of the control points without involving time information.
Moreover, the smoothness of the B-spline trajectory can also be improved by mini-
mizing the acceleration and jerk control points [47]. Then, the smooth term penalty
function is defined as

Cs =
n−k+1

∑
i=k−1

∥∥δ
(
cpi+1 − cpi−1

)
−
(
cpi − cpi−1

)∥∥2
2 +

n−1

∑
i=1
‖ai‖2

2 +
n−2

∑
i=1
‖ji‖

2
2 (14)

where the scaling factor δ =
di−1

di−1+di
ensures that the relative distance between two

adjacent control points remains unchanged, and di =
∥∥cpi − cpi+1

∥∥ is calculated
between the control points. In fact, the first term of the smoothing function treats all
control points as a deformable elastic band and behaves as an internal contractive
force to make the trajectory as evenly distributed on the straight line as possible.
The second and third terms smooth the whole trajectory by minimizing higher-order
derivatives.

Entropy 2022, 24, 653 11 of 29

(2) Collision costs: Since the initial trajectory may be close to the obstacles, the collision
penalty function can keep the control point away from the obstacles by the repulsive
action [7]. Therefore, the collision penalty term is defined as

Cc =
N−k

∑
i=k

VF(f (d(cpi))) (15)

VF(f (d(cpi))) = (f (d(cpi))− fε)
2 (16)

f (d(cpi)) =
kd

1 + e(d(cpi)(2/d0)−1)α
(17)

where d(cpi) is the minimum Euclidean distance between control points and the
obstacles, fε is the repulsive force at the safe distance threshold d0, kd represents the
maximum magnitude of the repulsive force, and α(α� 1) is a shape parameter. This
design allows the repulsive force magnitude f (d(cpi)) to reach its maximum value kd
when d(cpi) = 0, while f (d(cpi)) approaches 0 when d(cpi) > d0 and no repulsive
force is generated.
To facilitate fast distance detection, the Euclidean distance field (EDF) of the occupancy
volume is calculated by an efficient algorithm [48] with complexity O(n1), where
n1 = N3 is the number of voxel grids, and N represents the size of the volume
along a single axis. Furthermore, the trilinear interpolation technique is adopted to
enhance the detection accuracy of distance [33], which compensates for voxel grid
discretization errors and is beneficial for numerical optimization [41].

(3) Feasibility costs: The higher-order derivative of a B-spline curve is also a B-spline
with the convex hull property. In other words, if the derivative control points are
bounded within the convex hull, expanded by the maximum allowed derivative,
then the derivative-spline is also bounded [43]. Based on this property, we ensure
the feasibility of the trajectory by designing a penalty function that constrains the
higher-order derivatives of the control points as follows:

Cd =
n−k

∑
i=k−1

wvG(vi) +
n−k

∑
i=k−2

waG(ai) +
n−k

∑
i=k−3

wjG(ji) (18)

where wv, wa, and wj are the weights of the penalty terms of velocity, acceleration,
and jerk, respectively. The penalty term is defined as

G(β)β∈{v,a,j} =

 ∑
e∈{x,y,z}

(
β2

e − β2
max
)2

β2
e > β2

max

0 β2
e ≤ β2

max

(19)

4.3. Numerical Optimization Method

The numerical solution of Equation (13) is obtained using the L-BFGS method [49],
which uses curvature information to construct a Hessian approximation from the nearest
iteration. Curvature information from earlier iterations that are not associated with the
behavior of the current iteration Hessian is discarded to save storage. In the current
work, the objective function is explicit and has separability, so the L-BFGS method that
approximates the inverse Hessian from gradient information usually converges quickly
and is robust [50]. Due to low computing requirements and small memory consumption,
L-BFGS is suitable for real-time applications. The L-BFGS numerical optimization process
is elaborated as follows:

Let the continuously differentiable unconstrained optimization problem be min
x

f (x).
The updating for x follows the approximate Newton steps [50]:

xk+1 = xk − αk Hk∇ f k (20)

Entropy 2022, 24, 653 12 of 29

where αk is the step length and satisfy the Wolfe condition, Hk∇ f k is the search direction,
and Hk is updated at every iteration by means of the following formula:

Hk+1 = V T
k HkV k + ρksksT

k (21)

where ρk = 1/yT
k sk, V k = I − ρkyksT

k , sk = xk+1 − xk and yk = ∇ f k+1 −∇ f k.
Furthermore, the inverse Hessian approximation is implicitly stored by storing a finite

number of vector pairs {si, yi} to avoid high storage and operation costs when the number
of variables is large. The product of Hk∇ f k is computed by a two-loop recursion updating
algorithm [51], which performs an iterative inner product and vector sum operation over
∇ f k and the vector pair {si, yi}. In fact, only curvature information from the m (between 3
and 20) most recent iterations is included in the set of vector pairs.

The initial inverse Hessian H0
k for L-BFGS updating is chosen to follow [50], i.e.,

H0
k = γk I (22)

where γk =
sT

k−1yk−1
yT

k−1yk−1
is the scaling factor that attempts to estimate the size of the true

Hessian matrix along the most recent search direction. Finally, the L-BFGS algorithm can
be summarized and rewritten as Algorithm 2.

Algorithm 2 L-BFGS algorithm

Input: Start point: x0, the number of most recent iterations: m, k = 0;
Output: Optimal x∗

1: Initial H0
k

2: repeat
3: pk ← −Hk∇ f k(by two-loop recursion updating algorithm)
4: xk+1 = xk + αk pk (αk satisfy the Wolfe conditions)
5: if k > m then
6: Discard(

{
sk−m, yk−m

}
);

7: end if
8: Hk+1 = V T

k HkV k + ρksksT
k

9: ρk = 1/yT
k sk, V k = I − ρkyksT

k , sk = xk+1 − xk
10: sk ← Computeandsave(xk+1, xk)
11: yk ← Computeandsave(∇ f k+1,∇ f k)
12: k← k + 1
13: until (f (xk+1) > f (xk))

4.4. Infeasible Derivative Control Points Adjustment Method

For a uniform B-spline, each knot span ∆t is equal. Collision penalty tends to force
larger separations between local control points close to obstacles. The robot needs to
move farther in the same amount of time, which means the robot needs to move faster.
Therefore, derivative control points that do not meet the feasibility requirements may
appear. To this end, an adjustment method based on the derivative B-spline-bounded
sufficient condition [43] and the convex hull property is designed, which locally adjusts the
infeasible derivative control points to within the maximum allowable bound.

As in Equation (10), the position coordinate c(ξ) of B-spline curve in the s-th control
point span can be expressed as:

cs(ξ) = b>MkY s (23)

Let the mapping matrix be Cld, which satisfies db>

dldξ
= b>(Cld)

>; then, the corresponding
derivative control points can be derived following [32]:

dcs(ξ)

dldξ
=

1

(∇t)ld
dbT

dldξ
MkY s =

1

(∇t)ld bTCT
ld MkY s (24)

Entropy 2022, 24, 653 13 of 29

Let Sld = M−1
k Cld Mk/(∆t)

ld, then we have

dcs(ξ)

dldξ
= b>Mk(SldY s) (25)

It can be seen from Equation (25) that the derivative curve is also a B-spline curve with
SldY s as the control point span. If |SldY s| ≤ λmax

ld 1k×1, then the derivative control points
are completely contained in the range from −λld to λld. Using the above derivation and
the B-spline curve convex hull property, an infeasible derivative control point adjustment
method is designed by adjusting the infeasible derivative control points to be within the
convex hull of the maximum allowable derivative expansion. An optional adjustment
scaling factor η is set as follows:

ηr =
sgn
(

rinf
µ

)
rmax

µ

rinf
µ

, µ ∈ {x, y, z}, r ∈ {v, a, j} (26)

where sgn
(

rinf
µ

)
indicates the symbol of the infeasible derivative control point, rmax

µ is the

maximum allowable value, and rinf
µ is the value of the infeasible control point. Taking the

adjustment of a infeasible velocity control point as an example,

vmax
µ = ηvvinf

µ =
sgn
(

vinf
µ

)
vmax

µ

vinf
µ

vinf
µ ∈

[
−vmax

µ , vmax
µ

]
(27)

The adjustment of infeasible acceleration and jerk follows a similar process as well.
Finally, infeasible derivative control points can become feasible by scaling factor adjustment.
Then, the whole derivative spline is feasible according to the B-spline convex hull property.

4.5. Local Replanning Strategy

In an open industrial cell, it may be inefficient to directly generate the global trajectory
from the starting point to the goal, since the part of the trajectory occupied by dynamic
obstacles is never executed. To improve efficiency, following [41,43], a replanning strategy
using receding horizon framework is adopted to generate a trajectory from the start point to
the goal segmentally by a predefined searching radius δ. In other words, the path search is
only performed in a spherical region centered on the current position of the end-effector and
with a radius δ. An illustrative example is shown in Figure 3. Once the motion primitive
node exceeds the search radius, the search process will be stopped, then the trajectory
optimization and infeasible derivative control points adjustment will be performed.

The replanning process is activated in both active and passive modes. In the active
mode, the replanner is invoked at a regular interval and updates the trajectory with the
latest environmental information. In passive mode, the replanner is activated by collision
detection, i.e., once the current planned trajectory collides with obstacles, the replanner
will be triggered to ensure that a new safe trajectory is available.

Entropy 2022, 24, 653 14 of 29

Figure 3. The receding-horizon-based replanning strategy generates a trajectory from the starting
point to the goal, segmented by a preset searching radius δ.

5. Collision Avoidance Optimization for the Robot Links

In this section, the collision avoidance problems between links and obstacles, and
the robot itself, are discussed, respectively. The former avoids the collisions between the
robot links and obstacles, and the latter avoids the robot from self-collision during motion.
Collision detection needs to be performed first. To reduce CPU consumption, the robot is
approximated as a simple 3D sphere and cylinder as shown in Figure 4a. The sphere is
characterized by the center and radius, R1. The cylinder is characterized by the center, axis
length, L, and radius, R2. For self-collision avoidance, collision detection can be divided
into three cases, as shown in Figure 4b:

• Collision detection between spheres (Case 1): The distance, d, between the centers of
two spheres is measured to detect whether the two spheres collide. If d > (R1 + R2),
where R1 and R2 are the radii of the two spheres, then the two spheres do not collide.

• Collision detection between a cylinder and a sphere (Case 2): The center of the sphere
is projected onto the axis of the cylinder to detect collisions between the cylinder and
the sphere. Two cases need to be discussed. First, if the projection of the sphere center
is inside the cylinder, the distance, d, between the sphere center and its projection on
the cylinder axis is considered as the collision detection distance. If d > (R1 + R2), the
cylinder and the sphere do not collide. Second, if the projection of the sphere center
is outside the cylinder, the distance, d, between the sphere center and the nearest
cylinder end will be used as collision detection distance. If d > (R1 + R2), then no
collision occurs.

• Collision detection between cylinders (Case 3): The cylinders are reduced to two axes
to detect collisions between two cylinders. Again, two possible cases that need to be
discussed. First, if the intersection of the two cylinders axes is inside the first cylinder,
the distance, d, between the closest points is used as the collision detection distance.
If d > (R1 + R2), the two cylinders do not collide. Second, if the intersection of two
cylinders axes is outside the cylinders, then the closest distance is determined by
the distance, d, between the ends of the two cylinders. If d > (R1 + R2), then no
collision occurs.

Entropy 2022, 24, 653 15 of 29

r2

d

r1
d

L

R

R1 R2

R

Rd

d

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Interest point

CapsuleSphere

d

n

Sphere Capsule

d

L

R2

R1 R2

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Sphere Capsule

R1

(c)

d

n

d

(a)

d

L

R

R1 R2

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Sphere Capsule

R

(c)

n
d

d

n

d
n

n
d closest

points(cp1,cp2)
contact

normal(n)
self-collision
distance(dl)

cp1

cp2 cp2

n
cp1

cp1

cp2

Figure 4. Illustration of robot self-collision avoidance. (a) The robot model is approximated as
a simple 3D geometric model. (b) Geometric model distance evaluation cases. (c) Examples of
self-collision and descriptions of the closest points cp1, cp2 and contact normal n.

To avoid robot self-collision, the distances between the links that may collide need
to be calculated. Denote the Cartesian space positions of the simplified geometric axes
at configuration q ∈ Rn as CS(q), and the Euclidean distance vector from Pi to Pj as
d
(
Pi, Pj

)
: R3 ×R3 → R3, then the self-collision distance, dl, between robot components

that may collide, can be defined as

dl = min
∥∥d
(
Pi, Pj

)∥∥
s.t. Pi, Pj ∈ CS(q), i, j ∈ {Link1, Link2, · · · , Link6}

(28)

where the position of the cylinder axis and the position of the sphere center can be easily
obtained by the forward kinematics model of the robot. Due to the structural constraints of
the robot itself, some link components never collide (including adjacent links). Therefore,
we divide the link collision states into two categories: never-in-collision state, N, and
possible-collision state, M. To speed up self-collision detection, only components that
may collide with other components are detected. Pairs of link components that require
self-collision detection are listed as shown in Table 2.

Table 2. Collision state relationship table of the links component pairs.

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Link 1 N N M M M M
Link 2 N N M M M
Link 3 N N M M
Link 4 N N N
Link 5 N N
Link 6 N

Since the robot motion interpolation is discretized, we need to ensure that the robot’s
next movement distance is less than the minimum self-collision detection distance, dl, to
avoid self-collision. The Cartesian velocity vector along the contact normal n is calculated to
predict the distance the robot will move next. The Cartesian velocity vector is calculated by

xchain = Jchainq̇ (29)

Entropy 2022, 24, 653 16 of 29

where Jchain is the Jacobian of the closest point closer to the end-effector. The main reason is
that self-collisions are usually caused by end-effector manipulation tasks. Figure 4c shows
the closest points cp1 and cp2, where cp2 is closer to the end-effector.

Once the self-collision distance, dl, is detected and the closest point Cartesian velocity
xchain is obtained, then xchain is projected onto the contact normal n and multiplied by the
time step ∆t; the self-collision avoidance constraint is defined as

∆t ∗ nT(Jchainq̇) < (dl − dl0) (30)

where the contact normal n is the direction vector of the distance vector between the two
closest points. dl0 is the safe distance threshold of the self-collision. The above formula
shows that the distance of the closest point moving along the contact normal direction
in time step ∆t is less than the self-collision distance. Several illustrative examples of
self-collision avoidance are also shown in Figure 4c, which correspond to the three collision
detection cases shown in Figure 4b.

For the links collision avoidance, as with the self-collision method, spheres and cylin-
ders surrounding the robot body are used to provide safety contours. As shown in Figure 5a,
the interest points (yellow) distributed along the links are set for collision detection be-
tween the links and obstacles. Different from the traditional collision avoidance method
based on the concept of artificial potential field, it only makes the robot avoid obstacles
along the distance vector direction. In the current work, a constraint-relaxed links collision
avoidance method is adopted by solving a standard quadratic programming problem,
which minimizes the deviation between the actual trajectory and the back-end optimized
trajectory under the constraints of links collision avoidance and self-collision avoidance.
As shown in Figure 5b, the hemispherical area (dark orange) centered on the interest point
C is the feasible set of collision avoidance.

r2

d

r1
d

L

R

R1 R2

R

Rd

d

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Interest point

CapsuleSphere

d

n

Sphere Capsule

d

L

R

R1 R2

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Sphere Capsule

R

(c)

d

n

d n

d

L

R

R1 R2

R
1

R2d

d

Case1

Case3

(a)

d
Case2

(b)

Sphere Capsule

R

(c)

n
d

d

n

d
n

the closest

point(cp)

the contact

normal(n)

n
d

self-collision

distance(d)

cp1
cp2 cp2

cp1

cp1

cp2

(a) (b)

Obstacle
mind

C
Interest

point

Figure 5. (a) The interest points are the yellow points along with the links of the robot and the
envelope spheres and cylinders constitute the safety protection zone. (b) A safe feasible set example
of the robot links collision avoidance.

Specifically, the center ωr of the feasible set of single interest point can be configured as:

ωr =
d
‖d‖ (31)

Entropy 2022, 24, 653 17 of 29

where d represents the minimum distance vector between the interest point and obstacles.
To keep the interest point C away from obstacles, the component of collision avoidance
velocity ẋr of the interest point C along the vector ωr needs to be non-negative, that is

ωra
T ẋr = ωra

T Jcq̇ = Jroq̇ ≥ 0 (32)

where ωra ∈ R6×1 is the zero-filled augmented matrices of ωr. Jc is the Jacobian of the
interest point C. Jro indicates the Jacobian matrix after dimensionality reduction.

Since there may be an infinite number of collision avoidance velocities satisfying
Equation (32) in the feasible set space, the optimal collision avoidance velocity com-
mand cannot be manually selected. In addition, the self-collision avoidance constraint
Equation (30) also needs to be satisfied during the links collision avoidance process. To
solve the above problems, we integrate multiple tasks into quadratic programming (QP)
framework with inequality constraints, as follows:

min
q̇

∥∥ẋop − Jq̇
∥∥2

2

s.t. Jroq̇ ≥ 0

− (nJchain)q̇ +
dl − dl0

∆t
> 0

q̇min ≤ q̇ ≤ q̇max

(33)

where the objective function minimizes the velocity deviation of the end-effector from
actual to desired under the constraints. ẋop is the desired velocity profile generated by the
back-end optimization step, Jq̇ is the end-effector actual velocity profile. q̇min and q̇max
are the minimum and maximum allowable joint velocities, respectively. Equation (33) is a
standard quadratic programming problem, and its Hessian matrix H = JT J is symmetric
positive definite, so there is a global optimal solution. The optimal solution is composed
of collision avoidance joint velocity and compensation joint velocity. The velocities of the
joints before the constrained interest point are used to avoid the robot from colliding with
obstacles, and the velocities of the following joints are used as compensation values to track
the desired velocity profile.

It is worth noting that Equation (33) involves the back-end trajectory optimization
step and the links collision avoidance step, where the optimized task space trajectory is
used as the desired trajectory. More specifically, if the links are not constrained by obstacles
or have no risk of self-collision, the robot will normally execute the optimized task space
trajectory. Instead, the link collision avoidance optimization will be activated to achieve
link collision avoidance while tracking the optimized task space trajectory.

6. Simulation and Real-World Experiment Results

In this section, we first verify the effectiveness of the proposed algorithm in a variety of
different simulation scenarios, which include static obstacles as well as dynamic obstacles.
We benchmarked the proposed algorithm against existing state-of-the-art motion planners
and trajectory optimization algorithms. We first compare our method with two state-of-
the-art motion planners for manipulator arms, RRTX [27] and the DRGBT [30]. Second,
we compare our method with two state-of-the-art trajectory optimization algorithms,
CHOMP [16] and TrajOpt [17], which are popular in the field of industrial robot trajectory
optimization and integrated into the open-source motion planning framework MoveIt [52].
We choose these benchmark methods due to their superior performance, reproducibility,
and code availability. Compared with the advanced motion planners RRTX and DRGBT,
our method can generate a shorter and smoother path in shorter time with a higher success
rate. Compared with the advanced trajectory optimization algorithms CHOMP and TrajOpt,
our method can generate a smoother optimization trajectory with a higher success rate and
is more suitable for real-time applications. Finally, we also demonstrate the effectiveness
of our method on a real-world robotic pick-place task. More experimental details are

Entropy 2022, 24, 653 18 of 29

also presented in the Supplementary Materials Video S1, and the download link is in the
Supplementary Materials section of the paper.

6.1. Experimental Settings

The experiments were performed on a 6-DOF collaborative robot, the model of which
is shown in Figure 6. The size of the robot workspace is 3× 3× 3 m, which is modeled
as a 3D grid map with a resolution of 1 mm. Too large a resolution may increase the
discrete error, and too small a grid resolution may increase the path search time. Therefore,
the choice of grid resolution is a compromise between discrete error and path search
time. The choice of grid resolution in the current work fully considers the two factors.
The start and goal positions in Cartesian space are ps = (0.3406,−0.3647, 0.4318) and
pg = (0.3289, 0.4763, 0.5000), respectively, which are predefined. The Euclidean distance is
used as a safety metric. The safe distance threshold between the robot and the obstacles
is d0 = 0.14 m, and the self-collision safe distance threshold is ds = 0.05 m. A greater
safety distance will cause the robot to move more conservatively but may increase the
task execution time and trajectory length, thereby reducing work efficiency. Therefore, the
setting of the safety distance is a compromise between safety and efficiency.

No

Obstacles

Our

DRGBT

T1=0.31s T2=0.96s T3=2.03s T4=4.30s T5=5.84s

Stationary obstacle

Start pos. Goal pos.

T1=0.01s T2=0.93s T3=1.60s T4=2.11s T5=3.04s

Stationary obstacle

 Goal pos.Start pos.

T1=0.01s T2=0.89s T3=1.58s T4=2.07s T5=3.01s

RRTX

T1=0.54s T2=2.64s T3=4.97s T4=5.27s T5=7.83s

Stationary obstacle

Start pos. Goal pos.

Figure 6. Visualization of robot motion trajectories in a single static obstacle comparison experiment.
The first row: the original motion trajectory of our method without obstacles. The second row: the
motion trajectory of the RRTX algorithm. The third row: the motion trajectory of DRGBT algorithm.
The fourth row: the motion trajectory of our algorithm.

The weights of the trajectory optimization cost function are set to ϕs = 8, ϕc = 0.3,
and ϕd = 0.01. The weight of each optimization term indicates its relative importance.
The selection of weights is a compromise between the cost of each optimization item to
minimize the total optimization cost. The proposed algorithm already considers the safety
and dynamic feasibility of the initial trajectory in the kinodynamic path search step, while

Entropy 2022, 24, 653 19 of 29

the trajectory smoothness is not considered. Therefore, the smoothing cost is applied with
greater weight in the trajectory optimization objective function, while the costs of safety and
dynamic feasibility are given smaller weights, respectively. Similarly, we apply a greater
weight to the jerk penalty term in the feasibility penalty function and smaller weights to the
penalties of the velocity and acceleration, respectively. The weights of velocity, acceleration,
and jerk in the feasibility penalty function are set as ωv = 0.01, ωa = 0.01 and ωj = 0.1.
The repulsive force magnitude in the collision penalty function is kd = 0.1, α = 6. A cubic
B-spline curve is used in the back-end trajectory optimization step, i.e., k = 3.

All simulations are performed on a laptop with Intel Core i7-9750 CPU @ 2.6 GHz and
8 GB memory running Ubuntu 18.04 and ROS Melodic, and the programming language
uses C++. The real-world experiments are carried out on a physical 6-DOF collaborative
robot. The robotic workspace is surrounded by two Kinect cameras to detect workspace
obstacles. The experimental parameter settings are the same as the above simulation
settings. The online trajectory generation algorithm is deployed on an external PC, and the
PC and the robot controller communicate through a 1 kHz network port.

6.2. Simulation Experiments
6.2.1. Scenes with a Single Static and Dynamic Obstacle

In the first scenario, there is only one static obstacle in the workspace, but it is so
close to the robot that the original trajectory may become infeasible (see Figure 6). The
robot wants to run from the starting position to the goal position safely and efficiently,
the planned trajectory should not only be collision-free to ensure safety but also shorten
the planning time as much as possible to improve the robot’s work efficiency. In the
second scenario, a single obstacle reciprocates between the start and goal positions at a
speed of 0.03 m/s, periodically blocking the robot’s motion. At this time, the trajectory
generation algorithm should ensure that the search path is collision-free and meets the
real-time requirements. Figures 6 and 7 qualitatively show the experimental results of our
method and the benchmark motion planners in a single static and dynamic obstacle scene,
respectively.

T1=0.25s T2=4.86s T4=13.85sT3=7.45s T5=15.10s

Start pos. Goal pos.

Moving obstacles

T1=0.01s T2=1.28s T4=2.46sT3=1.98s T5=3.13s

 Goal pos.Start pos.

Moving obstacles

Our

DRGBT

RRTX

T1=0.21s T2=3.55s T4=13.41sT3=6.78s T5=19.97s

Moving obstacles

Start pos. Goal pos.

Figure 7. Visualization of robot motion trajectories in a single dynamic obstacle comparison exper-
iment. The first row: the motion trajectory of the RRTX algorithm. The second row: the motion
trajectory of the DRGBT algorithm. The third row: the motion trajectory of our algorithm.

Entropy 2022, 24, 653 20 of 29

From the qualitative experimental results in Figure 6, it can be seen that there are some
sudden turning points in the planned paths of both the RRTX algorithm and the DRGBT
algorithm, and the overall trajectories are not smooth, while the trajectory generated by our
method is smoother and shorter in length. In terms of total runtime, our method only takes
about 3.04 s, while the RRTX algorithm and the DRGBT algorithm take about 7.83 s and
5.84 s, respectively. Furthermore, as can be seen from the qualitative experimental results of
a single dynamic obstacle shown in Figure 7, although both our method and the benchmark
motion planners can search for collision-free paths, our method shows superiority and
robustness. From the overall path of the search, the search path of our method is still
smooth and short, while the search paths of the RRTX algorithm and DRGBT algorithm are
tortuous and have large fluctuations. From the total runtime, our method takes only about
3.13 s, almost the same as the static scenario, which shows the robustness of our method.
The total running times of the RRTX algorithm and the DRGBT algorithm are 13.97 s and
15.10 s, respectively, which are much larger than the time taken by our method.

6.2.2. Scenes with Multiple Static and Dynamic Obstacles

In the third case, two static obstacles parallel and perpendicular to the tabletop ap-
proach the robot. The start and goal positions are the same as in the first scene. Unlike
the single static obstacle scenario, obstacles parallel to the tabletop impose constraints
on the robot trajectory, reducing the robot’s feasible space. In the fourth scenario, two
dynamic obstacles perpendicular to each other and close to the robot reciprocate at a speed
of 0.03 m/s between the starting position and the goal position, which imposes constraints
on the motion trajectory in a more complex form. It is a challenging task as the robot needs
to replan the motion trajectory in real time to quickly bypass obstacles in both vertical
sections and then converge to the goal configuration. Figures 8 and 9 qualitatively show
the experimental results of our method and the benchmark motion planners in scenes with
multiple static and dynamic obstacles, respectively.

T1=0.41s T2=2.24s T3=5.82s T4=7.84s T5=12.03s

Start pos.

T1=0.01s T2=1.60s T3=2.11s T4=2.65s T5=3.68s

Start pos.

 Goal pos.

Our

DRGBT

T1=0.65s T2=4.98s T3=8.73s T4=10.07s T5=16.13s

RRTX
Start pos.

Figure 8. Visualization of robot motion trajectories in a multiple static obstacles comparison exper-
iment. The first row: the motion trajectory of the RRTX algorithm. The second row: the motion
trajectory of the DRGBT algorithm. The third row: the motion trajectory of our algorithm.

Entropy 2022, 24, 653 21 of 29

Start pos.

 Goal pos.
T1=0.01s T2=1.25s T3=1.79s T4=2.21s T5=3.43s

Our

T1=0.37s T2=3.35s T3=4.57s T4=7.68s T5=16.16s

DRGBT

Start pos.

 Goal pos.

RRTX

T1=0.32s T2=4.29s T3=5.04s T4=12.15s T5=17.72s

Start pos.

 Goal pos.

Figure 9. Visualization of robot motion trajectories in a multiple dynamic obstacles comparison
experiment. The first row: the motion trajectory of the RRTX algorithm. The second row: the motion
trajectory of the DRGBT algorithm. The third row: the motion trajectory of our algorithm.

Figure 8 shows the path search results of our method and the benchmark motion
planners in a scene with two static obstacles. It can be seen that our method outperforms
the RRTX algorithm and the DRGBT algorithm in both total path length and total runtime.
In terms of path length, our method generates a trajectory that bypasses obstacles from
below the obstacle that parallels to the tabletop, greatly shortening the total running path
length, in line with human intuition. Compared with our method, the trajectories generated
by the RRTX algorithm and the DRGBT algorithm seem to have unnecessary deflections
so that the total path length may be larger. In terms of total runtime, the total runtime
of our method is significantly smaller than that of the RRTX algorithm and that of the
DRGBT algorithm, with little change compared to the previous test scene time, which
further demonstrates the robustness of our method. Figure 9 shows the path search results
of our method and the benchmark motion planners in a scene with two dynamic obstacles.
It can be seen that our method is superior to the RRTX algorithm and the DRGBT algorithm
in both search path quality and total runtime. In terms of path quality, our method does
not exhibit abrupt turns due to multiple dynamic obstacle constraints but stably converges
to the goal. In terms of total runtime, our method takes only 3.43 s from the starting point
to the goal point, while the RRTX algorithm and the DRGBT algorithm take about 11.81 s
and 16.16 s, respectively. The total running time of both benchmark planners are more than
three times that of our method.

6.2.3. Quantitative Evaluation and Analysis of Simulation Results

The path search algorithms are also quantitatively compared in terms of algorithm
success rate, single iteration time, total runtime, and Cartesian space path length. Each
algorithm was run 100 times in each scenario to precisely obtain each evaluation index.
The RRTX algorithm is an asymptotically optimal single-query replanning algorithm that
refines and repairs the same search graph using the obstacles or robot change information.
The existing search graph is quickly reconstructed through a graph rewiring cascade
to repair its shortest-path subtree to the target. Therefore, RRTX needs to continuously
update and repair the global search graph according to changes in the environment or
robot position. The DRGBT algorithm is based on an adaptive horizon setting through

Entropy 2022, 24, 653 22 of 29

predefined C-space path target nodes, where each node is assigned a weight determined by
relative distance and captured environmental changes. This setting requires the algorithm
to perform constant distance queries to modify local paths. In fact, both the RRTX algorithm
and the DRGBT algorithm are essentially sampling-based path-planning methods, which
obtain geometric path information without including time information. However, due
to limited sampling, the quality of the planned path is not ideal. We also observed some
unpredictable stochastic behaviors, as shown by large fluctuations and redundancy in the
planned trajectories in Figures 7–9. Since the path search costs of benchmark planners are
evaluated without considering the control cost, the search paths may not be smooth. Our
method takes into account the nonstatic initial state of the robot by integrating the control
input over the duration to obtain the position, velocity, and acceleration state of each node.
Since the search cost is evaluated by minimizing the control and time costs, the search path
is time-minimized and exhibits good smoothness.

Table 3 quantitatively shows the experimental results of each evaluation index in the
four research scenarios. In terms of success rate, both the proposed method and the DRGBT
algorithm can successfully reach the target point in each run in the first and third scenarios,
while the success rate of our approach is higher than that of the DRGBT algorithm in the
second and fourth scenarios. The RRTX algorithm can successfully reach the target point in
each run in the first scenario, while the success rate in other scenarios is lower compared
to our method and the DRGBT algorithm. In terms of single iteration time, we show the
maximum time, average time, and runtime standard deviation of the proposed method
and the benchmark motion planners in four scenarios, respectively. From the experimental
results, the single iteration time of our method significantly outperforms the benchmark
motion planners. This shows that our method can quickly adjust the local trajectories in a
very short time, which also explains why our method has a higher success rate than the
benchmark motion planners in the second, third, and fourth scenarios. The randomized
behavior of the sampling-based planner may also be another factor for the low success rate
of the RRTXand DRGBT algorithms in dynamic environments. In terms of total runtime,
the proposed method is also smaller than the benchmark motion planners, which means
that our method can reach the target point from the starting point faster. In terms of path
lengths in Cartesian space, the search path of our method is significantly smaller than those
of the benchmark motion planners. The main reason is that the randomized behavior of
the RRTX algorithm and the DRGBT algorithm may result in unpredictable performance,
especially with a limited number of samples.

Table 3. Quantitative results for four scenarios from the simulation study.

Succ. Rate (%)
Single Iteration Time (s) Traj. Time (s) Path Length (m)

Mean Max Std Mean Max Std Mean Max Std

Scenario 1

RRTX 100% 0.179 0.287 0.0273 7.947 9.304 3.182 2.149 2.731 1.353

DRGBT 100% 0.0117 0.162 0.0148 5.914 6.794 2.891 2.0126 2.516 1.263

Ours 100% 0.00562 0.0104 0.000734 3.076 4.082 0.0849 1.014 1.204 0.483

Scenario 2

RRTX 65% 0.381 0.422 0.0329 20.074 23.634 4.551 2.749 3.338 1.775

DRGBT 92% 0.1757 0.253 0.0218 16.237 20.525 4.272 2.6887 3.058 1.355

Ours 100% 0.00601 0.0559 0.00887 3.211 4.116 0.103 1.072 1.211 0.479

Scenario 3

RRTX 87% 0.364 0.449 0.0299 15.886 17.376 3.313 2.713 3.134 1.544

DRGBT 100% 0.2006 0.3662 0.0187 13.694 16.014 3.191 2.6065 3.724 1.346

Ours 100% 0.00573 0.0113 0.00081 3.128 4.026 0.0957 1.016 1.207 0.425

Scenario 4

RRTX 21% 0.571 0.64 0.3011 18.633 23.912 5.047 3.184 4.267 1.774

DRGBT 85% 0.3754 0.4563 0.2417 17.946 22.843 5.296 3.0795 4.096 1.536

Ours 94% 0.00639 0.0715 0.0128 3.371 4.1299 0.141 1.075 1.259 0.498

Entropy 2022, 24, 653 23 of 29

6.3. Comparison of Trajectory Optimization

For trajectory optimization, we benchmarked our method against existing state-of-
the-art trajectory optimization algorithms, the CHOMP algorithm [16], and the TrajOpt
algorithm [17], which are widely used for manipulator trajectory optimization. We created a
simulated environment consisting of multiple staggered static obstacles, and the robot needs
to move from a starting position to a goal position safely and efficiently. For fairness, our
method and the benchmark optimization algorithms are validated in the same experimental
environment. Figure 10 qualitatively shows the experimental results of our method and
the benchmark optimization algorithms. Figure 10a shows the whole trajectory executed
by the robot. It can be seen that the motion trajectory generated by our method is smoother,
and the overall trajectory length is shorter. Figure 10b also shows the screenshots of the
robot performing the complete experiment.

(a) (b)

Start pos.

 Goal pos.

 Goal pos.

Start pos.
Stationary

obstacle

Our

Start pos.

 Goal pos.

TrajOpt
Start pos.

 Goal pos.

Stationary

obstacle

Start pos.

 Goal pos.
Start pos.

 Goal pos.

Stationary

obstacle

CHOMP

Figure 10. The visualization of the robot motion trajectories in the trajectory optimization comparison
experiment. The first row: the motion trajectory of the CHOMP algorithm. The second row: the
motion trajectory of the TrajOpt algorithm. The third row: the motion trajectory of our method.

We quantitatively compare our method with the benchmark optimization algorithms
in terms of success rate, single computation time, and trajectory smoothness. We perform
300 experiments for each algorithm, and the average value of each evaluation index was
counted as shown in Table 4. We observe that our method can obtain collision-free tra-
jectories from the starting point to the target point in all experiments, while the CHOMP
algorithm and TrajOpt algorithm have a failure rate of 27% and 17%, respectively. It is
mainly because CHOMP directly generates the initial trajectory from the starting point to
the target point without considering obstacles. Then, the CHOMP algorithm iteratively
adjusts the initial trajectory, but the gradient descent may fall into the local minimum
of the cost function. The TrajOpt algorithm represents a trajectory in discrete-time form,
may require post-optimization for execution, and may not stay collision-free. Our method
adopts a replanning strategy that optimizes only one segment of the trajectory at each
time step to avoid local minima. In addition, the initial trajectory generated by our path
search module is inherently collision-free, which further improves the success rate of the
optimization algorithm. In terms of single computation time, our method only takes about
0.216 ms, while the CHOMP and TrajOpt algorithms require 56.7 ms and 69.2 ms, respec-
tively. The main reason is the CHOMP algorithm requires multiple iterations to optimize
the entire trajectory and the TrajOpt algorithm needs to evaluate the fine discretization
costs of the trajectory. The proposed method optimizes the replanned trajectory only within

Entropy 2022, 24, 653 24 of 29

the search horizon instead of optimizing all trajectory points, thus saving optimization time.
The global trajectory may become infeasible due to the uncertainty in the motions of the
dynamic obstacles, so optimizing the global trajectory may be ineffective. In terms of total
optimization time, our method only takes about 0.0635 s, while the CHOMP and TrajOpt al-
gorithms take about 5.574 s and 1.94 s, respectively—much more than the optimization time
of our method. Although the single iteration time of CHOMP is shorter than that of TrajOpt,
the total optimization time is longer, which may be due to the higher number of iterations
than TrajOpt. Then, combined with the trajectory smoothness information, it can be found
that our method can generate a smoother trajectory even with less optimization time.

Table 4. Quantitative evaluation results of the trajectory optimization comparison experiments.

Succ. Rate (%) Avg. Single Com. Time (s) Mean Smoothness
(m2/s5)

Total Optimization
Time (s)

CHOMP 217/300 0.0567 158.91 5.574
TrajOpt 249/300 0.0692 97.67 1.942

Ours 300/300 0.000216 12.71 0.0635386

6.4. Real-World Experiments

In this section, we validate the proposed method in the real world. A human partner
holding an obstacle gradually approaches the moving robot in the current experimental
setup. Figure 11 qualitatively shows the experimental results of online collision avoid-
ance for physical robots. The first and second rows show the experimental results of the
end-effector and links adjusting their trajectories online to avoid collision with obstacles,
respectively. Figure 12 also quantitatively shows the trajectory changes of the end effector
and a constrained interest point in the X, Y, and Z directions. From Figure 12a,b, it can be
seen that the motion trajectories of the end effector and the constrained interest point are
effectively adjusted and gradually converge to the target position (red dashed box).

In addition, we also deploy the proposed algorithm in a robot pick-place task. More
specifically, when the robot picks up an item and places it in a placement box, the hu-
man partner interferes with the robot, and the robot need replan the motion trajectory to
the placement box. Figure 13 shows a series of screenshots of the experimental process.
Figure 13a indicates that the robot starts to pick an item; Figure 13b indicates that the
human partner interferes with the robot when the robot is carrying the item; Figure 13c
indicates that the robot adjusts its motion trajectory to avoid the human partner (red dotted
box); and Figure 13d indicates that the robot successfully avoids the obstacle and transports
the item to the placement box. Figure 13e also quantitatively shows the trajectory change
process of the end-effector.

X
Y

Z

X
Y

Z

Figure 11. Real world experiments. The first and second lines show the experimental results of the
end-effector and links collision avoidance, respectively.

Entropy 2022, 24, 653 25 of 29

(a) (b)

Figure 12. The visualization of the end-effector and constrained interest point motion trajectories.
(a) The motion trajectory of end-effector. (b) The motion trajectory of the constrained interest point.

X
Y

Z

(a) (b)

(c) (d) (e)

Figure 13. A pick-place experiment. (a) The robot starts to pick a item. (b) The human partner
interferes with the robot. (c) The robot adjusts its motion trajectory to avoid obstacles. (d) The
robot successfully avoids obstacles and transports the item to the placement point (red dotted box).
(e) Trajectory change process of the end-effector.

7. Conclusions

In this paper, we propose an efficient and complete online trajectory generation
method to help a manipulator autonomous planning in dynamic environments. The overall
framework is built bottom-up, and the trajectory generation problem is decoupled into
front-end kinodynamic path search and back-end B-spline trajectory optimization modules.
Given the current end-effector state, a series of discrete control inputs, and the links
constraints, the front-end path search module generates a safe, smooth, and time-minimized
initial trajectory. Then, a trajectory optimization method using the B-spline convex hull
property is designed to increase the clearance between the trajectory and obstacles and
improve the smoothness. To avoid the collision between the links and obstacles and the
links themselves, the constraint-relaxed links collision avoidance method is integrated into
the back-end optimization step by solving a standard quadratic programming problem.
Finally, a complete real-time collision-free motion planning framework is developed to
improve the safety and efficiency of robots working in unstructured dynamic environments.

Entropy 2022, 24, 653 26 of 29

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/e24050653/s1, Video S1: Simulation and real-world experiment
demonstration videos.

Author Contributions: Conceptualization, H.L. and M.L.; methodology, H.L.; software, H.L.; vali-
dation, H.L., K.J. and F.X.; formal analysis, D.Q.; investigation, H.L.; resources, Z.D.; data curation,
D.Q.; writing—original draft preparation, H.L.; writing—review and editing, H.L.; visualization,
H.L.; supervision, F.X.; project administration, Z.D.; funding acquisition, Z.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by National Natural Science Foundation of China (No.
U20A20197).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

κ order of the derivative
ωr center of the feasible set
A state transition matrix
a acceleration control point
B input (control) matrix
b basis vector
CP control point span
cpi the i-th control point
C close set of node
c(t) B-spline curve
interestpoints points of interest along the robot body
J Jacobian matrix
j jerk control point
Jc Jacobian of a interest point
M blending matrix
n contact normal
P open set of node
pcur current grid node
pe end-effector position in the task space
pi the i-th grid node
qg goal joints configuration
qs initial joints configuration
v velocity control point
xd current state of the motion primitive
xg end-effector goal state
xs end-effector initial state
Y s the s-th control point span
χli geometric line segment representation of the i-th link
χlk geometric line segment representation of the k-th link
q̈ joint acceleration
∆u discrete step of the control input
δ replanning horizon size
q̇ joint velocity
ẋop desired velocity profile generated by the back-end optimization step
ẋr repulsion velocity within feasible set
O obstacle

https://www.mdpi.com/article/10.3390/e24050653/s1
https://www.mdpi.com/article/10.3390/e24050653/s1

Entropy 2022, 24, 653 27 of 29

µ any axis in x, y, z
ρ importance of the trajectory duration T relative to trajectory smoothness
τ duration
ϕ weight factor of the objective function
ξ normalized knot span
ar coefficient of a polynomial trajectory
C(T) search cost objective function
Cc collision cost
Cd feasibility cost
Cs smoothness cost
d(cpi) minimum distance between the i-th control point and obstacles
d(χlk(qa), χli(qa)) minimum distance between the k-th link and the i-th link
d(χlk(qa),O) minimum distance between the link segments and the obstacles
d0 safe distance threshold between the links and obstacles
dl0 safe distance threshold of the self-collision
dl self-collision distance

f (d(cpi))
magnitude of the repulsive force between the i-th control point and the closest
obstacle

fc search cost from the current node to the goal node
G(β) penalty function
gc search cost from the starting node to the current node
k degree
l discrete factor
ld the ld-th derivative of a B-spline curve
M total number of motion primitives
m + 1 number of B-spline knots
min_dis minimum distance between points of interest and obstacles
n + 1 number of B-spline control points
r degree of a polynomial trajectory
sµ(t) polynomial trajectory along each axis (µ ∈ {x, y, z})
sig collision signal
umax maximum value of control input
VF repulsive force
w weight factor of the feasibility penalty function
pe(t) end-effector trajectory in the task space
Ud discretized control input set
ud discretized control input
U control input set
u(t) control input
Bi,k B-spline basis function corresponding to the control point cpi

References
1. Krüger, J.; Lien, T.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [CrossRef]
2. Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot

collaboration. Auton. Robot. 2018, 42, 957–975. [CrossRef]
3. Haddadin, S.; De Luca, A.; Albu-Schäffer, A. Robot Collisions: A Survey on Detection, Isolation, and Identification. IEEE Trans.

Robot. 2017, 33, 1292–1312. [CrossRef]
4. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and

applications. Mechatronics 2018, 55, 248–266. [CrossRef]
5. Pairet, È.; Ardón, P.; Mistry, M.; Petillot, Y. Learning generalizable coupling terms for obstacle avoidance via low-dimensional

geometric descriptors. IEEE Robot. Autom. Lett. 2019, 4, 3979–3986. [CrossRef]
6. Li, S.; Han, K.; Li, X.; Zhang, S.; Xiong, Y.; Xie, Z. Hybrid Trajectory Replanning-Based Dynamic Obstacle Avoidance for Physical

Human-Robot Interaction. J. Intell. Robot. Syst. 2021, 103, 41. [CrossRef]
7. Flacco, F.; Kröger, T.; De Luca, A.; Khatib, O. A depth space approach to human-robot collision avoidance. In Proceedings of the

2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 338–345. [CrossRef]
8. Nascimento, H.; Mujica, M.; Benoussaad, M. Collision Avoidance in Human-Robot Interaction Using Kinect Vision System

Combined With Robot’s Model and Data. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 10293–10298. [CrossRef]

http://doi.org/10.1016/j.cirp.2009.09.009
http://dx.doi.org/10.1007/s10514-017-9677-2
http://dx.doi.org/10.1109/TRO.2017.2723903
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1109/LRA.2019.2930431
http://dx.doi.org/10.1007/s10846-021-01510-2
http://dx.doi.org/10.1109/ICRA.2012.6225245
http://dx.doi.org/10.1109/IROS45743.2020.9341248

Entropy 2022, 24, 653 28 of 29

9. Tulbure, A.; Khatib, O. Closing the loop: Real-time perception and control for robust collision avoidance with occluded obstacles.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
25–29 October 2020; pp. 5700–5707.

10. Lin, H.; Fan, Y.; Tang, T.; Tomizuka, M. Human guidance programming on a 6-DoF robot with collision avoidance. In Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 2676–2681. [CrossRef]

11. Lin, H.C.; Liu, C.; Fan, Y.; Tomizuka, M. Real-time collision avoidance algorithm on industrial manipulators. In Proceedings of
the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 1294–1299.
[CrossRef]

12. Lacevic, B.; Rocco, P. Kinetostatic danger field—A novel safety assessment for human-robot interaction. In Proceedings of the
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2169–2174.
[CrossRef]

13. Lacevic, B.; Rocco, P.; Zanchettin, A.M. Safety Assessment and Control of Robotic Manipulators Using Danger Field. IEEE Trans.
Robot. 2013, 29, 1257–1270. [CrossRef]

14. Zanchettin, A.M.; Lacevic, B.; Rocco, P. A novel passivity-based control law for safe human-robot coexistence. In Proceedings of
the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012;
pp. 2276–2281. [CrossRef]

15. Parigi Polverini, M.; Zanchettin, A.M.; Rocco, P. Real-time collision avoidance in human-robot interaction based on kinetostatic
safety field. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
14–18 September 2014; pp. 4136–4141. [CrossRef]

16. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP:
Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]

17. Schulman, J.; Ho, J.; Lee, A.X.; Awwal, I.; Bradlow, H.; Abbeel, P. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Proceedings of the Robotics: Science and Systems, New York, NY, USA, 27 June–1 July 2013; Volume 9,
pp. 1–10.

18. Zanchettin, A.M.; Rocco, P. Motion planning for robotic manipulators using robust constrained control. Control Eng. Practice
2017, 59, 127–136. [CrossRef]

19. Ragaglia, M.; Zanchettin, A.M.; Rocco, P. Trajectory generation algorithm for safe human-robot collaboration based on multiple
depth sensor measurements. Mechatronics 2018, 55, 267–281. [CrossRef]

20. Qureshi, A.H.; Simeonov, A.; Bency, M.J.; Yip, M.C. Motion Planning Networks. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2118–2124. [CrossRef]

21. Xu, Z.; Zhou, X.; Wu, H.; Li, X.; Li, S. Motion Planning of Manipulators for Simultaneous Obstacle Avoidance and Target Tracking:
An RNN Approach With Guaranteed Performance. IEEE Trans. Ind. Electron. 2022, 69, 3887–3897. [CrossRef]

22. Song, Q.; Li, S.; Bai, Q.; Yang, J.; Zhang, A.; Zhang, X.; Zhe, L. Trajectory Planning of Robot Manipulator Based on RBF Neural
Network. Entropy 2021, 23, 1207. [CrossRef] [PubMed]

23. Shen, Y.; Jia, Q.; Huang, Z.; Wang, R.; Fei, J.; Chen, G. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for
Redundant Manipulators. Entropy 2022, 24, 279. [CrossRef] [PubMed]

24. Liu, H.; Qu, D.; Xu, F.; Zou, F.; Song, J.; Jia, K. A Human-Robot Collaboration Framework Based on Human Motion Prediction and
Task Model in Virtual Environment. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology
in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 1044–1049. [CrossRef]

25. Hauser, K. On responsiveness, safety, and completeness in real-time motion planning. Auton. Robot. 2012, 32, 35–48. [CrossRef]
26. Sun, W.; Patil, S.; Alterovitz, R. High-frequency replanning under uncertainty using parallel sampling-based motion planning.

IEEE Trans. Robot. 2015, 31, 104–116. [CrossRef]
27. Otte, M.; Frazzoli, E. RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning. Int. J.

Robot. Res. 2016, 35, 797–822. [CrossRef]
28. Völz, A.; Graichen, K. A Predictive Path-Following Controller for Continuous Replanning With Dynamic Roadmaps. IEEE Robot.

Autom. Lett. 2019, 4, 3963–3970. [CrossRef]
29. Pupa, A.; Arrfou, M.; Andreoni, G.; Secchi, C. A safety-aware kinodynamic architecture for human-robot collaboration. IEEE

Robot. Autom. Lett. 2021, 6, 4465–4471. [CrossRef]
30. Covic, N.; Lacevic, B.; Osmankovic, D. Path Planning for Robotic Manipulators in Dynamic Environments Using Distance

Information. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021; pp. 4708–4713. [CrossRef]

31. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning Dynamically Feasible Trajectories for
Quadrotors Using Safe Flight Corridors in 3-D Complex Environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [CrossRef]

32. Ding, W.; Gao, W.; Wang, K.; Shen, S. Trajectory Replanning for Quadrotors Using Kinodynamic Search and Elastic Optimization.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May
2018; pp. 7595–7602. [CrossRef]

http://dx.doi.org/10.1109/IROS.2016.7759416
http://dx.doi.org/10.1109/CCTA.2017.8062637
http://dx.doi.org/10.1109/IROS.2010.5649124
http://dx.doi.org/10.1109/TRO.2013.2271097
http://dx.doi.org/10.1109/IROS.2012.6385797
http://dx.doi.org/10.1109/IROS.2014.6943145
http://dx.doi.org/10.1177/0278364913488805
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://dx.doi.org/10.1016/j.mechatronics.2017.12.009
http://dx.doi.org/10.1109/ICRA.2019.8793889
http://dx.doi.org/10.1109/TIE.2021.3073305
http://dx.doi.org/10.3390/e23091207
http://www.ncbi.nlm.nih.gov/pubmed/34573832
http://dx.doi.org/10.3390/e24020279
http://www.ncbi.nlm.nih.gov/pubmed/35205573
http://dx.doi.org/10.1109/CYBER46603.2019.9066603
http://dx.doi.org/10.1007/s10514-011-9254-z
http://dx.doi.org/10.1109/TRO.2014.2380273
http://dx.doi.org/10.1177/0278364915594679
http://dx.doi.org/10.1109/LRA.2019.2929990
http://dx.doi.org/10.1109/LRA.2021.3068634
http://dx.doi.org/10.1109/IROS51168.2021.9636730
http://dx.doi.org/10.1109/LRA.2017.2663526
http://dx.doi.org/10.1109/ICRA.2018.8463188

Entropy 2022, 24, 653 29 of 29

33. Usenko, V.; von Stumberg, L.; Pangercic, A.; Cremers, D. Real-time trajectory replanning for MAVs using uniform B-splines and
a 3D circular buffer. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 215–222. [CrossRef]

34. Zhou, B.; Gao, F.; Pan, J.; Shen, S. Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological
Paths. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Online, 31 May–31 August
2020; pp. 1208–1214. [CrossRef]

35. Zhou, B.; Pan, J.; Gao, F.; Shen, S. RAPTOR: Robust and Perception-Aware Trajectory Replanning for Quadrotor Fast Flight. IEEE
Trans. Robot. 2021, 37, 1992–2009. [CrossRef]

36. Kappler, D.; Meier, F.; Issac, J.; Mainprice, J.; Cifuentes, C.G.; Wüthrich, M.; Berenz, V.; Schaal, S.; Ratliff, N.; Bohg, J. Real-time
perception meets reactive motion generation. IEEE Robot. Autom. Lett. 2018, 3, 1864–1871. [CrossRef]

37. Meguenani, A.; Padois, V.; Silva, J.D.; Hoarau, A.; Bidaud, P. Energy based control for safe human-robot physical interaction. In
2016 International Symposium on Experimental Robotics, Proceedings of the International Symposium on Experimental Robotics, Tokyo,
Japan, 3–6 October 2016; Springer: Cham, Switzweland, 2016; pp. 809–818.

38. Han, L.; Gao, F.; Zhou, B.; Shen, S. Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial robots.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8
November 2019; pp. 4423–4430.

39. Kant, K.; Zucker, S.W. Toward efficient trajectory planning: The path-velocity decomposition. Int. J. Robot. Res. 1986, 5, 72–89.
[CrossRef]

40. Liu, S.; Atanasov, N.; Mohta, K.; Kumar, V. Search-based motion planning for quadrotors using linear quadratic minimum time
control. In Proceedings of the 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 2872–2879.

41. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]

42. Mueller, M.W.; Hehn, M.; D’Andrea, R. A Computationally Efficient Motion Primitive for Quadrocopter Trajectory Generation.
IEEE Trans. Robot. 2015, 31, 1294–1310. [CrossRef]

43. Ding, W.; Gao, W.; Wang, K.; Shen, S. An Efficient B-Spline-Based Kinodynamic Replanning Framework for Quadrotors. IEEE
Trans. Robot. 2019, 35, 1287–1306. [CrossRef]

44. Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996.
45. de Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [CrossRef]
46. Qin, K. General matrix representations for B-splines. In Proceedings of the Pacific Graphics’ 98, Sixth Pacific Conference on

Computer Graphics and Applications (Cat. No. 98EX208), Singapore, 26–29 October 1998; pp. 37–43.
47. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. Ego-planner: An esdf-free gradient-based local planner for quadrotors. IEEE Robot.

Autom. Lett. 2020, 6, 478–485. [CrossRef]
48. Felzenszwalb, P.F.; Huttenlocher, D.P. Distance transforms of sampled functions. Theory Comput. 2012, 8, 415–428. [CrossRef]
49. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528.

[CrossRef]
50. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999.
51. Barzilai, J.; Borwein, J.M. Two-point step size gradient methods. IMA J. Numer. Anal. 1988, 8, 141–148. [CrossRef]
52. Chitta, S.; Sucan, I.; Cousins, S. MoveIt! [ROS Topics]. IEEE Robot. Autom. Mag. 2012, 19, 18–19. [CrossRef]

http://dx.doi.org/10.1109/IROS.2017.8202160
http://dx.doi.org/10.1109/ICRA40945.2020.9196996
http://dx.doi.org/10.1109/TRO.2021.3071527
http://dx.doi.org/10.1109/LRA.2018.2795645
http://dx.doi.org/10.1177/027836498600500304
http://dx.doi.org/10.1109/LRA.2019.2927938
http://dx.doi.org/10.1109/TRO.2015.2479878
http://dx.doi.org/10.1109/TRO.2019.2926390
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1109/LRA.2020.3047728
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1109/MRA.2011.2181749

	Introduction
	Problem Statement
	Links-Constrained Kinodynamic Path Search
	Motion Primitives for Node Expansion
	Search Cost Evaluation

	Trajectory Optimization
	B-Spline Curve Formulation
	Optimization Approach
	Numerical Optimization Method
	Infeasible Derivative Control Points Adjustment Method
	Local Replanning Strategy

	Collision Avoidance Optimization for the Robot Links
	Simulation and Real-World Experiment Results
	Experimental Settings
	Simulation Experiments
	Scenes with a Single Static and Dynamic Obstacle
	Scenes with Multiple Static and Dynamic Obstacles
	Quantitative Evaluation and Analysis of Simulation Results

	Comparison of Trajectory Optimization
	Real-World Experiments

	Conclusions
	References

