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Abstract

Safety critical events in robotic applications can often be characterized by forces between

the robot end-effector and the environment. One application in which safe interaction

between the robot and environment is critical is in the area of medical robots. In this paper,

we propose a novel Compact Form Dynamic Linearization Model-Free Prediction (CFDL-

MFP) technique to predict future values of any time-series sensor data, such as interaction

forces. Existing time series forecasting methods have high computational times which moti-

vates the development of a novel technique. Using Autoregressive Integrated Moving Aver-

age (ARIMA) forecasting as benchmark, the performance of the proposed model was

evaluated in terms of accuracy, computation efficiency, and stability on various force pro-

files. The proposed algorithm was 11% more accurate than ARIMA and maximum computa-

tion time of CFDL-MFP was 4ms, compared to ARIMA (7390ms). Furthermore, we evaluate

the model in the special case of predicting needle buckling events, before they occur, by

using only axial force and needle-tip position data. The model was evaluated experimentally

for robustness with steerable needle insertions into different tissues including gelatin and

biological tissue. For a needle insertion velocity of 2.5mm/s, the proposed algorithm was

able to predict needle buckling 2.03s sooner than human detections. In biological tissue, no

false positive or false negative buckling detections occurred and the rates were low in artifi-

cial tissue. The proposed forecasting model can be used to ensure safe robot interactions

with delicate environments by predicting adverse force-based events before they occur.

1 Introduction

The technique of predicting future events based on past and present information of a system

has played a significant role in framing optimal and safe decisions for various applications

such as mobile surveillance, high-performance manipulation and medical applications to

name a few [1]. Accuracy and timely predictions of a system state in response to environmen-

tal conditions enhance the ability to provide appropriate control decisions for safe system

operations. However, given the unknown dynamic structure of environments, it is challenging

to control the system’s response to its environment. Through sensing, estimation and
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prediction, information of the system state and environment can be approximately retrieved

[1]. There has been growing interest in developing prediction-based control strategies through

sensors, to prevent undesirable events in autonomous intelligent robots, human-robot interac-

tions, and multi-agent robots, using some danger metric. This approach of using metrics to

foresee an upcoming danger enables the robot to take preventive control actions before the

danger occurs [2–4].

One critically important area for adverse event prediction is in the field of medicine. In the

areas of medical decision making, time series forecasting models have been successfully

applied to predict mortality and time dependent risks [5], early diagnosis of disease [6], and

heartbeat rates to estimate activity-based physiological response [7]. However, there is a pau-

city of research related to prediction-based control for medical robotic systems, and in particu-

lar, surgical robots.

1.1 Motivation

In surgery, patient safety has been defined in terms of how quickly the surgeon responds to

critical adverse events and performs appropriate control actions in real time to minimize risks

to the patient [8]. Adverse events including tool malfunctions, operator errors, and improper

control of surgical robots have been shown to cause negative patient outcomes, such as injuries

and deaths. For example, during the past decade, tool malfunctions alone constituted 62% of

injury related events, with imaging errors and broken tool-tips contributing to 7.4% and

10.5% of adverse events [9]. Recently, efforts have been made to facilitate turn-taking predic-

tion in surgeon-robot collaboration for early delivery of surgical instruments, thereby enhanc-

ing safe and efficient procedure [10]. Their work is related to human-robot collaboration;

however, there is still an important and unaddressed area of research related to predicting

adverse environmental conditions. In this paper, we will focus on predicting critical events

that are common in robotic needle-based interventions.

In robotic needle steering, flexible asymmetric-tip needles are designed to automatically

steer within a tissue to reach specific target locations. This technology has tremendous poten-

tial to assist surgeons in performing many percutaneous procedures and needle-based inter-

ventions with enhanced precision, dexterity, and reliability [11–14]. However, critical issues

related to patient safety and robust system performance have limited the clinical applicability

of robotically steered needles [15]. The highly dynamic and unpredictable nature of steerable

needles make them a perfect case study for developing a novel force prediction technique, with

force being the time series data measured from a force sensor.

Forces exerted from the surrounding tissue can increase rapidly causing the needle to lat-

erally bend and buckle when encountering stiff tissue [16, 17]. On further insertion, either the

needle tip could break, or membrane puncture can occur causing undesired tissue rupture and

bleeding [18]. Therefore, buckling can cause damage to both the needle and the tissue [19, 20].

In order to lower the risks of this damage, it is crucial to minimize the lag between the time of

event occurrence and the time of event detection. We attempted to minimize this lag through

our previously developed algorithm that detected needle buckling events within 2mm after

encounter with a hard impenetrable obstacle, and at least one second sooner than human

detection [21]. However, detecting an adverse event on occurrence can still be too late to pre-

vent any potential damage to the needle-tissue system [8]. Thus, it is more crucial to predict a

buckling event before it occurs so that an appropriate decision can be implemented to prevent

the needle from buckling, as illustrated in Fig 1. Since nearly constant needle-tip position and

force patterns were used to characterize needle buckling [21], the first step is to perform fore-

casts of axial force data.
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1.2 Related work

A brief survey of existing approaches to modeling and estimation of force data, prediction and

control of adverse events related to robot-assisted needle steering domain, and predictive mod-

els using forecasting and adaptive control strategies, is presented below.

1.2.1 Force modeling and estimation. Over the past decade, researchers have begun to

realize the importance of estimating force data and providing control to a surgeon for timely

identification and prevention of unforeseen incidents during surgical procedures with a robot

[23, 24]. With this goal, several insertion force models were developed using analytical tech-

niques [25, 26]. The high computation efficiency of the analytical techniques make them suit-

able candidates for online force estimation and control [27]. In most of these techniques, the

force data were decomposed into friction, cutting and stiffness force components and each

component was modeled independently. For example, Simone estimated the friction and stiff-

ness forces using modified Karnopp and nonlinear spring models, respectively, with the mod-

els being capable of providing force feedback in real time [25]. With the nonlinear spring

model, puncture of the interior tissue structures was controlled online while detecting unde-

sired collisions. For cutting force modeling, a novel method was proposed using force data pat-

terns to estimate the local elastic modulus and friction state of the needle-tissue interactions in

real time [28]. As a measure to ensure patient safety, Fukushima et al. estimated the cutting

force from the friction force obtained through force visualization so that human errors were

reduced during needle insertion [29]. Another method which directly modeled the force data

without decomposition was a multilayer model [26]. Their method was tested through differ-

ent layers of the tissue (fat, skin, muscle) with the main objective of force control to achieve

optimal puncture tasks. Since these analytical models are just approximations of the original

force data, it is difficult to capture unexpected force profiles due to an adverse event.

There has been growing interest in data-driven methods for force estimation [15]. For

example, one of the first works to use only insertion force data to identify cancerous tissues in

real time was [30]. Using the variation in the force patterns, they identified a threshold force

value which classified cancerous tissues from normal tissues. Next, Gerwen et al. developed a

stochastic model using only measured force data, to identify relevant peak forces required to

puncture through a kidney [31]. Recently, deep neural network based models have also been

developed to estimate insertion force without prior knowledge of needle-tissue characteristics.

Gessert et al. estimated needle-tip forces by mapping insertion forces from a fiber-optical

Fig 1. Fluoroscopic motion image and force data plot of a needle buckling during insertions into a porcine

cadaver liver [22]. The main idea is to predict buckling as soon as the needle starts bending slightly at 33.1s, before the

needle completely buckles at 36.5s.

https://doi.org/10.1371/journal.pone.0230009.g001
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sensor and the optical coherence tomography (OCT) using deep convolutional neural net-

works [32]. Their method demonstrated real-time capability due to low computation times.

Since high resolution imaging modalities such as OCT are expensive for the operating room,

simple, inexpensive, and effective methods are preferred for accurate needle insertions [33].

The common goals of the above models were to estimate force data in real time for tissue

characterization, detect events such as a puncture on occurrence, and accordingly optimize

needle insertions. However, there has not yet been an attempt to estimate force data for future

time horizons and predict puncturing events before they actually occurred. In general, there is

tremendous need to optimize patient safety through real-time prediction and prevention of an

adverse event before occurrence [8].

1.2.2 Prediction and control of adverse events. There are few examples in the literature

which largely focus on controlling adverse events such as needle deflections and tissue defor-

mations during insertions into a tissue, using only sensor data. For example, Rossa et al. esti-

mated the needle-tip deflections using only sensor force data, needle-tip positions from 2D

ultrasound, and steering inputs [34]. Using learning models from past measurements, optimal

steering inputs were determined to avoid future deflections. Their models showed real-time

capability with low computation time of 13ms. Next, Buzurovic et al. minimized tissue dis-

placements and optimized needle insertions using a combination of artificial neural networks

(ANN), neural-network based predictive control (NNPC) and model predictive control

(MPC) techniques [35]. Their approach involved; a) estimating insertion force patterns with

ANN, b) predicting and minimizing reactive forces using NNPC, and c) determining insertion

inputs using NNPC and MPC to minimize tissue displacements. However, the minimum pre-

diction computation time obtained was 300ms which might be challenging for real-time

implementation.

Several strategies have been implemented in the past to avoid needle buckling events within

the tissue. For example, novel designs for steerable needles were developed to increase the criti-

cal buckling force of the needle shaft and eventually reduce insertion force on the needle dur-

ing insertions [36–38]. These methods only decrease the possibility of needle buckling events;

however, they do not provide for real-time control mechanism when a needle buckling event

does occur. To identify a needle buckling within the tissue, Tang et al. derived a relationship

between the insertion forces and needle displacements using needle-tissue biomechanics

model [39]. Other examples of modeling and detecting needle buckling events with biome-

chanics models include [40, 41]. However, with these methods, prior information of tissue

properties was required, which is challenging for real-time implementation when tissue envi-

ronments are generally unknown.

Recently, Li et al. developed a model-free adaptive control based on the Kalman filter tech-

nique to track and control the position of a flexible continuum robot [42]. Their approach did

not use any prior information of the robot kinematics or tissue properties, and guaranteed

real-time capability with computation time as low as 2ms. Additionally, they provided an opti-

mal control law to predict a potential buckling of the continuum robot. This was the only clos-

est work which used model-free adaptive techniques to control and predict a buckling based

on some optimal control law. However, the main focus of their work was to track needle-tip

positions in real time. To the best of our knowledge, there has not yet been an estimate or fore-

cast in real time, of future values of insertion forces to predict needle buckling before it occurs.

1.2.3 Forecasting and adaptive control. In many prediction models, a combination of

forecasting and adaptive control techniques is used such that the controller computes optimal

decisions for prediction based on the forecasted data [43–46]. For example, a model predictive

controller was used to compute the energy costs spent to keep the room temperature at com-

fortable levels using weather forecasts [43]. Wang et al. used two forecasting algorithms such as
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Holt-Winters and Gaussian process to estimate the expected and stochastic demands of drink-

ing water [46]. Then, predictive control of drinking water networks is performed using the fore-

casted demands as disturbance inputs. Recently, [47] proposed a gaussian process based

adaptive Gaussian mixture model (GP-aGMM) to predict driver behavior and vehicle motion

at road intersections and anticipate the motion of a dynamic obstacle with an intelligent con-

troller. Their model consists of a gaussian process regression technique for probabilistic predic-

tion of the driver behavior, GP-aGMM for accurate and faster prediction, and integration with

an intelligent controller for closed-loop performance and safety. Their method used only raw

sensor data (i.e., driver and vehicle positions), and did not require prior modeling of the driver

and controller dynamics. The common feature of the above models was that the forecasting/

prediction and control strategies were implemented as complementary techniques. However,

developing a forecasting model directly from a control strategy is yet to be explored.

1.3 Contributions

There are various existing techniques in the statistical and machine learning literature to per-

form forecasts for time series data; however their limitations of high computational complexity

make real-time predictions of critical events difficult. To address this limitation, we derive a

novel Compact Form Dynamic Linearization Model-Free Prediction (CFDL-MFP) method

for time series forecasting, based on the existing dynamic linearization technique originally

meant for feedback control problems [48]. The contribution of our current work is thus two

fold: 1) develop CFDL-MFP to forecast time series data, and 2) develop a critical event predic-

tion algorithm using forecasted data.

The paper is structured as follows: Section 2 discusses limitations of the existing time series

forecasting methods with respect to real-time predictions of insertion force data. Section 3

proposes the novel time series forecasting model including analysis of model stability and fore-

cast efficiency. Section 4 discusses simulation results of the proposed forecast as precursor to

buckling prediction. Section 5 develops a needle buckling prediction algorithm using the pro-

posed forecasts. Section 6 presents experimental results of the proposed algorithms in artificial

and biological tissue. Section 7 concludes the paper.

2 Time series forecast: State of the art

Forecasting is a technique of projecting future values of a time series data depending on a pre-

diction horizon. One-step forecast is performed if the immediate future value is estimated

(prediction horizon = 1) and a multi-step forecast is performed if more than one future values

are estimated. A brief review of some useful state-of-the-art statistical and machine learning

(ML) techniques is presented in terms of their limitations with respect to real-time prediction

of insertion force data. The main focus is to motivate the development of the proposed

CFDL-MFP forecast, and choose a benchmark algorithm for performance analysis.

2.1 Statistical models

Classical or statistical time series forecasting are the oldest and most sophisticated linear based

techniques that work well on a wide range of data. Useful models such as Random Walk,

Theta, Exponential Smoothing (ETS), and Autoregressive Integrated Moving Average

(ARIMA) algorithms are discussed.

2.1.1 Random walk. The most basic forecasting technique adds a random step to the last

observed value. This characteristic of randomness makes the model a baseline for comparing

the performance of other forecasting methods. However, it is nearly impossible to predict

future values based on past trends due to uncertainty [49]. Since insertion force data generally

PLOS ONE Force forecasting for early prediction of critical events in robotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0230009 May 7, 2020 5 / 34

https://doi.org/10.1371/journal.pone.0230009


consist of global trends due to needle-tissue friction, random walk model is not useful for both

one-step and multi-step force predictions.

2.1.2 ETS. The method predicts future values of a time series data using the weighted sum

of the historical data in which the weights exponentially decrease as the past data become

older. The model is simple and works well on all data since the parameters are obtained from

numerical optimization. The key advantage is fast computation time as only few observed data

points are required for prediction. The main limitation is that forecast accuracy gets worse for

multi-step prediction [50], which is not suitable for our application.

2.1.3 Theta. Forecasting is performed by decomposing past data into linear combinations

of second differenced approximations with appropriate choice of a parameter called ‘theta’

[51]. The idea was to capture both long and short term dependencies for forecast. For example,

lower values of theta (zero theta models a linear trend) capture long term dependency, while

higher theta captures short term dependencies. Forecast is performed using these two or more

theta lines by choosing appropriate values of theta. This method was shown to have the best

multi-step forecast accuracy [52]. A major drawback is that lot of hand tuning is required to

select theta lines which increases complexity as size of the data increases. Later, an optimized

method of choosing theta was proposed to use only relevant data for forecast [53]. Their opti-

mized model promises high forecast accuracy compared to the original theta method. How-

ever, every profile of force data is important as it characterizes needle-tissue interactions.

Thus, optimal theta model cannot be used to predict force data.

2.1.4 ARIMA. The method uses a linear combination of the previous data forming an

autoregressive (AR) component, and a linear combination of the previous forecast errors

forming a moving average (MA) component to perform time series forecasting [54]. Autocor-

relation patterns of the previous data are used to identify the orders of AR and MA. Most

importantly, stationarity in the data should be ensured for the method to work well. Thus, the

basic forecasting steps include:

1. Identify the number of differencing operations (d) required to transform original time

series into stationary data,

2. Identify the order (number) of AR components (p) and MA components (q) from the

autocorrelations,

3. Obtain optimal coefficients of AR and MA through model-fitting, and

4. Obtain forecasts using these optimal coefficients for a given prediction horizon.

High forecast accuracy is achieved if the parameters are properly tuned, which requires a

good understanding of the data. Due to robustness against noise, the model is most widely

used for analyzing and forecasting many time series data. However, the computation time for

forecast is medium to high depending on the nature of the data. For example, computation

time is low if the data is already stationary. The computation time is high if the data are non-

stationary due to the differencing operations required to achieve stationarity. With this limita-

tion, ARIMA cannot be used for real-time force prediction.

2.2 ML models

Machine learning techniques use non linear models to analyze and forecast time series data. In

general, supervised ML is implemented for forecasting where the models iteratively learn from

previous observations to obtain good approximations and accurate forecasts of the data. Useful

forecasting techniques include parametric (neural network based) models such as Multi-Layer

Perceptron (MLP), Long Short-Term Memory (LSTM), and non-parametric models such as
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Deep Gaussian Process (DGP) and K-Nearest Neighbor (KNN). Parametric methods perform

accurate forecasts since back-propagation is involved in the training phase to obtain optimal

model parameters, requiring very high computation power. For example, MLP has the best

forecast accuracy at the cost of high computation requirement [55]. Time series data are intrin-

sically non-stationary with dynamic statistical distribution due to which retraining of the

model is necessary for every entry of a new observation requiring high computational power

[56]. Secondly, LSTM was shown to have the worst forecast accuracy [52]. These limitations

currently make parametric ML unsuitable for real-time forecasting applications.

Non-parametric methods eliminate the above back propagation steps since they do not use

prior statistical distribution of the data for forecasting. This results in less computation com-

plexity at the cost of low accuracy. However, the requirement for training data increases as

data grows in size resulting in high computation time [57]. Recent research has shown to

improve forecast accuracy and optimize computation power through KNN and DGP models.

KNN had less computation complexity with computation time of 0.41 second per training iter-

ation, and the forecast accuracy was comparable (6% lower) to MLP [58]. Secondly, DGP had

the least computation time of 0.36 second for each training iteration [59]. The overall forecast

computation times of KNN and DGP would be much higher depending on the number of

training iterations, making even non-parametric ML challenging for real-time prediction of

force data. Since computation times are desired to be less than data sampling intervals (typi-

cally in tens of milliseconds), existing ML methods cannot be used for real-time force

prediction.

A summary of the strengths and limitations of statistical and ML methods is given in

Table 1. ML has highest computation times and lower forecast accuracy then statistical meth-

ods [52]. Thus, ML is not suitable for our application. Within the statistical methods, ARIMA

is the most robust forecasting technique which finds vast applications in medical healthcare

systems [60]. Hence, ARIMA is chosen as a benchmark to evaluate our CFDL-MFP method

introduced in the next section.

3 Force prediction model

The force forecast model CFDL-MFP is derived by modifying the model-free control tech-

nique first introduced by [48]. Their control methodology is data-driven or model-free in the

sense that only system input-output information are used to design feedback controllers for a

general class of nonlinear systems with unknown dynamics. Their model entails predicting a

future system output, y(k + 1) using; a) system output at current time, y(k), b) some future ref-

erence (desired) signal, yref(k + 1), and c) control input, u(k) obtained as a function of y(k) and

yref(k + 1) so that the system produces desired outputs with y(k + 1)� yref(k + 1). Similar to the

standard predictive feedback control, yref(k + 1) is defined beforehand (either manual or

Table 1. Classical vs ML models.

Models Strengths Limitations References

Random walk Simplest and fastest computation Not suitable for global trends [49]

ETS Fast computation time Worse multi-step forecast accuracy [50]

Theta Best forecast accuracy Heavy parameter tuning, complex computation [53]

ARIMA � High accuracy depending on (p, d, q), Robust Medium to high computation time depending on d [54]

ML Best data fitting due to nonlinear modeling Poor forecast accuracy, [52]

Highest computation requirements [57]

� baseline model for comparison with proposed CFDL-MFP

https://doi.org/10.1371/journal.pone.0230009.t001
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system dynamics) to ensure convergence of y(k + 1). For forecasting applications however,

yref(k + 1) becomes impossible since the underlying behavior of a time series data is observed

using only past and current observations. Moreover, forecasting is already achieved if yref(k
+ 1) is identified from the past observations. Replacing yref(k + 1) with yref(k) as a function of

the previous observations, the novel time series forecast CFDL-MFP is developed as shown in

Fig 2. Note that for time series models, the predicted output is denoted as ŷ to differentiate

from the actual observations, y.

Since the time series model is the one-dimensional axial force data generated from a force

sensor,~f a, the derivation of CFDL-MFP will be specific to the force data. Referring to Fig 2,

the components of CFDL-MFP for force prediction include:

1. Force data as a time series model,

2. Force measured from a sensor as the current system output, yðkÞ  ~f aðkÞ,

3. Reference force, yref(k) past observations of~f a,

4. Model input, u(k) obtained from yref(k) and previous prediction, ŷðkÞ, and finally

5. Predicted forces, ŷðkþ 1Þ obtained from y(k) and u(k) using the time series model.

For simplicity, the terms forecast and prediction will be used interchangeably in this paper.

3.1 CFDL-MFP

Let~f aðkÞ 2 R be the axial force measured from a force sensor at time k. Due to inherent mea-

surement noise and lack of prior knowledge of tissue characteristics, the force data is modeled

as a nonlinear time series function of the form:

~f aðkþ 1Þ ¼ Fð~f aðkÞ; uðkÞÞ ð1Þ

where F is some unknown nonlinear function. In order to obtain a good estimate of F, we

need to have a good understanding of the relationship between the axial forces, tissue proper-

ties, and user-defined inputs (for eg. needle insertion velocity and steering direction). Since tis-

sue environments are unknown, it is complicated to establish a direct relationship between the

forces and the inputs in real time. Recently, [61] used prior training data to learn the mapping

Fig 2. CFDL-MFP model for time series forecast.

https://doi.org/10.1371/journal.pone.0230009.g002
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between the forces and user inputs. However, performing multiple insertions to learn the

input-output mapping is time consuming. Due to these challenges, accurate modeling of the

nonlinear function is difficult. By compressing the nonlinearities of Eq (1) into a single time-

varying scalar known as the pseudo partial derivative (PPD), ϕc(k), a virtual dynamic linear

model is realized to predict force data as shown:

~f aðkþ 1Þ ¼~f aðkÞ þ �cðkÞDuðkÞ ð2Þ

The model resembles a discrete-time SISO system with Δu(k) = u(k) − u(k − 1) as the incre-

mental system input, and D~f aðkþ 1Þ ¼~f aðkþ 1Þ � ~f aðkÞ as the incremental system output.

PPD is obtained by taking the partial derivative of the nonlinear function F with respect to u
(k) [48]. Since all the compressed nonlinearities are contained in ϕc(k), it is challenging to

obtain an accurate value of ϕc(k) through analytical techniques. Hence, PPD is estimated

numerically as �̂cðkÞ. Re-writing Eq (2) in terms of the estimated values with notation (̂), the

force prediction model now becomes:

f̂ aðkþ 1Þ ¼ f̂ aðkÞ þ �̂cðkÞDuðkÞ ð3Þ

The model performs a 1-step ahead force prediction since the terms at each time state k are

scalar. If each term in Eq (3) contains a vector of values from the previous 2 states (k − 1, k),

then 2-step prediction is performed. Similarly, if each term contains a vector of values from

previous N states (k − N + 1, ‥, k), then N-step ahead prediction is performed, where N� 1 is

an integer known as the prediction horizon. The general N-step ahead force prediction model

is:

F̂Nðkþ 1Þ ¼ F̂NðkÞ þ F̂NðkÞ � DUðkÞ ð4Þ

where,

F̂Nðkþ 1Þ ¼

f̂ aðkþ 1Þ

f̂ aðkþ 2Þ

:

f̂ aðkþ NÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Nx1

; F̂NðkÞ ¼

f̂ aðk � N þ 1Þ

:

f̂ aðk � 1Þ

f̂ aðkÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Nx1

F̂NðkÞ ¼

�̂cðk � N þ 1Þ

:

�̂cðk � 1Þ

�̂cðkÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; DUNðkÞ ¼

Duðk � N þ 1Þ

:

Duðk � 1Þ

DuðkÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

and � refers to the matrix element-wise operation. Note that F̂Nðkþ 1Þ can be obtained only

when ΔUN(k) and F̂NðkÞ are computed. In order to derive ΔUN(k), we first define the following

two reference force vectors:

~F�NðkÞ ¼ ~f �pðk � N þ 1Þ; . . . ;~f �pðkÞ
h iT

~FaNðkÞ ¼ ~f aðk � N þ 1Þ; . . . ;~f aðkÞ
h iT

ð5Þ
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The first reference force,~F�NðkÞ is a vector of previous N values of the optimal mean forces,~f �p
generated from the past (k − 1) values of the force data. More details about the procedure to

obtain~f �p are found in our previous work [21]. Thus,~F�NðkÞ represents the general trend pat-

tern of the previously observed force data. The second reference force,~FaN represents the most

recent force data. Since our force prediction model depends on the past and current force mea-

surements, the trend pattern of a forecast is assumed to be bounded between the trends of

~F�NðkÞ and~FaNðkÞ, shown in Fig 3. This assumption ensures that the forecast is always bounded

and does not increase or exaggerate beyond the previously observed force trends. If the trend

patterns of~FaNðkÞ and~F�NðkÞ are different, the trend of the forecast will converge to some opti-

mal trend between the reference trends. However, if the reference force trends are similar,

then the trend of the forecasts will converge to the reference trends. For this purpose, optimal

model input ΔUN(k) is derived from a standard quadratic cost function, J expressed as a func-

tion of the errors between the predicted output, F̂Nðkþ 1Þ and the reference forces:

JðDUNðkÞÞ ¼ j~F�NðkÞ � F̂Nðkþ 1Þj
2
þj~FaNðkÞ � F̂Nðkþ 1Þj

2

þljDUðkÞj2
ð6Þ

Substituting F̂Nðkþ 1Þ from (4) in (5), we have,

JðDUNðkÞÞ ¼ j~F�NðkÞ � F̂NðkÞ � F̂ðkÞ � DUNðkÞj
2

þj~FaNðkÞ � F̂NðkÞ � F̂ðkÞ � DUNðkÞj
2

þljDUðkÞj2

Fig 3. Forecasts, F̂^
Nðkþ 1Þ obtained from optimal utilization of reference forces,~F~�NðkÞ and~F~aNðkÞ. The

rectangular box shows the trend patterns of the forecast bounded between the trends of the reference forces.

https://doi.org/10.1371/journal.pone.0230009.g003
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Optimal ΔUN(k) is obtained by taking the partial derivative of J with respect to ΔUN(k) and set-

ting to zero:

DUNðkÞ ¼
F̂NðkÞ

ðl:~1 þ 2F̂2
NðkÞÞ

� ~F�NðkÞ þ~FaNðkÞ � 2F̂NðkÞ
� �

ð7Þ

where~1 is a N dimensional vector of 1’s and DUNðkÞ 2 R
N�1

. The weighting factor λ> 0

restricts drastic changes in ΔUN(k). Large values of λ cause ΔUN(k)! 0 resulting in poor fore-

casts jF̂Nðkþ 1Þ � F̂NðkÞj ! 0 from Eq (4), showing that the reference forces are not utilized

efficiently for prediction. Small λ cause ΔUN(k)> 0 which results in efficient forecasts through

optimal utilization of the reference forces. Therefore, λ is an important tuning parameter for

accurate force prediction.

The prediction model is robust if it is not affected by dynamic changes in PPD, as follows:

If F̂NðkÞ ¼ F̂Nðk � 1Þ þ F̂Nðk � 1Þ � DUNðk � 1Þ

and ~FNðkÞ ¼ F̂Nðk � 1Þ þ F̂NðkÞ � DUNðk � 1Þ

then F̂NðkÞ ’ ~FNðkÞ only if F̂Nðk � 1Þ ’ F̂NðkÞ

ð8Þ

The error in the forecasts, jF̂NðkÞ � ~FNðkÞj due to changes in PPD should be minimized for

robustness. Next, jF̂NðkÞ � F̂Nðk � 1Þj should be minimized to transform PPD into a slowly

time-varying scalar. For this purpose, the quadratic cost function J is expressed as a function of

these errors:

JðF̂NðkÞÞ ¼ jF̂NðkÞ � F̂Nðk � 1Þ � F̂NðkÞ � DUðk � 1Þj
2

þmjF̂NðkÞ � F̂Nðk � 1Þj
2

ð9Þ

PPD is estimated by taking the partial derivative of JðF̂NðkÞÞ with respect to F̂NðkÞ and setting

to zero:

F̂NðkÞ ¼ ðm:~1 þ DUNðk � 1ÞÞ
�� 1
� ðmF̂Nðk � 1Þ

þDUNðk � 1Þ � DF̂NðkÞÞ
ð10Þ

The weighting factor μ> 0 applies a penalty on the time-varying change in F̂N . For exam-

ple, PPD is constant for large μ, and slowly time-varying for small μ. Finally, N-step ahead pre-

diction of force data is performed iteratively using Eqs (4), (7) and (10).

3.2 Model stability and forecast analysis

Stability of Eq (4) depends on the boundedness of the forecast trends with respect to the refer-

ence force trends. For example, if the forecast trend exceeds the reference force trends, exag-

gerated forecasts occur as shown in Fig 4, and prediction model is considered unstable. This is

undesirable from the energy conservation law since any change in the system output, jF̂Nðkþ
1Þ � F̂NðkÞj cannot exceed a finite change in the system input, |ΔUN(k)|, which leads us to

state the first condition of stability.

Stability Condition 1. Stability is guarenteed if for every bounded reference force, ð~F�NðkÞ,
~FaNðkÞÞ, and bounded model input with UN(k) 6¼ UN(k − 1), there exists a bounded model
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output, F̂Nðkþ 1Þ such that

jF̂Nðkþ 1Þ � F̂NðkÞj � jUNðkÞ � UNðk � 1Þj ð11Þ

for every k� 0. This condition is also called Bounded Input Bounded Output (BIBO) stability.

To ensure stability, it is necessary to establish the boundedness condition of PPD. The next

condition states the limiting value of PPD for stability.

Stability Condition 2. There exists a maximum F̂NðkÞ ¼ Fmax above which prediction
model becomes unstable. That is,

If F̂NðkÞ > Fmax; then

jF̂Nðkþ 1Þ � F̂NðkÞj > jUNðkÞ � UNðk � 1Þj

ð12Þ

and the limiting value is Fmax = 1.

Proof. The proof is straightforward. From (4),

jF̂Nðkþ 1Þ � F̂NðkÞj ¼ jF̂NðkÞ � DUðkÞj

Using Cauchy-Schwarz inequality,

jF̂Nðkþ 1Þ � F̂NðkÞj � jF̂NðkÞj � jDUNðkÞj ð13Þ

Fig 4. Ideal plot showing exaggerated, underestimated and optimal forecasts with varying F̂^

NðkÞ and λ.

https://doi.org/10.1371/journal.pone.0230009.g004
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Comparing (10) and (12),

jF̂Nðkþ 1Þ � F̂NðkÞj < jDUðkÞj for F̂NðkÞ < 1 ;

jF̂Nðkþ 1Þ � F̂NðkÞj ¼ jDUðkÞj for F̂NðkÞ ¼ 1 and

jF̂Nðkþ 1Þ � F̂NðkÞj > DUðkÞ for F̂NðkÞ > 1

ð14Þ

Exaggerated forecasts can be avoided if the above stability conditions are satisfied. How-

ever, underestimated (poor) forecasts still occur for a stable model depending on the values of

FN(k) and λ from Eq (7). The worst case of an underestimated forecast is F̂Nðkþ 1Þ ¼ F̂NðkÞ,
as shown in Fig 4. The next two forecast conditions state the range of PPD and λ required to

prevent underestimated forecasts. The first condition states PPD for a fixed λ.

Forecast Condition 1. For a given λ> 0, there exists a small constant ε> 0 such that
jF̂Nðkþ 1Þ � F̂NðkÞj ! 0 if F̂NðkÞ < ε, where ε is very close to zero.

Proof. For any |UN(k) − UN(k − 1)| 6¼ 0, if F̂NðkÞ ! 0 from Eq (4), then

jF̂Nðkþ 1Þ � F̂NðkÞj ! 0.

Large values of λ restrict the model input to be ΔUN(k)! 0 which result in poor forecasts.

For accuracy, it is necessary that DUNðkÞ > ~ε is always satisfied, with ~ε as a small positive con-

stant close to zero. After satisfying Forecast Condition 1, the following condition states the

maximum λ for a fixed PPD.

Forecast Condition 2. For a given F̂NðkÞ 2 ðε; 1Þ, there exists a maximum value λmax such
that

If l > lmax then DUNðkÞ < ~ε

and jF̂Nðkþ 1Þ � F̂NðkÞj ! 0
ð15Þ

Finally, F̂NðkÞ < 1 is required to achieve model stability, and F̂NðkÞ > ε and ~ε < l < lmax

are required for optimal forecasts. For our experiments, both ε and ~ε were chosen as 10−4.

3.3 Algorithm and architecture

The CFDL-MFP algorithm for iterative N-step force prediction is explained as a block diagram

shown in Fig 5. The colored blocks represent the time state of each iteration with k as the cur-

rent time, k − 1 as the previous state, and k + 1 as the future states within the prediction hori-

zon. The starting time index is k� 0. Since previous N values of the force data are used for

prediction, the first iteration begins from ko = N, while ignoring the first N values. The pseudo

code for iterative force prediction is presented in Algorithm 1. The inputs are force measure-

ments,~f aðkÞ, and a known prediction horizon, N. The output is the N-step ahead predicted

force, F̂Nðkþ 1Þ. Before iteration, some arbitrary values are assigned to the initial estimates,

ðF̂NðkoÞ, ΔUN(ko), F̂NðkoÞÞ, and then F̂Nðko þ 1Þ is predicted from these initial estimates using

Eq (4), (steps 1-3). During each iteration, previous N values of the force data and optimal

mean forces are assigned as reference forces, (steps 5-6). Next, the current estimates of PPD

and model input are obtained as a function of their previous estimates, previous predicted

forces, and the reference forces, (steps 7-8). The notations E4, E7, E10 represent Eqs (4), (7) and

(10), respectively. Finally, forecasts, F̂Nðkþ 1Þ are obtained from the current estimates follow-

ing E4, (step 9). The current values become previous estimates in the next iteration and this

cycle continues till the end of the simulation time, Ks. Therefore, the algorithm can be imple-

mented in real time.
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Algorithm 1 CFDL-MFP

Require: Axial force, ~f aðkÞ, optimal mean force, ~f �pðkÞ, and prediction
horizon, N
1: Initialize: k  (ko = N),
ðDUNðkoÞ; F̂NðkoÞ; F̂NðkoÞÞ  arbitrary values

2: F̂Nðko þ 1Þ  E4ðDUNðkoÞ; F̂NðkoÞ; F̂NðkoÞÞ
3: k  ko+1
4: while k < Ks do
5: ~F�NðkÞ  ½~f

�
pðk � N þ 1Þ; ::;~f �pðkÞ�

6: ~FaNðkÞ  ½~f aðk � N þ 1Þ; ::;~f aðkÞ�
7: F̂NðkÞ  E10ðF̂Nðk � 1Þ; ðDUNðkÞ; F̂Nðk � 1Þ; F̂NðkÞÞ
8: DUNðkÞ  E7ð

~FaNðkÞ;~F�NðkÞ; F̂NðkÞÞ
9: F̂Nðkþ 1ÞÞ  E4ðDUNðkÞ; F̂NðkÞ; F̂NðkÞÞ
10: k  k + 1
11: end while

In addition to the main simulation loop (steps 4-11), Algorithm 1 does not require an

explicit iteration loop for multi-step (N-step) force prediction since model Eq (4) is already in

the N-dimensional vector form. This resembles the architecture of a direct multi-step forecast

Fig 5. Block diagram of the iterative CFDL-MFP algorithm for N-step ahead force prediction. The block colors

represent the time state for each iteration. Before iteration, the initial values of model input ΔUN(ko), PPD and output

F̂^
NðkoÞ are arbitrarily assigned. In the first iteration as k ko + 1, the initial values are used as current states (indicated

by dotted arrows) to obtain the forecast for future states k + 1 (green arrows). In the next iteration with k k + 1,

estimates from ko + 1 become the previous estimates (blue arrows), and estimates from k + 1 become current estimates.

Solid black arrows represent transition from previous to current states.

https://doi.org/10.1371/journal.pone.0230009.g005

PLOS ONE Force forecasting for early prediction of critical events in robotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0230009 May 7, 2020 14 / 34

https://doi.org/10.1371/journal.pone.0230009.g005
https://doi.org/10.1371/journal.pone.0230009


strategy, with low computation time as the key feature [62]. Secondly, our proposed model uti-

lizes both observed and previous predicted data for multi-step prediction with the observed

data being the reference forces ð~FaNðkÞ;~F�NðkÞÞ, and the predicted data being F̂NðkÞ. The

technique of using observed and predicted data for forecast resembles the recursive

predictive strategy with high forecast accuracy as the key feature [62]. The overall

architecture of the CFDL-MFP resembles a hybrid direct-recursive forecast strategy which

offers the benefits of the above strategies such as low computation time and high forecast accu-

racy [63].

4 Simulation methods and results

In this section, we present simulation methods and results of CFDL-MFP forecasts for force

data corresponding to insertions in ex vivo human liver. The model is compared with bench-

mark ARIMA and evaluated for performance in terms of forecast accuracy, computation time

and stability.

4.1 Methods

4.1.1 Force data. To evaluate the CFDL-MFP algorithm, we used the needle insertion

data from experiments with an ex vivo human liver [64]. The data consist of 1-D force vector,

~f a, and a vector of insertion time stamps, τ originally sampled for 1ms of time. We sampled

the data at 5ms for faster computations while still retaining the original force profiles. The pre-

diction horizon, N is chosen depending on the data sampling interval, τ(k) − τ(k − 1),

N ¼
t

tðkÞ � tðk � 1Þ
ð16Þ

where t is the prediction time horizon in seconds. For example, if~f a is sampled for τ(k) − τ(k
− 1) = 0.005s and t = 1.5s, then N = 300 data points. Generally, larger time horizons lead to

lower forecast accuracies for time series models [65], and therefore the effects of varying t on

the prediction performance will not be studied in this work. Typically, a short prediction hori-

zon of t = 1.5s is chosen for accurate predictions [66].

4.1.2 Performance metrics. The profiles of insertion force data vary due to tissue inho-

mogeneity, where each variation in the force characterizes needle-tissue interactions [67].

Thus, a good forecast accuracy should be ensured across all data points. For this purpose, a

root mean square error (RMSE) metric that is sensitive to data fluctuations is chosen to evalu-

ate forecast accuracy [54].

RMSE ¼
1
ffiffiffiffi
N
p jjF̂Nðkþ 1Þ � ~FNðkþ 1Þjj2 ð17Þ

where ||.||2 is the Norm-2 of the N × 1 error vector between the predicted force, F̂Nðkþ 1Þ and

the actual measured force,~FNðkþ 1Þ ¼ ½~f aðkþ 1Þ . . .~f aðkþ NÞ�. Since~FNðkþ 1Þ

is not available during real-time implementation, RMSE is obtained when the entire force

data,~f a are available at the end of the simulation.

The second performance metric is the computation time captured for each iteration while

executing Algorithm 1 through steps (5-10).
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We define a third performance metric called the stability indicator, ~S to check for BIBO sta-

bility of Eq (4), which can be computed as shown below:

while k < Ksdo

If jDF̂ iðkþ 1Þj < jDUiðkÞj for all i ¼ 1; 2; ::;N

then SiðkÞ  ~1 2 Ri

Else SiðkÞ  ~0 2 Ri

end while

~S ¼
1

KsN

XKs � 1

k¼0

XN� 1

i¼0

SiðkÞ ; ~S 2 0; 1½ �

If ~S ¼ 1 then BIBO stable

ð18Þ

where S 2 RNKs . The idea is to check if the incremental output DF̂ iðkþ 1Þ ¼ jF̂ iðkþ 1Þ �

F̂ iðkÞj is always less than the incremental input ΔUi(k) for each prediction step i within N and

iteration step k until the end of simulation Ks. The stability flag, Si(k) is a vector of 1’s with size

i if Stability Condition 1 is satisfied at time k. The stability indicator, ~S is equal to 1 if the total

number of data points is equal to the summation of Si(k) across all i and k. Therefore, ~S is a sca-

lar between 0 and 1, where 1 indicates model stability and 0 indicates instability.

The last metric, forecast indicator (FI) is a probabilistic measure of forecast efficiency.

According to Forecast Condition 1, underestimated forecasts are a result of

jF̂Nðkþ 1Þ � F̂NðkÞj ! 0, indicating low forecast efficiency. Thus, FI is calculated as the fre-

quency of the outcomes jF̂Nðkþ 1Þ � F̂NðkÞj ! 0 occurred during the entire simulation:

FI ¼
OðjF̂Nðkþ 1Þ � F̂NðkÞj ! 0Þ

Ks

ð19Þ

where O represents the number of outcomes, Ks is total number of simulation steps. Again,

FI2(0, 1) where FI!1 causes low forecast efficiency.

4.1.3 Parameter initialization. The first N values of a force sensor are ignored, and the

initial time state is ko = N. Zero initial values are assigned to ΔUN(ko) and F̂NðkoÞ. The initial

value of PPD, F̂NðkoÞ is assigned any value between 0 and 1 according to Stability Condition 2
and Forecast Condition 1. For convenience, these vectors are uniformly assigned as F̂NðkoÞ ¼
½a; ::; a�T 2 RN

where 0< a< 1. Going forward, F̂NðkoÞ ¼ a would implicitly refer to vector

initialization. Similarly, the weighting parameter, λ is assigned a constant between 0 and λmax.

By observation, λmax was found to be 100 for F̂NðkoÞ ¼ 0:5. Therefore, F̂NðkoÞ ¼ 0:5 and λ =

0.1 are chosen to first compare the performance of CFDL-MFP with auto-ARIMA. Secondly,

the effects of varying PPD and λ are studied. Next, μ = 1 for convenience since PPD is already

designed to be a slowly-time varying parameter according to Eq (10). Thus, any μ> 0 does not

affect forecast efficiency.

4.1.4 auto-ARIMA. The open source package pyramid-arima 0.9.0 developed by the

Python Software Foundation1 was used as benchmark ARIMA to compare the performance

of CFDL-MFP. Their auto.arima module automates the processing steps (1-3) mentioned in

Section 2.1.4, and generates forecasts using previous data points and a known prediction hori-

zon as inputs. ARIMA forecasting is performed iteratively and the related code snipper is
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given in Algorithm 2. The functions auto_arima and predict are defined in the auto.arima
package. Previous N observations of the force data,~FNðkÞ are used to fit the ARIMA model,

(steps 3-4). The output of the auto-ARIMA algorithm is the N-step forecast, F̂ar
N ðkþ 1Þ

obtained from the predict function, (step 5).

Algorithm 2 AUTO-ARIMA FOR FORCE DATA FORECAST

Require: Axial force, ~f aðkÞ, and prediction horizon, N
1: Initialize k  N
2: while k < Ks do
3: ~FNðkÞ  ½~f aðk � N þ 1Þ; ::;~f aðkÞ�
4: train  auto_arima ð~FNðkÞÞ
5: F̂ar

N ðkþ 1Þ  predict(train, N)
6: k  k + 1
7: end while

Replacing F̂Nðkþ 1Þ with F̂ ar
N ðkþ 1Þ in Eq (17), forecast RMSE for auto-ARIMA is com-

puted at the end of simulation. Similarly, computation time is captured for each iteration,

while executing steps (3-6) of Algorithm 2.

The CFDL-MFP and auto-ARIMA algorithms were implemented in python 3.5.2 environ-

ment on a computer with the following features: Intel1 Core i7-7700HQ CPU @2.8GHz,

16GB RAM, x64 based processor.

4.2 Forecast results and discussion

4.2.1 CFDL-MFP forecasts. The plot of forecasts for force data,~f a sampled at 5ms is

shown in Fig 6(a). Even though forecasts are obtained at every iteration state k from Algorithm

1, the forecasts at the following six key data points are shown to evaluate performance on dif-

ferent force profiles: (A = 4.86s, B = 14.24s, C = 18.65s, D = 52.85s, E = 74.6s, F = 76.15s), rep-

resented by dotted vertical lines. The plot of forecasts, F̂Nðkþ 1Þ and the observed forces,

~FNðkþ 1Þ is zoomed at these six points for visibility. Each point represents a unique force pro-

file, with a gradual increase at A and a flat force profile at D. There is a rapid increase of force

around B, where B is chosen to lie between the start and end points of this rapid increase.

Fig 6. Forecasting results. a) Plot of N-step force forecasts with CFDL-MFP (magenta), auto-ARIMA (dark orange),

and manual ARIMA (dotted cyan) for force data sampled at 5ms. The CFDL-MFP parameters are initialized with

ðl ¼ 0:1; F̂^

NðkoÞ ¼ 0:5Þ. b) Plot of RMSE showing spikes at rapidly changing force profiles. CFDL-MFP forecasts

were most accurate for profiles (A,C,D).

https://doi.org/10.1371/journal.pone.0230009.g006
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Similarly, point C is chosen to lie between the start and end points of a rapid force decrease

profile. Points (E,F) are chosen to lie at the intersection of rapidly changing profiles. The plot

shows CFDL-MFP forecasts obtained for (λ = 0.1, FN(ko) = 0.5). The plot of RMSE obtained

for each iteration is shown in Fig 6(b) with the dotted vertical lines representing the above six

data points. Detailed analysis of the forecasts for each force profile is given below.

1. Forecasts at k = (A,D): Since the force profiles were steady over long periods, the trend pat-

terns of the reference forces were similar. As a result, the trend of the forecast converged to

the reference trends. The forecasts were accurate with low RMSE since no rapid changes in

the observed forces,~FNðkþ 1Þ occurred, which is expected under normal needle steering

conditions.

2. Forecast at k = B: The time interval between B and the starting point of rapid force increase

was short to capture this rapid increase in~F�NðkÞ. For this reason, the trend of~FaNðkÞ was

rapid, whereas~F�NðkÞ was still gradual. Therefore, the trends of the forecast converged to an

optimal trend bounded by the reference trends. RMSE was slightly high since the observed

force rapidly decreased within the prediction horizon. This situation can lead to false pre-

dictions of a force increase, which will be discussed with respect to the prediction of needle

buckling events in the later sections.

3. Forecast at k = C: The interval between C and the start point of the rapid force decrease was

enough to capture this rapid decrease in~F�NðkÞ, resulting in similar reference trends. The

trends of the forecast thus converged to both the reference trends. Since continuous

decrease in force data is not realistic in needle insertions due to friction, rapid decrease in

the observed forces,~FNðkþ 1Þ stopped after point C. Since the reference forces consisted of

both the rapid and general trends, the forecast was accurate with low RMSE.

4. Forecasts at k = (E,F): Since forecasts are obtained from previously observed data, it is diffi-

cult to predict any unexpected force pattern without prior knowledge of the tissue proper-

ties. Therefore, the forecast RMSE was high at every intersection point of rapidly changing

profiles (maximum at point E), shown in Fig 6(b).

4.2.2 Comparison with auto-ARIMA. The performance of CFDL-MFP was compared

with auto-ARIMA in terms of RMSE and computation time for three sampling intervals:

(5,20,800) ms, and the plot of auto-ARIMA forecasts, F̂ ar
N ðkþ 1Þ for 5ms sampling is shown in

Fig 6(a) (dark orange). Exaggerated forecasts,~Far
N ðkþ 1Þ occurred at C and D with the parame-

ters automatically identified as (p = 2, d = 1, q = 1) and (p = 1, d = 1, q = 1), respectively. How-

ever, choosing d = 0 with trial and error produced better forecasts at D, shown as dotted cyan

plot. Similarly, forecasts through manually tuned ARIMA parameters were plotted for all six

profiles to show that auto-ARIMA did not always yield accurate forecasts. To obtain forecasts

for all force profiles, manual tuning was required making real-time prediction challenging.

Forecast RMSE values from auto-ARIMA and CFDL-MFP for six force profiles and three sam-

pling intervals are given in Table 2. CFDL-MFP performed best forecasts at C and D, whereas

forecast accuracies of both the algorithms were comparable for other force profiles and for all

sampling intervals. Overall, the mean RMSE of CFDL-MFP was 11% lower than auto-ARIMA.

The computation times (mean, maximum, minimum) of the algorithms for each sampling

interval are presented in Table 2. The maximum computation time for forecasting on 5ms

sampled data was 49ms which is larger than the sampling interval, making real-time imple-

mentation challenging. However, such low sampling intervals are not practical since the CPU

processing speed reduces considerably with too many data points. Very high sampling
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intervals such as 800ms are also not desired since valuable information in the data is lost. For

sampling interval of 20ms, original force profile was retained and the maximum computation

time was 4.1ms, which is ideal for real-time applications. On the other hand, auto-ARIMA

showed very high computation times on the order of 4.8s on 20ms sampled data. As discussed

earlier, the high computation time is due to the following reasons: a) data processing steps

from Section 2.1.4 performed for each iteration, b) parameters identified for every data point

to produce accurate forecasts, and c) a recursive strategy used for multi-step forecast [68]. The

low computation time of CFDL-MFP is due to the following reasons: i) no data processing

steps required as original data was used directly, ii) parameters ðl; F̂NðkoÞÞ were initialized

only once before iteration, and ii) a direct strategy used for multi-step forecast from Section

3.3. Compared to auto-ARIMA, CFDL-MFP was accurate, faster, and required less manual

effort to perform multi-step forecasting.

4.2.3 Stability analysis. The stability plots for CFDL-MFP forecasts on 20ms sampled

data are shown in Fig 7(a)–7(c). CFDL-MFP forecasts were performed independently for 4 dif-

ferent initial values of F̂NðkoÞ to study their effects on stability. For each F̂NðkoÞ, the stability

indicator, ~S was computed according to Eq (18). For all F̂NðkoÞ < 1, ~S ¼ 1 indicating model

stability. For F̂NðkoÞ ¼ 1:01, ~S ¼ 0 indicating model instability, which in turn lead to exagger-

ated forecasts at every point as shown in Fig 7(b) (dotted red plot). Fig 7(c(i)) shows the plot of

incremental model input, |ΔUN(k)| and incremental forecasts, jF̂Nðkþ 1Þ � F̂NðkÞj for

F̂NðkoÞ ¼ 0:5 where, BIBO stability was satisfied since jF̂Nðkþ 1Þ � F̂NðkÞj < jDUNðkÞj for all

k. Next, PPD was constant at 0.5 throughout the simulation as shown in (c (ii)), owing to the

slowly time-varying condition from Eq (10). Overall, any F̂NðkoÞ < 1 satisfy the Stability con-

ditions defined in Section 3.2. Since any value of F̂NðkoÞ < 1 can be chosen to perform a stable

prediction, the effect of FN(ko) = 1 on forecasts is trivial and is not discussed.

4.2.4 Forecast analysis. With the weighting parameter, λ fixed at 0.5, the forecast plots for

FN(ko) = 0.001 (solid dark orange), F̂NðkoÞ ¼ 0:01 (dotted dark orange), and F̂NðkoÞ ¼ 0:5

(solid dark green) are shown in Fig 7(b). The plot is zoomed in at profiles A and F containing

Table 2. auto-ARIMA vs CFDL-MFP.

auto-ARIMA CFDL-MFP

sampling time (ms) sampling time (ms)

5 20 800 5 20 800

Data points RMSE

A 0.009 0.036 0.037 0.010 0.052 0.085

B 0.172 0.180 0.209 0.218 0.225 0.412

C 0.385 0.529 0.776 0.071 0.061 0.209

D 0.024 0.061 0.007 0.006 0.008 0.004

E 1.313 1.209 1.636 1.405 1.225 1.631

F 0.035 0.286 0.065 0.248 0.245 0.060

Minimum 0.009 0.036 0.007 0.006 0.008 0.004

Mean (SD) 0.323 (0.505) 0.384 (0.442) 0.455 (0.646) 0.326 (0.538) 0.303 (0.462) 0.400 (0.620)
Maximum 1.313 1.209 1.636 1.405 1.225 1.631

Computation time (ms)

Minimum 4670 1970 156 0.10 0.015 0.017

Mean (SD) 27530 (25130) 4820 (2370) 603 (290) 5.6 (3.4) 0.4 (0.3) 0.026 (0.078)
Maximum 63720 7390 941 49 4.1 0.88

https://doi.org/10.1371/journal.pone.0230009.t002
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the forecasts and the observed force,~FNðkþ 1Þ over the prediction horizon. As visible from

the zoomed plots, underestimated forecasts occurred for lower values of F̂NðkoÞ. According to

the Forecast Condition 1, F̂NðkoÞ < ðε ¼ 0:001Þ was the minimum PPD at which underesti-

mated forecasts occurred for the given λ = 0.5. As F̂NðkoÞ increased to 0.01, the trends of the

forecast slightly increased, but did not converge to the reference force trends and thus,

appeared linear. This linearity was mainly due to lack of convergence with the reference

trends, and is directly related to the forecast indicator (FI) which reduced when PPD increased

as shown in Fig 7(d). As F̂NðkoÞ increased to 0.5, FI! 0, and the resulting forecasts converged

to the reference trends. Sometimes, linear forecasts due to lack of convergence have higher

accuracy as shown in Fig 7(e). The forecast RMSE at profile F was lowest for FN(ko) = 0.01

since the forecasts resembled an accurate linear fit to the observed force data, evident in Fig 7

(b) (dotted dark orange). Otherwise, forecasts were accurate at other force profiles for

F̂NðkoÞ ¼ 0:5. Note that RMSE was lowest for ðF̂NðkoÞ ¼ 0:001Þ at B, since the corresponding

force profile resembled a Gaussian pattern with zero mean owing to rapid increase and

decrease of similar magnitude, and the trends of the underestimated forecast resembled a con-

stant fit to the observed force.

Similarly, the effects of varying λ on the forecast efficiency are shown in Fig 7(f), keeping

F̂NðkoÞ fixed at 0.5. Underestimated forecasts occurred as λ increased. From Forecast Condi-
tion 2, λmax was chosen as 10, since FI! 0 and forecasts converged to the reference force

trends when λ< λmax.

Fig 7. Plots showing stability and forecast analysis with varying F̂NðkoÞ and λ. a) Model is stable when ~S ¼ 1 for

FN(ko)< 1. b) Forecast plots for varying PPD with fixed λ = 0.5. PPD> 1 leads to exaggerated forecasts (dotted red plot),

low PPD causes underestimated or linear forecasts (solid and dotted dark orange), and larger PPD provides nonlinear

forecasts (dark green). c) (i) Input (ΔUN) and output ðDF̂NÞ plots satisfying Stability Condition 1, and (ii) constant PPD

indicates validity of Eq (10). d) Increase in PPD decreases FI which makes forecasts more nonlinear. e) RMSE is low for

linear forecasts at F (PPD = 0.01), and underestimated forecasts at B (PPD-0.001). However, RMSE was lowest for

PPD = 0.5 at (A,D,E). f) FI increases with λ causing underestimated forecasts. λ� 1 for nonlinear forecasts.

https://doi.org/10.1371/journal.pone.0230009.g007
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4.3 Statistical analysis and discussion

The standard Kruskal-Wallis statistical analysis was performed (with significance level

p = 0.001) by taking the average of the performance metrics across all force profiles and the

CFDL-MFP parameters, ðF̂NðkoÞ < 1; l > 0Þ for the sampling interval of 20ms, and the corre-

sponding results are given in Table 3. Forecast RMSE was significantly high (p< 0.001) for

profile E due to the unexpected rapid decrease. However, there was no significant effect of the

parameters on the forecast accuracy. This showed that no value of F̂NðkoÞ < 1 or λ> 0 pro-

duced accurate forecasts at E. As length of data increased, the computation time significantly

increased as expected. However, the maximum value of the computation time at the end of

simulation was still 5 times lower than the sampling interval. Again, varying the parameters

had no effect on the computation times. Finally, stability of the system was always ensured as

long as F̂NðkoÞ < 1 irrespective of the force profiles and λ.

4.3.1 Generalizability. The results demonstrate the generalizability of CFDL-MFP since

the selection of the parameters, ðF̂NðkoÞ; lÞ is a one-time process depending on the type of

forecasts required. For example, underestimated or linear forecasts (with low PPD) were more

accurate at intersection points of rapidly changing force profiles such as (E,F), from Fig 7. Sim-

ilarly, forecasts converging to the previous force trends (with high PPD) were more accurate

for stable force profiles (A,D) and rapidly changing profiles (B,C). If forecasts strictly following

previous force trends are required, then λ< λmax and ε < F̂NðkoÞ < 1 can be chosen for any

time series data. Since PPD does not change over time during simulations, exploring the corre-

lation between λ and PPD and the combined effects on forecasts is trivial. Tuning the parame-

ters independently was enough to produce accurate forecasts. Therefore, FN(ko) = 0.5 and λ =

0.1 are chosen to produce forecasts for axial force data and needle buckling prediction.

One main limitation of the proposed forecast is that the number of previous observations

used as reference force data (i.e reference horizon) was always equal to the prediction horizon

N, see Section 3.1. Restricting the reference horizon to N provided reasonably accurate fore-

casts for many force profiles as shown from the above results. Sometimes, different reference

horizons are still preferred to ensure accuracy depending on certain force profiles. For exam-

ple, if periodic fluctuations in the data are common, then reference horizons greater than N
are preferred so the general patterns are captured to provide reasonable forecasts. For this pur-

pose, a slight modification in the vector operations is required to ensure validity of the Eqs (7)

and (10). Developing a constrained optimization model with adaptive tuning of CFDL-MFP

parameters to provide accurate forecasts at all times, and exploring the effects of reference

horizon on forecast accuracy would be considered for future work.

4.3.2 Application to buckling prediction. Results in Section 4.2.1 showed that the fore-

cast was accurate for steady profile A. The forecast accuracy obtained for steady increase in

force profiles is important to keep track of axial force increase alerts that occur before a needle

Table 3. Statistical analysis—Performance of CFDL-MFP.

Performance metric Force profile Initial PPD, F̂NðkoÞ < 1 λ> 0

(Mean values) p Significant Groups p Significant Groups p Significant Groups

RMSE < 0.001 (A,B,C,D,F)< E 0.8912 - 0.99 -

Computation time < 0.001 (A,B)<C<(D,E,F) 0.3916 - 0.406 -

Stability indicator, ~S - stable if F̂N < 1 - unstable for F̂^

N > 1 - always stable

https://doi.org/10.1371/journal.pone.0230009.t003
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buckling is detected. Similarly, the forecast results for rapid force profiles (B,C) are also impor-

tant for needle buckling prediction. Since initial rapid decrease was captured in the reference

force patterns and continuous decrease in one direction was not possible owing to needle-tis-

sue friction, the forecast at C was accurate. Essentially, when some increase in the axial force is

alerted and captured as reference forces, a forecast for the axial force is obtained similar to C.

However, force profile at B resembles that of a fluctuation in the force data with rapid increase

and immediate decrease. Since the duration to capture this fluctuation in the reference force

trends was small, the forecast accuracy at B was slightly higher. This result is important for pre-

dicting buckling events for duty-cycled insertions, since the corresponding force data consist

of fluctuations similar to B. From Fig 7(e), the RMSE for profiles at (A,C) was lowest for

F̂NðkoÞ ¼ 0:5. Since the RMSE at B was not very high for ðF̂NðkoÞ ¼ 0:5 and fluctuations

occur for low duty-cycles [69], the values ðF̂NðkoÞ ¼ 0:5; l ¼ 0:1Þ would be used to develop

the needle buckling prediction algorithm discussed in the next section.

5 Needle buckling prediction

A schematic overview of the needle buckling prediction and detection algorithm is shown in

Fig 8. When a flexible needle steers into a tissue, axial force increases gradually due to frictional

forces exerted by the tissue on the needle [19]. When the needle encounters a stiffer tissue or a

hard membrane (say at time index k = kfi), a rapid increase in the axial force occurs before the

needle buckles within the tissue. On further insertion (at k = kb> kfi), the needle starts buck-

ling within the tissue. However, to avoid this buckling at kb, a prediction of the buckling should

be made at kfi as soon as the force increase alert is detected. Using the proposed CFDL-MFP

method, forecasts for the force data are obtained at kfi for a prediction horizon N. Using the N-

Fig 8. Overview of needle buckling prediction and detection during insertions into a tissue. a) Axial force increase

is gradual under normal steering conditions. b) Rapid increase in force detected when needle-tip touches obstacle at

time kfi. N-step forecasts for force data produced by CFDL-MFP and buckling prediction algorithm uses forecasted

forces to predict needle buckling at kfi. c) On further insertion, needle buckles at the obstacle at time kb which is

detected by the previously developed buckling detection algorithm. Buckling prediction time is calculated as kb − kfi,
with positive value indicating early prediction. Solid blue arrows represent different stages of insertion, while dotted

arrows represent sequential steps within the same time state k.

https://doi.org/10.1371/journal.pone.0230009.g008
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step forecasts and modifying the existing buckling detection algorithm [21], a prediction algo-

rithm is developed to predict a potential needle buckling at kfi. How soon a prediction is per-

formed before a buckling actually occurs is determined by the prediction time (kb − kfi). Note

that prediction time is relevant only for evaluating the prediction algorithm. For real-time

implementation, buckling of the needle should be avoided through appropriate preventive

subroutines as soon as a buckling is predicted at kfi.

5.1 Prediction methods

The detection steps for axial force increase and needle buckling events are presented with

respect to the CFDL-MFP forecasted forces. The complete details of the buckling detection

algorithm including the procedure for generating optimal mean force,~f �p and the selection of

the sigmoid detection metrics, M can be found in [21]. As a first step, the difference between

~f aðkÞ and~f �pðkÞ is normalized using a sigmoid function, g to obtain M:

z�ðkÞ ¼~f aðkÞ � ~f �pðkÞ

gðz�ðkÞÞ ¼
1

1þ e� z�ðkÞ

with metrics; M ¼

m1 ¼ gð1Þ ¼ 0:73

m2 ¼ gð2Þ ¼ 0:88

8
<

:

ð20Þ

When the normalized difference, g(z�(k)) exceeds the threshold (m1), and if the velocity of the

needle-tip drops below the commanded insertion velocity, ν, a force increase alert at time

index k is detected as follows:

If gðz�kÞ 2 ðm1;m2Þ and 0 < f
jDlðkÞj
DtðkÞ

< n

� �

) Force increase alert

ð21Þ

where l is the euclidean norm of 3D needle-tip position and Δl = l(k) − l(k − 1) is the position

change with respect to insertion time τ(k). As soon as the force increase is alerted, CFDL-MFP

provides N-step force forecasts, F̂Nðkþ 1Þ. The difference between F̂Nðkþ 1Þ 2 RN and~f �pðkÞ
is normalized to predict a potential buckling as follows:

Ẑ�Nðkþ 1Þ ¼ F̂Nðkþ 1Þ � ~f �pðkÞ; ::;~f
�
pðkÞ

h iT
2 RN

ĜNðkþ 1Þ ¼

ĝðkþ 1Þ

ĝðkþ 2Þ

::

ĝðkþ NÞ

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

¼
~1

~1 þ e� Ẑ�N ðkþ1Þ

If ĝðkþ iÞ 2 ðm1;m2Þ or ĝðkþ iÞ > m2½ �; i ¼ 1; 2; ::;N

) Needle buckling predicted

ð22Þ

Note that only rapid increase of force forecast patterns were used to predict needle buckling.
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Prediction of the needle-tip position was ignored since the rate of change in the position was

already smaller than the insertion velocity during axial force increase alert. With further

increase in the force, the needle would either stop steering causing a buckling or puncture

through the tissue.

Algorithm 3 NEEDLE BUCKLING PREDICTION

Require: Axial force (~f a), normalized needle-tip position (l), and nee-
dle insertion velocity (ν), and total insertion time (Ks)
1: Initialize k
2: while k < Ks do
3: ~f �pðkÞ  optimalMean ð~f aðkÞÞ

4: g(k) sigmoid ð~f aðkÞ;~f �pðkÞÞ
5: if k = N then
6: ko  k
7: Initialize CFDL-MFP parameters
8: end if
9: if m1 < g(k) < m2 and 0 < |Δl(k)| < ν then
10: kfi  k
11: Obtain CFDL-MFP forecasts, F̂Nðkþ 1Þ

12: ĜNðkþ 1Þ  sigmoid ðF̂Nðkþ 1Þ;~f �pðkÞÞ
13: Initialize i  1
14: while i < N do
15: if ĝðkfi þ iÞ > m1 then
16: Buckling predicted at kfi
17: end if
18: end while
19: end if
20: end while

5.2 A complete prediction algorithm

A complete iterative algorithm integrating CFDL-MFP forecast and buckling prediction meth-

ods is presented in Algorithm 3. The inputs to the algorithm are the axial force data from a

force sensor,~f aðkÞ, normalized needle-tip position from a position sensor, l(k), commanded

insertion velocity, ν, and total insertion time Ks. When the insertion begins from k = 0, the

optimal mean forces are generated from~f aðkÞ at every time k> 0, to continuously check for

force increase alerts through sigmoid transformation, steps (3-4). After ignoring the first N val-

ues, the CFDL-MFP parameters are initialized according to the procedure described in Algo-

rithm 1, (steps 4-6). When a force increase alert is detected at k = kfi, N-step forecasts are

obtained at kfi, steps (9-11). Each forecasted value of the force within N is checked for a rapid

increase. If the rapid increase is detected, then a buckling is predicted at kfi, (steps 12-18). This

process continues till the end of the simulation at Ks. Therefore, the prediction algorithm can

be implemented in real-time since both force increase detections and forecasts are performed

during each iteration. Note that force forecasting is performed only when a rapid force

increase is alerted. Prediction is not needed if a needle buckling is detected directly since

appropriate control action would be implemented immediately. Hence, force forecasting and

buckling prediction are performed only when a force increase is alerted.

6 Experimental results and discussion

In this section, we present methods to validate the buckling prediction algorithm through

insertions in three different tissue environments; 1) gelatin tissue with embedded obstacle

(T1), 2) two-layered gelatin tissue (T2), and 3) ex-vivo tissue (T3) and evaluate the performance

PLOS ONE Force forecasting for early prediction of critical events in robotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0230009 May 7, 2020 24 / 34

https://doi.org/10.1371/journal.pone.0230009


in terms of prediction time, false predictions of buckling and false negatives (failed predic-

tions). The results for all needle insertions are explained in the subsequent sections along with

the statistical analysis of the performance metrics.

6.1 Methods and protocol

Needle insertion data from [21] were used to evaluate the buckling prediction algorithm with

respect to the buckling events previously detected by our detection algorithm. The correspond-

ing tissue was made of a uniform gelatin with a 3D printed plastic rectangular barrier embed-

ded at a distance of 11cm from the shortest edge as shown in [21]. As short-hand notation, let

this tissue with the known embedded obstacle be T1. Next, to evaluate the effects of varying tis-

sue stiffness on the prediction algorithm, the insertion data from a two-layered gelatin tissue

were used where the less dense gelatin was placed at 8.5cm from the shortest edge [70]. Let this

two-layered tissue be denoted as T2. Finally, the prediction algorithm is tested for robustness

and generalizability through insertions in ex vivo liver under two boundary conditions; a)

unconstrained and b) constrained. Let this tissue be denoted as T3. For manual verification,

insertions in T3 were recorded on the 9-in XRII OEC series 9600 fluoroscope as shown in [21].

The insertion data for each gelatin tissue consist of 75 needle insertions repeated 5 times for

each of the three insertion velocities (ν = 1,2.5,5)mm/s and five duty-cycles

(DC = 0,25,50,75,100)% with bidirectional duty-cycle spinning control implemented [69]. Six

insertions from unconstrained T3 and nine insertions from constrained T3 were used, totaling

to 15 needle insertions. Each ex vivo insertion consisted of only ν = 2.5mm/s and DC = 0% to

avoid any coring effect of the DC rotations on the tissue structure [71]. The force data and nee-

dle-tip position were collected at a sampling rate of 20ms (50Hz) from a 6-axis force-torque

sensor (Nano-17, ATI Inc.), and an electromagnetic (EM) tracker (TrakStar, NDI, Inc.),

respectively. The steerable needle was made from a hollow nitinol tube with dimensions of

250mm length, 0.8mm OD, and 0.6mm ID, with a pre-bent tip of length 4mm long and angle

30 [69].

The prediction algorithms were implemented in MATLAB1 R2017a. To imitate real-time

prediction, the data was used as a sequential input to Algorithm 1 and Algorithm 3 where each

value was available only at current time k. When k> 0, the prediction horizon N for t = 1.5s

was obtained according to Eq (16). Since the sampling interval is 0.02s, N = 71. For all inser-

tions, force forecasts with CFDL-MFP were obtained for λ = 0.1 and initial PPD = 0.5. The

total computation time required to forecast force data and predict needle buckling was cap-

tured through steps (9-19) of Algorithm 3.

At the end of the simulation, the following performance metrics of the buckling prediction

algorithm were evaluated: 1) Buckling prediction time as the difference between the predicted

time stamp and the detected buckling timestamp, 2) True predictions (TP) resulting in exact

prediction before a buckling detection, 3) False predictions of buckling (FP) due to force

increase alert but no buckling detections, and 4) False negatives (FN) when actual buckling

was detected but prediction failed. Finally, the effects of varying duty-cycle, insertion velocities

and tissue environments on the metrics were evaluated through the standard statistical Krus-

kal-Wallis analysis.

6.2 Results in gelatin tissue with obstacle

The plots of insertion force and the needle insertion path obtained from normalized needle-tip

position tracked by the electromagnetic sensor for three example needle insertions in T1 are

shown in Fig 9(a)–9(c). As the needle tip encountered the obstacle at 11cm, an axial force

increase was alerted at 11.03cm for a DC = 100% insertion. At this time, forecasts for the force
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were obtained from which buckling was predicted, as shown in Fig 9(a). Since the buckling

detection timestamp recorded was 11.09cm, a buckling was predicted 0.06cm (0.6s for

v = 1mm/s) ahead before detection. With DC = 100% insertions, the needle insertion path was

equal to the distance of the obstacle. Due to inherent kinematics, the insertion path was greater

than 11cm for lower duty-cycles due to which a force increase was alerted at 12.41cm for

DC = 0% insertion and a buckling was predicted 0.1cm (0.4s for ν = 2.5mm/s) ahead before

detection. Similarly, the prediction time for an insertion with DC = 50% and ν = 5mm/s was

0.1s. In these cases, TP = 1 for a successful prediction whenever a buckling event occurred.

There were cases when force increase alerts did not lead to a buckling, but a buckling was

still predicted. An example of this false prediction is shown in Fig 9(d) for DC = 25% and ν =

1mm/s insertion. A force increase was alerted at 11.8cm due to a fluctuation in the force data.

Fig 9. Buckling prediction results in T1 with obstacle at 11cm from insertion point. a) For ν = 1mm/s, buckling was

predicted 0.06cm (0.6s) before detection at 11.09cm, with FP = 0 and FN = 0. b) Prediction time was 0.4s for ν =

2.5mm/s with FP = 0 and FN = 0. c) Prediction time was 0.1s for ν = 5mm/s, with FP = 0 and FN = 0. d) Plot showing

FP and FN for DC = 25% insertion. e) Error bar plot showing FP> 0 for DC = (25,50,75)% insertions. f) Error bar plot

showing FN> 0 for DC = (25,50)%. TP> 1 for DC = (0,25)% due to needle-tissue friction. g) Error bar plot of

minimum buckling prediction time for each ν and DC. h) Error bar of RMSE which is high for DC = 25% due to

fluctuations in the duty-cycled insertion force data. i) Total computation time (forecast+buckling prediction) for each

insertion velocity and DC, which is less the 0.02s sampling interval.

https://doi.org/10.1371/journal.pone.0230009.g009
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Since the point of force increase alert was at the rising trend of the fluctuation, the forecast

trend also increased following the previous force patterns. The forecast accuracy was slightly

low due to the immediate drop in the force data (similar to profile B from Section 4.2.1), and

thus, FP = 1 for this insertion. From the error bar in Fig 9(e), FP > 0 for DC = (25,50,75)% due

to frequent fluctuations in the force data caused by the bidirectional spinning method [72].

Next, false negatives occurred when a prediction failed and a buckling event was detected,

as shown in Fig 9(d) for ν = 2.5mm/s insertion. This is due to the periodic forecasts which

resulted from the periodic patterns of the duty-cycled insertion force data. Since the trend of

the forecast (magenta plot) dropped, the forecast accuracy was low and thus, FN = 1 at 13cm.

From the error bar plot in Fig 9(f), FN> 0 for DC = (25,50)% mainly due to the intrinsic peri-

odic patterns. Both FP and FN occurred due to inaccuracies in the forecast and the percentage

of their occurrence across 75 insertions were 16% and 4%, respectively. Furthermore, addi-

tional buckling occurred for lower duty-cycles since the deflection force was high causing the

needle to bend along the insertion path [73]. The proposed algorithms successfully predicted

this buckling resulting in TP>1 for DC = 0% and 25% insertions.

The buckling prediction time was high for lower insertion velocities, as evident in Fig 9(g).

The prediction threshold was assigned as the sampling interval (0.02s) so that a buckling event

was predicted before the next data arrived. If the incoming data lead to a buckling detection,

the prediction time would have been close to 0.02s which is too less a time for the surgeon to

implement a preventive action. Thus, an ideal prediction time is expected to be greater than

the threshold with higher positive values indicating sooner predictions. The minimum buck-

ling prediction time for all insertions with ν = 5mm/s was 0.03s, which was still slightly higher

than the sampling interval. The effect of RMSE on duty-cycle and insertion velocity shown in

Fig 9(h) are discussed later in the statistical analysis section. Finally, the maximum computa-

tion time captured during both force forecasting and prediction of needle buckling, was less

than 10ms which is well within the sampling interval of 20ms as shown in Fig 9(i). The compu-

tation time for each forecast and buckling prediction does not change and will therefore, not

be used in statistical analysis.

6.3 Results in two-layered gelatin tissue

Results in T2 are analyzed for the frequency of the occurrence of FP, FN and TP due to needle-

tissue friction. For example, FP occurred for DC = 75% and ν = (1, 2.5)mm/s due to a force

increase alert at 7.6cm and 8.6cm, respectively as shown in Fig 10(a). The forecast accuracy

Fig 10. Buckling prediction results in T2 with less dense layer at 8.5cm from insertion point. a) Plot showing FP for

DC = 75% and ν = (1,2.5)mm/s. Buckling detected at 7.83cm for ν = 2.5mm/s due to high friction force of denser

gelatin, resulting in TP = 1 for successful prediction with prediction time = 0.23s. b) Error bar plot showing FP> 0 for

DC = (25,50,75)%. c) TP = 2 for two repeated insertions of DC = 75% and ν = 2.5mm/s, with FN = 0.

https://doi.org/10.1371/journal.pone.0230009.g010
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was low since the points of force increase alert were at the intersection of the rapidly changing

forces, similar to profiles (E,F) from Section 4.2.1. Since, the trends of the forecasts increased, a

false buckling was predicted resulting in FP = 1 at these points. However, a buckling was

detected at 7.83cm due to the high friction force of the dense gelatin layer. The prediction algo-

rithm successfully predicted this buckling 0.057cm (0.23s) before 7.83cm, resulting in TP = 1.

An additional force increase alert was detected at 8.15cm, and the CFDL-MFP forecast at this

point followed the actual force pattern resulting in high accuracy. Consequently, FP = 0 and

FN = 0 which is trivial since TP = 0. From the error bar plot in Fig 10(b), FP> 0 was common

for DC = (25,50,75)%, with the percentage of occurrence as 12% across 75 insertions in T2.

Two buckling events were detected for DC = 75% and ν = 2.5mm/s insertion, which might

have due to tissue inhomogeneity. The prediction of these events was successful, resulting in

TP = 2 as shown in Fig 10(c). Finally, there were no false negatives for any insertion.

6.4 Results in ex-vivo tissue

The plots for example insertions in T3 for unconstrained and constrained boundary conditions

along with the corresponding fluoroscopic motion images are shown in Fig 11. The motion

Fig 11. Buckling prediction results for insertions in ex vivo tissue under unconstrained (a) and constrained (b)

boundary conditions. a) Axial force increase alert at 27.7s. Slight needle bend was visible from motion image. Needle

buckling was predicted 0.37s before needle completely buckled at 28.07s. b) Similarly, needle buckling was predicted

0.1s before needle buckled at 23s.

https://doi.org/10.1371/journal.pone.0230009.g011
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images were captured from the live fluoroscopic videos of needle insertions at a frame rate of

30fps. For the unconstrained tissue, a slight bend in the needle shaft was visible from the

motion image when an axial force increase was alerted at 27.7s, shown in Fig 11(a). At this

time, forecast for axial force was performed (magenta plot) and a buckling was predicted

(peach orange patch). The prediction was successful with a prediction time of 0.37s, since the

needle buckled later at 28s. Similarly, the prediction time for the constrained tissue was 0.1s

sooner than the buckling detection at 23s, as shown in Fig 11(b). A summary of the buckling

predictions for all insertions in the biological tissue is given in Table 4. The mean buckling pre-

diction time was 0.348±0.033s for the unconstrained tissue which was almost double the mean

prediction time of 0.165±0.076s for the constrained tissue. During needle insertions, the

unconstrained tissue displaced more frequently causing the needle shaft to bend laterally [70].

Due to this bend, axial force increased slightly, providing an alert even before the needle tip

encountered an obstacle. Since this bend eventually lead to a buckling, the prediction time was

high. However, the prediction time was lower for insertions in the constrained tissue. Any

deformations within the constrained tissue would have caused the force to increase rapidly. As

a result of this rapid increase, when buckling occurred with arrival of the next data points, the

prediction time was low but still higher than the sampling interval for successful prediction.

On average, the algorithm predicted buckling events sooner than the human volunteers by

1.67s and 2.39s for the two boundary conditions, respectively. Finally, no false predictions and

false negatives were observed for any insertion.

6.5 Statistical analysis and discussion

Results from the statistical Kruskal-Wallis analysis on the needle insertions across all duty-

cycles, insertion velocities and tissue types (166 insertions) are shown in Table 5. A signifi-

cance level p = 0.001 was chosen.

6.5.1 Effects of insertion velocity. The buckling prediction time reduced as ν increased.

Since larger distance is covered by the needle-tip in every second for high ν, the needle tip

encounters an obstacle faster and subsequently, rapid increase in the force is alerted with the

next incoming data point. In such cases, the prediction time was close to the sampling interval

of 0.02s, see Fig 9(g). Moreover, the number of discrete data observations reduces as ν
increases for a fixed sampling interval and total insertion time. Therefore, the time series like

Table 4. Needle buckling predictions in Ex vivo tissue.

Parameter Boundary Condition I Boundary Condition II

Total insertions 6 9

No. of buckling detections (Ground truth) 2 4

Mean prediction time (sec) 0.348 (SD = 0.033) 0.165 (SD = 0.076)

Mean prediction time sooner than human detections (sec) 1.67 (SD = 1.06) 2.39 (SD = 1.20)

https://doi.org/10.1371/journal.pone.0230009.t004

Table 5. Statistical analysis—Buckling prediction.

Parameter Insertion Velocity (mm/s) Duty-cycle (%) Tissue type

(Mean values) p Significant Groups p Significant Groups p Significant Groups

Buckling prediction time <0.001 1 > 2.5 > 5 0.022 - 0.8032 -

False predictions 0.5485 - <0.001 25 > (0,50,75,100) < 0.001 (T1, T2)>T3

False negatives <0.001 (1,2.5)>5 <0.001 (25,50) > (0,75,100) < 0.001 T1 > (T2, T3)

CFDL-MFP forecast RMSE <0.001 5>2.5>1 <0.001 25 > (0,50,75,100) < 0.001 T1 > (T2, T3)

https://doi.org/10.1371/journal.pone.0230009.t005
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force data become short which generally have low forecast accuracy [54]. As a result, RMSE

increased with ν, see Fig 9(h). Since false negatives were observed only for (ν = 1, 2.5)mm/s

insertions in T1, there was significant effect (p< 0.001) with FN = 0 for ν = 5mm/s and FN > 0

for ν = (1, 2.5)mm/s, (see Fig 9). However, it is difficult to determine the exact effects of ν with

the small sample size of FN = 3 out of 166 insertions. Finally, there was no significant effect on

FP (p = 0.548).

6.5.2 Effects of duty-cycle, DC. DC had significant effect on FP and FN due to the rea-

sons mentioned in Section 7.1. Since FP and FN are most likely caused by incorrect forecasts,

RMSE had a direct relation with FP and FN. Therefore, RMSE was significantly high for

DC = 25% insertions. However, there was no significant effect on the buckling prediction time

(p = 0.022).

6.5.3 Effects of tissue type. To evaluate the effects of tissue type more accurately, the met-

rics are averaged across all insertions with only DC = 0% and ν = 2.5mm/s. By observation, the

mean prediction time for T1, T2 and T3 was 0.3s, 0.23s and 0.25s, respectively for same DC and

ν. Therefore, tissue type had no significant effect on the prediction time (p = 0.8032). Next,

forecast RMSE was most significant for insertions in T1 due to non-zero FP and FN. Finally,

both FP = 0 and FN = 0 for all insertions with DC = 0%.

6.5.4 Discussion. Results show that the prediction algorithm can be implemented accu-

rately for insertions in a variety of tissue environments. The low percentage of false positives

and false negatives show that the prediction algorithm can be implemented to alert a surgeon

of a potential buckling event accurately without many false alarms. To provide surgeons

enough time to implement preventive actions for the needle before buckling, the prediction

time should be significantly high. Even with the advantage of high prediction times, low inser-

tion velocities can cause larger tissue deformations [74]. Thus, an optimal insertion velocity

should be determined such that prediction time is high and tissue deformation is low. If very

low frequency of false predictions and false negatives is desired for any duty-cycled insertion,

then the forecast RMSE will need to be improved in future work. As we have seen in Section

4.2.3, optimal forecasts need not necessarily produce accurate forecasts. Depending on the

force profile at which forecasting is required, the CFDL-MFP parameters can be tuned for bet-

ter accuracy. For example, if forecast is required at the intersection of rapidly changing pro-

files, then underestimated or linear forecasts can provide better accuracy (recall Fig 7(b) for

profile F), resulting in smaller FP and FN. Therefore, an optimized model to determine opti-

mal insertion inputs and adaptive forecasting parameters are required for better prediction

accuracy.

7 Conclusion

We presented a novel time series forecasting method by modifying the existing model-free

adaptive control algorithm [48] which enables fast computational times and does not require

model-fitting or training data to perform single-step or multi-step predictions. Our

CFDL-MFP forecasting model is 11% more accurate than the benchmark statistical ARIMA

method. The computation time of our proposed forecasting method is in the order of 4ms for

a 20ms data sampling rate, which enables real-time computation and future integration with

robotic control systems. The stability, generalizability and robustness of the CFDL-MFP algo-

rithm was proved through statistical analysis on a variety of force insertion profiles.

The secondary goal of this paper is to predict needle buckling events before they occur so

that potential damage to the tissue and needle could be avoided. The buckling prediction algo-

rithm was evaluated using steerable needle insertions into three types of tissue including artifi-

cial gelatin and ex vivo liver. The steerable needles were also controlled at various insertion
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velocities and duty-cycles to control needle curvature. Overall, the false positive and false nega-

tive rates were low in artificial tissue (16% false positive and 4% false negative), and non-exis-

tent in ex vivo tissue.

One limitation of our proposed algorithm is that we can only distinguish when buckling

events occur, but not necessarily the cause of those events (e.g., a stiffer portion of tissue vs. a

rigid obstacle). In future work, we plan to integrate our CFDL-MFP buckling prediction algo-

rithm with an existing steerable needle robot to determine the effectiveness of this technology

in preventing needle buckling events in realistic clinical environments and evaluate the ability

of the prediction algorithms to enable improved shared control between the human operator

and steerable needle. Additionally, applying the CFDL-MFP algorithm to predict other impor-

tant events in needle-based insertion such as tissue puncture or tissue displacements could be

an interesting direction for future work. The proposed forecasting method could also be

applied to other important problems in human-robot interaction research where real-time

sensor data is critical for determining safe future robot control actions.
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