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ABSTRACT
Nucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and
regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-
defined positions, which are maintained under many different physiological situations and genetic
backgrounds. Although several short sequence elements have been described that favor or reduce
the affinity between histones and DNA, the extent to which the DNA sequence affects nucleosome
positioning in the genomic context remains unclear. Recent analyses indicate that the base
composition pattern of mononucleosomal DNA differs among species, and that the same sequence
elements have a different impact on nucleosome positioning in different genomes despite the high
level of phylogenetic conservation of histones. These studies have also shown that the DNA
sequence contributes to nucleosome positioning to the point that it is possible to design synthetic
DNA molecules capable of generating regular and species-specific nucleosomal patterns in vivo.
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Introduction

Eukaryotic genomes are packaged into chromatin to
be confined within the nucleus. The basic units of
chromatin are the nucleosomes, histones octamers
wrapped by »1.7 turns of DNA that accommodate
147 base pairs (bp). Genome-wide maps of several
yeasts species have revealed that most nucleosomes
occupy well-defined and stable positions along the
chromosomes during the cell cycle and under different
physiological conditions.1-3

Nucleosome positioning results from the combined
contribution of chromatin remodelers, transcription
factors, and the DNA sequence. Remodelers facilitate
the sliding, eviction or exchange of nucleosomes using
ATP hydrolysis, and the depletion of some of them,
such as hrp3 in Schizosaccharomyces pombe or ISW1
and CHD1 in Saccharomyces cerevisiae, can cause
widespread alterations in nucleosomal organization.4-6

Transcription factors can compete with histones for
the access to specific locations in DNA to generate
nucleosome depleted regions (NDRs).2,7,8

The contribution of the DNA sequence to nucleo-
some positioning in vivo remains unclear. Based on

genome-wide in vitro chromatin assembly, it has been
suggested that most nucleosomes are positioned
according to a universal code specified by the DNA
sequence.9,10 In contrast to this proposal, the statistical
positioning model proposes that regular nucleosomal
arrays are passively propagated from physical barriers
bound to DNA.11 According to this model, the contri-
bution of the DNA sequence would be to determine
the location of such barriers, which could coincide
with protein complexes bound to gene promoters or
other DNA binding proteins. While both models may
contribute to nucleosome positioning in specific geno-
mic regions, neither of them can sufficiently account
for the positioning pattern found in vivo.

Considering that histones are among the most con-
served proteins in evolution, if nucleosome position-
ing was entirely independent of the underlying
sequence, it would be expected that the insertion of
exogenous DNA fragments into a host genome would
adopt the endogenous nucleosomal pattern. Contrary
to this expectation, there are many examples where
the same DNA fragments are packed differently by
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different species. For example, mouse metaphase
chromosomes are abnormally condensed in regions
where long tracts of fission yeast DNA were intro-
duced.12 Nucleosome positioning of Yeast Artificial
Chromosomes (YACs) containing genomic DNA
from Kluyveromyces lactis, Kluyveromyces waltii and
Debaryomyces hansenii differs from that of their origi-
nal genomes when harbored by S. cerevisiae, and do
not adopt the endogenous S. cerevisiae pattern
either.13 This phenomenon is also observed between
closely related species as Saccharomyces paradoxus
and S. cerevisiae,14 and even between orthologous
genes like the ura4 gene in S. pombe, Schizosaccharo-
myces octosporus and Schizosaccharomyces japonicus.
The pattern of nucleosome positioning generated by
the ura4 gene from S. octosporus inserted into the S.
pombe genome is more similar to the endogenous pro-
file than that of the S. japonicus ura4 gene, which cor-
relates with S. japonicus being more distantly related
to S. pombe than S. octosporus.15

Base composition and nucleosomal patterns

It has long been known that different DNA sequence
elements have different affinities to nucleosomes. For
example, the 5S rRNA gene has a strong positioning
potential in vitro and in vivo.16,17 By contrast, poly
(dA:dT) tracts are refractory to nucleosome formation
due to difficulty in bending around the histone
octamer. They colocalize with sites of lower nucleoso-
mal occupancy in S. cerevisiae (Fig. 1A) and are over-
represented in NDRs at gene promoters (Fig. 1B),
where they facilitate the access of transcription factors
to their binding sites.18-21 In fact, 72.5% of all NDRs
in S. cerevisiae include poly(dA:dT) elements 7 bp
long (Fig. 1C). This situation is not universal, how-
ever, since in S. pombe nucleosome occupancy is not
reduced over the same elements (Fig. 1A) and they are
not overrepresented at promoter NDRs relative to
their average genomic distribution1 (Fig. 1B). In con-
trast with the situation in S. cerevisiae, only 18% of all
NDRs include poly(dA:dT) elements 7 bp long in S.
pombe (Fig. 1C). In addition, high-resolution studies
have shown that the ACT content oscillates in phase
with the occupancy profile in S. pombe, while in S. cer-
evisiae it peaks at linker regions.22-25 Despite the dif-
ferences among species, several laboratories have
reported a periodic 10 bp pattern in the distribution of
AT- and GC-rich dinucleotides in aggregated profiles

of mononucleosomal DNA. This feature favors the
bendability of DNA around the histone core and has
been described in different species.9,26-28

Many studies have addressed the potential of DNA
sequences to form nucleosomes using in vitro chroma-
tin assembly under controlled biochemical conditions
(see for example refs. 28-30). These approaches have
uncovered important properties of the DNA-histone
interactions, but do not always mimic the nucleosomal
patterns found in the genomic context.31,32

To explore the connection between the DNA
sequence and nucleosome positioning in vivo, we
analyzed the distribution of the 4 nucleotides within
30,000 to 40,000 sequences of mononucleosomal
DNA of S. cerevisiae and 3 species of Schizosacchar-
omyces,25 and found they followed well-defined
patterns, showing a higher content of adenine at
the 5' end and thymine at the 3' end of each strand
of mononucleosomal DNA. This asymmetric distri-
bution was also observed—although to a lesser
extent—between cytosine and guanine and was
present in transcribed and non-transcribed regions.
We have called these patterns nucleosomal signa-
tures and they are different among species. In the
case of coding regions (ORFs), nucleosomal signa-
tures determine a species-specific periodicity in the
distribution of amino acids that establishes an
unanticipated connection between the position of
individual codons around the nucleosome and
protein composition, which has important conse-
quences for gene evolution.25,33,34

Nucleosomal signatures contain positioning
information

These observations raised the question of whether
nucleosomal signatures could represent a molecular
footprint caused by the stable association between
nucleosomes and the DNA molecule over evolution-
ary timescales,33 or whether they could contribute to
the positioning of nucleosomes in the genome.

To explore this possibility, we randomized the
sequence of several mononucleosomal DNA regions
and used them to replace the native sequences
within the genome. It was observed that the regular
wild-type nucleosomal pattern was severely dis-
turbed in regions that coincided precisely with the
modified sequences. The same result was obtained
when the modification of the sequence was limited
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Figure 1. Base composition and nucleosomal organization in S. cerevisiae and S. pombe. (A) Aggregated profile of nucleosomal occu-
pancy (blue, left y-axis scale) of genomic regions 2 kb long aligned to the central nucleotide of 13137 (S. cerevisae) and 11242 (S. pombe)
poly (dA:dT) elements of 7 nucleotides present in their genomes. X-axis indicates nucleotide positions from the center of poly (dA:dT)
elements. (B) Aggregated profile of nucleosomal occupancy (blue, left y-axis scale) of genomic regions 2 kb long aligned to the center
of 5352 (S. cerevisiae) and 2756 (S. pombe) nucleosome depleted regions (NDR). NDRs were defined as regions spanning al least
90 nucleotides with a normalized sequence coverage lower than 0.3 relative to the genome average. The percentage of ACT (red, right
y-axis scale) was calculated using a sliding window of 30 nucleotides and a step of 1 nucleotide. Profiles are symmetric from the site of
alignment because genes are not oriented in the same direction. X-axis indicates nucleotide positions from the center of NDRs. The
2 peaks of ACT in the NDRs of S. cerevisiae probably correspond to the asymmetric localization of poly(dA:dT) elements in NDRs.30

MNase-Seq data of nucleosomal occupancy for S. cerevisiae aw303–1a and S. pombe 972 h¡ strains are taken from Gonz�alez et al.
(2016).15 (C) Overlap between NDRs and poly (dA:dT) elements in the 2 yeasts. 72.5% and 18% of NDRs colocalize with poly(dA:dT)
elements of 7 nucleotides in S. cerevisiae and S. pombe, respectively.
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to the substitution of the wild-type codons for their
synonymous codons in the ORFs. This effect was
not dependent on transcription since it was equally
detectable in transcribed and non-transcribed
regions, and suggested the existence of some type of
information required for positioning that had been
lost in the modified sequences.

To more directly test whether the nucleosomal
signatures contributed to nucleosome positioning, we
generated position-specific weight matrices to extract
the information contained within them to design
artificial non-coding sequences to evaluate their
potential to position nucleosomes.15 Strikingly, the
insertion of artificial sequences based on the nucleoso-
mal signature found in the S. pombe genome into its
own genome led to the positioning of nucleosomes in
the predicted positions. The same sequence, however,
did not position nucleosomes in S. cerevisiae.
Conversely, the artificial sequence designed according
to the S. cerevisiae signature specified a strictly regular
nucleosomal array in S. cerevisiae, but failed to do so
in S. pombe.

The information present in nucleosomal signatures
is degenerated and, in principle, would allow the
design of thousands of different sequences with a simi-
lar positioning potential in vivo. This flexibility
opened the possibility of incorporating this informa-
tion into coding regions through the use of synony-
mous codons. Also, this would allow modifying
heterologous ORFs to mimic the nucleosomal organi-
zation of the host genome to overcome the deficient
positioning of exogenous sequences, as discussed
above. We tested this possibility by re-designing the
ORFs of the ura4 gene of S. octosporus and S. japoni-
cus based on the nucleosomal signatures of S. pombe
without modifying their native coding potential.
Nucleosome mapping showed that the two designer
versions were capable of positioning nucleosomes in
S. pombe with even a sharper profile than the endoge-
nous ura4 ORF. Likewise, two customized versions of
the bacterial gene kanr¡a widely used marker for plas-
mids that confers resistance to geneticin¡were used
using the same strategy and generated regular nucleo-
somal arrays in S. pombe and S. cerevisiae that were
not maintained when used interchangeably. These
results indicated that nucleosomal signatures contain
information that can direct nucleosome positioning in
a species-specific manner,15 and open the possibility

of using them to engineer prokaryotic and eukaryotic
genes to adopt the specific nucleosomal organization
of the host organism. Their possible applications will
be discussed below.

Possible applications of nucleosomal signatures

The DNA molecule contains multiple layers of infor-
mation that have been extensively manipulated for
biotechnological purposes. This includes optimization
of genes to improve their heterologous expression
through the incorporation of the codon bias of the
host genome or the avoidance of cryptic splice-sites
and some RNA secondary structures.35 Our results
show that nucleosomal signatures represent an addi-
tional layer of information that contributes to the spe-
cies-specific organization of chromatin at its most
basic level. In the case of eukaryotic hosts, the ability
to reproduce the endogenous nucleosomal pattern
could improve gene expression and to avoid undesired
consequences of the lack of positioning such as anti-
sense transcription and cryptic promoter formation.13

The information contained in nucleosomal signa-
tures could also be of interest in synthetic biology and,
more specifically, in the expanding field of genome
design.36 In this respect, the Sc2.0 international con-
sortium is currently building a synthetic version of the
S.cerevisiae genome, with some chromosomes already
completed.37,38 An important question currently being
addressed is how these synthetic chromosomes are
organized in the nucleus.39 The close relationship
between DNA sequence and nucleosome positioning
discussed above suggests that small changes intro-
duced in the sequence of synthetic chromosomes will
probably have an impact on nucleosome positioning.
Given that differences in nucleosome positioning or in
their affinity for DNA have an effect on transcrip-
tion,40,41 DNA replication,42,43 and recombination44 it
is possible that the feasibility of targeting nucleosomes
to specific positions through the incorporation of
nucleosomal signatures into DNA sequences could
contribute to improve the functionality of designer
chromosomes.
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