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INTRODUCTION 
 

Inflammatory bowel disease (IBD), a pathological state 

characterized by relapsing and remitting gastrointestinal 

(GI) tract mucosal inflammation, consists mainly of 

ulcerative colitis (UC) and Crohn’s disease (CD) [1]. 

Although the pathogenesis of IBD is still not completely 

understood, prior studies suggest that an abnormal 

activation of the mucosal immune response in 

genetically-susceptible individuals contributes to IBD 

[1]. As the initiating event of IBD, the impairment of 

intestinal epithelial cells that exert intestinal barrier 

functions plays a pivotal role in the pathophysiology of 

IBD and worsens as the disease progresses [2]. 

 

Numerous miRNAs regulate junction protein gene 

expression and maintain junction structural integrity [3, 

4]. Furthermore, miR-155 promotes endothelial junction 

function and epithelial TJ expression in atopic 

dermatitis [3, 5]. Importantly, miR-155 is one of many 

highly-expressed miRNAs in the inflamed colonic 

mucosa of both UC and CD patients [6, 7]. Moreover, 

miR-155 contributes to the early-life inflammatory 

stressors that trigger epithelial injury [8] and impair 

intestinal mucosa healing in IBD [9]. In spite of such 

known functions for miR-155, the mechanisms by 

which it impairs the intestinal barrier in IBD are poorly 

understood. 

 

Profound hypoxia (or even anoxia) is present in the 

inflamed GI mucosa of IBD patients [10]. As a main 

regulator of cellular adaptive responses to hypoxia [11], 

hypoxia-inducible factor 1 (HIF-1), which is composed 

of HIF-1α and HIF-1β subunits, is also involved in 

many signaling pathways of tissue-protection and anti-

inflammatory regulation [12, 13]. HIF-1α is degraded 
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ABSTRACT 
 

Intestinal barrier dysfunction is a hallmark of inflammatory bowel disease (IBD). MiR-155 is increased in colitis 
and downregulates expression of hypoxia-inducible factor 1α (HIF-1α). Here, we investigated the effects of miR-
155 on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. We found that miR-155 
antagomir treatment relieved weight loss and intestinal damage in IBD mouse models (P < 0.05). Furthermore, 
electron microscopy and immunofluorescence imaging showed that miR-155 increased intestinal barrier 
dysfunction and downregulated the expression of tight junction proteins in DSS-induced colitis. FG-4497, which 
upregulates HIF-1α expression, elicited protective effects on the intestinal barrier in DSS-induced colitis. Dual 
luciferase reporter assays also confirmed that miR-155 downregulated expression of HIF-1α. Finally, we 
discovered that HIF-1α levels were elevated by miR-155 antagomir treatment (P < 0.05) and that TFF-3 
expression correlated positively with HIF-1α expression. These results suggest that miR-155 contributes to DSS-
induced colitis by promoting intestinal barrier dysfunction and inhibiting the HIF-1α/TFF-3 axis. 
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after being hydroxylated by prolyl hydroxylases (PHD), 

which lose this function under hypoxia [14]. 

Furthermore, HIF-1α is induced in the inflamed mucosa 

of both mouse models of colitis and IBD patients [15, 

16] and can improve epithelial barrier function by 

regulating intestinal trefoil factor (TFF) as well as 

alleviate many kinds of intestinal inflammation [17–19]. 

Interestingly, by regulating the expression of HIF-1α, 

miR-155 promotes endothelial cell maturation and is 

involved in hypertrophic scar fibroblast formation [20, 

21]. However, the underpinnings of HIF-1α regulation 

by miR-155 in IBD are not well understood. 

 

Here, we hypothesize that miR-155 contributes to 

intestinal barrier dysfunction in dextran sulfate sodium 

(DSS)-induced mice colitis by regulating the HIF-

1α/TFF-3 axis. In this study, we observed that miR-155 

inhibition by antagomir treatment ameliorated DSS-

induced colitis in mice and improved the expression of 

HIF-1α. We also found that intestinal mucosal barrier 

dysfunction and loss of TJ proteins in DSS-induced 

colitis is relieved by treatment with miR-155 antagomir 

or FG-4497. In addition, we revealed that the loss of 

function of the HIF-1α/TFF-3 axis in DSS-induced 

colitis in mice may promote intestinal barrier 

dysfunction. 

 

RESULTS 
 

MiR-155 antagomir reduced miR-155 levels in DSS-

induced colitis 
 

We tested the effects of intraperitoneal miR-155 

antagomir injection into mice. Figure 1B shows that 

miR-155 antagomir was mainly located in epithelial and 

submucosal cells. Next, our q-PCR experiments showed 

that miR-155 expression was increased 4.74-fold in 

DSS-induced colon tissues compared with that in normal 

controls. However, miR-155 antagomir decreased miR-

155 levels (P < 0.01) (Figure 1C). Furthermore, 

 

 
 

Figure 1. MiR-155 antagomir reduced miR-155 level in DSS-induced colitis. (A) The schema of the animal experiment. (B) Location 
of miR-155 antagomir in mouse colon. Red marked by green arrows was positive signal (magnification ×20). (C) QRT-PCR analysis of miR-155 
level in mice colonic tissue. Each bar represents mean ± SD, n=8 from each group. #P > 0.05, **P < 0.01 vs. DSS group. (D) In situ hybridization 
analysis of miR-155 in mice colon. Green marked by red arrows was positive signal for miR-155 (magnification ×200). 
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fluorescence in situ hybridization assays confirmed that 

miR-155 was characteristically distributed in colon 

epithelial cells and was expressed at higher levels in 

DSS colon tissues compared to normal controls, with 

miR-155 antagomir reducing miR-155 levels (P<0.01) 

(Figure 1D). Our results showed that miR-155 levels 

were increased in DSS-induced colitis, which is 

consistent with our previous results [22], and that miR-

155 antagomir reduced miR-155 levels in mice colonic 

tissues. 

 

MiR-155 contributes to DSS-induced colitis in mice 

 

We recorded weight, stool consistency, stool occult 

blood, and general physical symptoms daily for all 

groups of mice in our study. As showed in Figure 2A, 

mice treated with DSS had decreased weight compared 

with that of normal mice (P < 0.01). However, the 

weight loss was gradually decreased from day seven 

after administration of the miR-155 antagomir. Colon 

length was decreased by DSS (Figure 2B, 2C) as 

compared with that in normal group (P < 0.01) 

suggesting acute colonic inflammation in DSS mice. 

However, the average colonic length of the ant-miR-155 

group was 1.21-fold that of the DSS group. In the ant-

miR-155group, the damage of colonic mucosa was 

alleviated as indicated by the reduced macroscopic 

damage score, which was 76% of that in the DSS group 

(p<0.01) (Figure 2D). We used ELISA to measure the 

levels of inflammatory and anti-inflammatory cytokines 

in mice serum as a proxy for intestinal inflammation  

in mice from each group (Figure 2E–2G). Pro-

inflammatory cytokines IL-6 and TNF-α were increased 

by 2.66 folds and 2.76 folds in the DSS group, 

respectively, compared to normal controls (P<0.01). 

However, the levels of these pro-inflammatory cytokines 

decreased after treatment with miR-155 antagomir 

(P<0.01). Interestingly, the levels of anti-inflammatory 

 

 
 

Figure 2. MiR-155 contributed to DSS-induced colitis in mice. (A) Normalized weights of mice were presented. (B) Colons gross 
appearances from each group were showed. (C) Colonic lengths were measured. (D) Macroscopic score of each group colonic tissue was 
presented. (E–G) IL-6, TNF-α, and IL-10 in mice serum were measured with ELISA. Each bar represents mean ± SD, n=8 from each group.  
#P > 0.05, *P < 0.05, **P < 0.01 vs. DSS group. 
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cytokine, IL-10, showed the opposite behavior. In 

addition, FG-inhibited the function of PHD and 

decreased the degradation of the HIF-1α protein. As 

showed in Figure 2, after treatment with FG-4497, the 

weight of mice stabilized and colon length shortening 

was less than that of the DSS group. Pro-inflammatory 

cytokine levels decreased while anti-inflammatory 

cytokine levels increased (p<0.01) in mice serum after 

FG-4497 treatment. 

 

The pathological changes in mice colon were showed 

by HE and PAS stain (Figure 3). Mucosal erosion with 

mass inflammatory cells infiltration was observed 

throughout the colons of DSS mice with HE. On the 

other hand, miR-155 antagomir treatment alleviated 

such lesions. The histological inflammation scores were 

increased in DSS group compared to the normal group 

and were decreased by miR-155 antagomir or FG-4497 

treatment (Figure 3B). Goblet cells were depleted in the 

DSS group compared to controls as measured by PAS 

but was rescued by miR-155 antagomir or FG-44497 

treatment (Figure 3A, 3C). Our results show that miR-

155 promotes DSS-induced colitis while miR-155 

antagomir exerts therapeutic functions. These results are 

consistent with a previous report demonstrating that 

FG-4497 relieves TNBS-induced colitis [23]. 

 

MiR-155 promotes intestinal barrier dysfunction in 

DSS-induced colitis 

 

To evaluate the dysfunction of intestinal barrier in DSS-

induced colitis, we collected transmission electron 

microscopy (TEM) images of fixed mice colon tissues 

(Figure 4A). We observed a depletion of intestinal 

epithelial cell villus in the DSS group compared with 

the normal group, which was relieved by administration 

of miR-155 antagomir or FG-4497. Tight junction (TJ) 

proteins, mainly occludin, claudins and zonula 

occludens (ZO), help to maintain the intestinal barrier 

function. With western blot and immunofluorescence 

(Figure 4B–4E and Figure 5), we found that the protein 

levels of occludin, claudin-1, and ZO-1 were reduced in 

DSS-induced colitis colonic tissues, and the reduction in 

miR-155 levels by miR-155 antagomir treatment 

increased the expression of these proteins (P<0.01). We 

further confirmed this trend by measuring miR-155 

mRNA using qPCR (Figure 4F–4H). FG-4497 

treatment elicited similar results. This intestinal barrier 

 

 
 

Figure 3. Histopathological evaluation of intestinal inflammation in all groups. (A) Hematoxylin and eosin (HE) and Periodic Acid-
Schiff (PAS) analysis of colon specimens (magnification ×100). Massive inflammation cell infiltration, mucosal erosion, and submucosa edema 
were observed throughout the colons in the DSS and ant-NC group. For PAS stain, red particles marked by black arrows represented the 
positive change. (B) Histological inflammation scores in all groups were presented. (C) PAS+ cells per high power field in all groups were 
presented. Each bar represents mean ± SD, n=5 from each group. #P > 0.05, *P < 0.05, **P < 0.01 vs. DSS group. 
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protective function may result from increased 

expression of HIF-1α. Our results suggest that high 

expression of miR-155 in DSS-induced colitis promotes 

intestinal barrier dysfunction. 

 

MiR-155 downregulated the expression of HIF-1α in 

DSS-induced colitis mouse colonic tissues 
 

HIF-1α was predicted as one of the target genes of miR-

155 with Target Scan and miRDB. To illuminate the 

regulation of HIF-1α by miR-155 in DSS-induced 

inflammation in mouse colonic tissues, we first 

conducted dual luciferase reporter assay in HEK293T 

cells. The results validated the direct interaction of miR-

155 and HIF-1a (Figure 6A). The luciferase activity 

from the HEK293T cells transfected with wild type 

HIF-1α3’-UTR was decreased compared with that of 

HEK293T cells transfected with mutated HIF-1α3’-

UTR and miR-155 (P<0.05) (Figure 6B). We also 

confirmed that hypoxia was aggravated in DSS-induced 

colitis mouse colonic tissues using hypoxia Probes 

(Figure 6C). We then quantified HIF-1α mRNA levels 

in these tissues using qPCR and found that they were 

elevated compared to those in normal controls and that 

miR-155 antagomir elevated them further (Figure 6D). 

We also measured HIF-1α protein expression in mouse 

 

 
 

Figure 4. MiR-155 antagomir ameliorated intestinal barrier dysfunction in DSS-induced colitis. (A) Transmission electron 
microscopic (TEM) assay of colon specimens (magnification ×5000). The damages of epithelial cell villous and epithelial cells were significant 
in DSS and ant-NC group. (B) Western blotting analysis of TJ proteins (ZO-1, occludin, and claudin-1). (C–E) representative protein levels of 
ZO-1/β-actin, occludin/β-actin, and claudin-1/β-actin (n=3). (F–H) Relative mRNA of ZO-1, occludin, and claudin-1 in mice colonic tissue were 
measured by qPCR (n=5). Each bar represents mean ± SD, #P > 0.05, *P < 0.05, **P < 0.01 vs. DSS group. 
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colonic tissues using Western blotting and found that 

HIF-1α protein levels were increased by 1.87 folds in 

the presence of ant-miR-155 treatment compared to 

those in the DSS group (Figure 6E, 6F). As expected, 

HIF-1α expression was also increased in the FG-4497 

treatment group compared with that in DSS group 

(Figure 6D, 6F, 6G). 

 

In conclusion, miR-155 treatment decreased the 

expression of HIF-1α in DSS-induced colitis mouse 

colonic tissues while miR-155 antagomir or FG-4497 

treatments rescued this reduction, eliciting intestinal 

barrier protective function. 

 

MiR-155 may target the HIF-1α/TFF-3 axis in DSS-

induced mice colitis 
 

TFF-3, which is closely related with the intestinal 

barrier and regulated by HIF-1α [17], modulates the 

expression of TJ proteins in intestinal tissue [24]. Thus, 

we also explored the relationship between HIF-1α and 

TFF-3 in DSS-induced colitis. Results from our 

Western blotting experiments showed that TFF-3 levels 

were increased in mice treated with DSS compared to 

normal controls, miR-155 antagomir or FG-4497 

treatment further increased TFF-3 levels in the DSS 

group (Figure 6E, 6G). These results suggest that the 

target of miR-155 that contributes to intestinal barrier 

dysfunction in DSS-induced colitis may be the HIF-

1α/TFF-3 axis. 

 

DISCUSSION 
 

The intestinal epithelium acts not only a barrier that 

protects the sterile lamina propria from the anoxic and 

microorganism-rich lumen, but also a connection 

between the gut microbiota and the mucosal immune 

system [25, 26]. Numerous genetic studies highlight that 

many susceptibility genes of irritable bowel disorder 

(IBD) are involved in maintaining the integrity and 

normal functions of the intestinal barrier, such as mucus 

and glycoprotein regulation (MUC19) [27], MUC3 [28], 

epithelial differentiation (HNF4a) [29], and membrane 

transport (ITLN1) [30]. Dysfunction of the intestinal 

barrier is a hallmark of IBD [2]. Furthermore, defects or 

deficiencies in intestinal epithelial TJ proteins increase 

intestinal permeability and promote the development of 

intestinal inflammation [31]. Here, we showed that DSS 

treatment induces damage in the intestinal barrier of 

mouse colonic tissues and decreases the expression of 

intestinal epithelial TJ protein including ZO-1, occludin, 

and claudin-1. These data provide insight into the 

pathological mechanisms underlying IBD, which could 

open new treatment avenues for IBD. 

 

 
 

Figure 5. Immunofluorescence assay presented the expression of TJ proteins in mice colon. (A) Immunoflorescent staining of ZO-
1, occludin, and claudin-1 in the colonic tissues. (magnification, ×200) Red signal (rhodamine) labeled by green arrows was positive for these 
proteins. DAPI (blue) was used to counterstain of nuclei. (B–D) Relative ZO-1, occludin, and claudin-1 expression measured by rhodamine and 
DAPI fluorescence ratio in all groups were presented. Each bar represents mean ± SD, n=5 from each group, #P > 0.05, *P < 0.05, **P < 0.01 
vs. DSS group. 
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HIF is known to exert protective functions on the 

intestinal barrier [17, 32, 33] and to interact with other 

regulators in the intestinal barrier protective pathway 

such as p-glycoprotein to clear xenobiotics [32]. Shao et 

al. [34] found that intestinal HIF-1α is essential to the 

adaptative response to alcohol-induced dysfunction of 

the intestinal barrier and influences the expression of 

TFF, claudin-1, and occludin. Furthermore, TFF-3 

alleviated intestinal barrier dysfunction by reducing the 

expression of toll-like receptor 2 (TLR-2) [35] and 

TLR-4 [36]. Importantly, TFF-3 upregulated the 

expression of intestinal cell junctional complexes, 

thereby protecting the intestinal barrier [24]. 

Furthermore, prolyl hydroxylases inhibitor, 

dimethyloxalylglycine (DMOG), induces both HIF-1 

and NF-kappaB activity in cultured intestinal epithelial 

 

 
 

Figure 6. MiR-155 dilapidated intestinal barrier may by targeting HIF-1α/TFF-3 axis. (A) Wild-type sequences of HIF-1α for miR-155 
target. (B) Dual luciferase report assay of HIF-1α 3’-UTR wild type or MUT along with miR-155. #P > 0.05, *P < 0.05 vs. Negative Control.  
(C) The hypoxic station in normal and DSS-induced colitis mice colon labeled by hypoxia Probes. Green was the positive signal. (magnification 
×100). (D) Relative mRNA of HIF-1α in mice colonic tissue were measured by qPCR (n=5). (E) Western blotting analysis of HIF-1α proteins and 
TFF-3 proteins in mice colon. (F, G) Representative protein levels of TFF-3/β-actin and HIF-1α/β-actin(n=3). Each bar represents mean ± SD.  
#P > 0.05, *P < 0.05, **P < 0.01 vs. DSS group. 
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cells, and is strongly reduces epithelial barrier 

dysfunction in DSS-induced colitis [18]. FG-4497-

induced HIF-1α provides an overall beneficial influence 

on trinitrobenzenesulfonic acid (TNBS)-induced colitis, 

mainly because of its barrier protective functions [23]. 

Here, we showed that TFF-3 expression ameliorates 

intestinal barrier damage and that the expression of TJ 

proteins is increased by FG-4497-induced expression of 

HIF-1α. Our research results suggest that HIF-1α 

promotes the expression of TJ proteins with protective 

effects on the intestinal barrier possibly by upregulating 

TFF-3. The specific mechanisms by which HIF-1α 

regulates TFF-3 need to be further investigated, as well 

as the mechanisms by which elevated HIF-1α levels 

protect the intestinal barrier in mouse colonic tissues. 

MiR-155 promotes IBD and is increased in colonic 

tissues from IBD patients and animal models [6, 7, 22]. 

Furthermore, miR-155 contributes to increased gut 

permeability by suppressing the expression of E-

Cadherin in “double-hit” colitis models [8] and impairs 

colonic healing by promoting the accumulation of 

double-strand breaks (DSBs) in injured colonic 

epithelium [9]. Our previous studies demonstrated that 

the levels of miR-155 are increased in different animal 

colitis models and promote an abnormal mucosal 

immune response [22, 37]. In agreement with such 

reports, our current study here shows that miR-155 

levels were increased in DSS-induced colitis and that 

miR-155 antagomir reduces them, thereby relieving 

colitis. Furthermore, previous studies showed that miR-

155 inhibits the expression of HIF-1α by binding the 3’ 

UTR of HIF-1a mRNA [20], which is consistent with 

our present research results. Here, we also found that 

the inhibition of miR-155 by miR-155 antagomir 

upregulated HIF-1α and was accompanied by a 

reduction in intestinal barrier damage and inflammation. 

Our results here suggest that miR-155 inhibits HIF-1α 

expression and thereby contributes to the intestinal 

barrier dysfunction in DSS-induced colitis, and 

highlights miR-155 antagomir and FG-4497 as potential 

therapeutic targets to treat human IBD. 

 

MATERIALS AND METHODS 
 

Animals and drugs 

 

Male specific-pathogen free (SPF) C57BL/6J mice (7–8 

weeks old) were provided by the Center for Disease 

Control of Hubei province and feed in SPF conditions 

in the experimental animal center of Huazhong 

University of Science and Technology (HUST, Wuhan, 

China). They were housed at room temperature (22–24 

°C) and had free access to chow and water. In this 

study, all animal experiments were performed according 

to the Animal Research Institute Committee Guidelines 

of HUST and approved by the Institutional Animal Care 

and Use Committee of HUST. Mouse miR-155-5p 

antagomir and negative control antagomir were 

purchased from Gene Pharma Inc. (Shanghai, China). 

The sequence of miR-155-5p antagomir is 5'-ACCCC 

UAUCACAAUUAGCAUUAA-3'and the sequence of 

negative control antagomir is 5'-CAGUACUUUU 

GUGUAGUACAA-3'. Both are labeled with Cy3 at 5’. 

FG-4497 was synthesized at Fibro Gen, Inc. (San 

Francisco, CA). Hypoxyprobe™ Plus Kit was purchased 

from Hypoxyprobe, Inc. 

 

DSS-induced mice colitis and treatments 

 

As showed in Figure 1A, after three days of adaptive 

feeding in the center, C57BL/6J mice were randomly 

divided into five groups: (1) normal control group 

(normal, n = 8); (2) DSS group (DSS, n = 8); (3) 

DSS+FG-4497 group (FG-4497, n = 8); (4) DSS+miR-

155 antagomir group (ant-miR-155, n = 8); (5) 

DSS+miR-155 antagomir negative control group (ant-

NC, n = 8). Colitis was induced in all mice groups 

except the wild-type group by adding 3.0% DSS (36–50 

kDa; MP Biomedicals) in their drinking water for seven 

days. The mice in the FG-4497 group were injected 

intraperitoneally with 100 μl FG-4497 (dissolved in 

saline, 20mg/kg) daily for the last three days before 

tissue harvest, as previously described [23, 38]. At the 

same time, the mice in the ant-miR-155 and ant-NC 

groups were injected intraperitoneally with 100 μl of 

antagomiR-155 and negative control (dissolved in saline 

at 2 mg/ml), correspondingly. All the mice from other 

groups were injected intraperitoneally with 100 μl 

saline. The weights, stool consistency, and stool occult 

blood of all groups were recorded daily. On day 10, 

animals were sacrificed after collecting blood from their 

eyeballs, and colons were excised and prepared for 

histological analysis and other assays. Additionally, 

some mice from the normal and DSS groups were 

sacrificed one hour after intraperitoneal injection with 

Hypoxyprobe™-1(60 mg/kg body weight).  

 

Dual luciferase report assay  
 

The wild type 3’UTRs and mutant 3’UTRs of HIF-1α 

was cloned downstream of the firefly luciferase gene in 

the pmirGLO vector. HEK293T cells were co-

transfected with pmirGLO and miR-155 or a control 

miRNA with Lipofectamine 2000 (Invitrogen, Carlsbad, 

CA, USA) as previously described [39]. Luciferase 

activity was measured by Dual-Luciferase Reporter 

Assay System (Promega, E1910). 

 

In situ hybridization and immunofluorescence 
 

Fluorescence in situ hybridization assay was used to 

observe the location and expression of miR-155-5p in 
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mouse colon. As previously described [40], paraffin 

slices of mouse colon were hybridized with FITC-

labeled miR-155-5p probes. The mucosal barrier related 

TJ proteins including ZO-1, occludin, and claudin-1 

were assessed in mouse colon by immunofluorescence 

laser scanning confocal microscopy (FV3000; Olympus, 

Japan). 

 

Hematoxylin and eosin (HE) and periodic acid-Schiff 

(PAS) 
 

Mouse colon tissues fixed in neutral-buffered formalin 

were embedded in paraffin. Then they were serially 

sectioned using a microtome (2µm). The tissue 

sections were stained with hematoxylin and eosin 

(H&E) for histological analysis and stained with PAS 

for mucous-containing goblet cells as described 

previously [41]. All histological images were  

taken with an optical microscope (E100; Nikon, 

Japan). For the histological inflammation score 

evaluated from H&E staining, three sections per 

mouse were blindly scored by two researchers. Five 

aspects including epithelial cell erosion, goblet cell 

depletion, architecture of the bowel, and infiltration of 

neutrophils and mononuclear cells, were evaluated 

with a maximum score of 15. Goblet cells were 

quantified in PAS stained sections (10 high power 

fields/section). 

 

Electron microscopy 
 

Transmission electron microscopy (TEM) imaging was 

performed as previous described [42]. The mouse colon 

specimens were embedded in epoxy resin and cut into 

ultrathin sections (60–70 nm). Stained sections were 

visualized using a Hitachi-HT7700 electron microscope 

(Tokyo, Japan). 

 

RT-PCR for miRNA and mRNA 
 

The levels of miR-155 and mRNA of HIF-1α, ZO-1, 

occludin, and claudin-1 in mouse colon tissues were 

measured with quantitative RT-PCR as previously 

described [22]. β-actin and U6 RNA were used as 

internal controls for mRNA and miRNA. The primers 

of all miRNA and mRNAs were: 5’-CTCAACTGGTG 

TCGTGGAGTCGGCAATTCAGTTGAGACCCCTAT

-3’, 5’-ACACTCCAGCTGGGTTAATGCTAATCGTG 

AT-3’, and 5’- TGGTGTCGTGGAGTCG-3’ for miR-

155-5p; 5’-AACCCTCGAGGCGTTTCCTAATCTCA 

TT-3’and 5’-AACCGCGGCCGCAAGCTGGAAGGTT 

TGTG-3’ for HIF-1α mRNA,5’-TACCTCTTGAGCCT 

TGAACTT-3’ and 5’-CGTGCTGATGTGCCATAAT 

A-3’ for ZO-1 mRNA, 5’-GGCTTCTCTGGGATGGA 

TCG-3’ and 5’-TTTGCGAAACGCAGGACATC-3’ for 

claudin-1 mRNA, 5’-CTTCTGCTTCATCGCTTCC-3’ 

and 5’-CTTGCCCTTTCCTGCTTTC-3’ for claudin 

mRNA, 5’-AACGCTTCACGAATTTGCGT-3’ and 5’-

CTCGCTTCGGCAGCACA-3’ for U6, 5’-CATCCGT 

AAAGACCTCTATGCCAAC-3’ and 5’-ATGGAGCC 

ACCGATCCACA-3’ for β-actin mRNA. 

 

Western blot  
 

Western blot was performed to quantify HIF-1α, TFF-3, 

ZO-1, occludin, and claudin-1 protein levels in mouse 

colonic tissues as previously described [43]. Anti-

activated HIF-1α antibody (CST# 3716S), anti-activated 

TFF-3 antibody (MBS2001572), anti-activated ZO-1 

antibody (Catalog # 61-7300), anti-activated occludin 

antibody (Catalog # 71-1500), and anti-activated 

claudin-1 antibody (Catalog # 51-9000) were used to 

Western blot as primary antibodies. 

 

Enzyme-linked immunosorbent assay(ELISA) 
 

The levels of IL-6, IL-10, and TNF-αin in mouse serum 

were measured using ELISA kits (Bioswamp, Wuhan, 

China) according to the manufacturer's instructions. The 

assays of these cytokines employ the quantitative 

sandwich enzyme immunoassay technique and 

absorbance was measured at 450 nm using a microplate 

reader. 

 

Statistical analysis 
 

Data were recorded as mean ± standard deviation (SD). 

Two groups were analyzed with unpaired two tailed 

Student t-test; datasets including data from more than 

two groups were analyzed with One-way ANOVA with 

Bonferroni post hoc test. P < 0.05 was considered 

statistically significant. SPSS 22.0 was used for data 

analysis. 
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