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Alzheimer’s disease (AD) afflicts an estimated 20 million people worldwide and is the
fourth-leading cause of death in the developed world. The most common cause of
dementia in older individuals, AD is characterized by neuropathologies including synaptic
and neuronal degeneration, amyloid plaques, and neurofibrillary tangles (NTFs). Amyloid
plaques are primarily composed of amyloid-beta peptide (Aβ), which accumulates in the
brains of patients with AD. Further, small aggregates termed Aβ oligomers are implicated
in the synaptic loss and neuronal degeneration underlying early cognitive impairments.
Whether Aβ accumulates in part because of dysregulated clearance from the brain
remains unclear. The flow of substances (e.g., nutrients, drugs, toxins) in and out of
the brain is mediated by the blood-brain-barrier (BBB). The BBB exhibits impairment
in AD patients and animal models. The effect of BBB impairment on Aβ, and whether
BBB function is affected by non-neurological pathologies that impair peripheral clearance
requires further investigation. In particular, impaired peripheral clearance is a feature of
nonalcoholic fatty liver disease (NAFLD), a spectrum of liver disorders characterized
by accumulation of fat in the liver accompanied by varying degrees of inflammation
and hepatocyte injury. NAFLD has reached epidemic proportions, with an estimated
prevalence between 20% and 30% of the general population. This chronic condition
may influence AD pathogenesis. This review article summarizes the current state of
the literature linking NAFLD and AD, highlighting the role of the major Aβ efflux and
clearance protein, the LRP-1 receptor, which is abundantly expressed in liver, brain,
and vasculature.
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AMYLOID BETA ROLE IN ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) belongs to a large group of neurodegenerative diseases characterized
by the pathophysiological brain changes related to the accumulation of misfolded
proteins. Specifically, extracellular peptide variants of the amyloid-β (Aβ) accumulate
in the form of amyloid plaques or senile plaques, and the intracellular accumulation
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of neurofibrillary tangles (NTFs) composed by phosphorylated
Tau protein (pTau; Bloom, 2014; Héraud et al., 2014;
He et al., 2018).

Both are reported to underlie progressive synaptic
dysfunction in the AD brain, loss of dendritic spines, and
neuronal death (Serrano-Pozo et al., 2011; Busche et al., 2019).
Although AD was first described 100 years ago, its precise
etiology remains unknown. Efforts to better understand AD
have resulted in multiple hypotheses to explain events in AD
pathogenesis, for example, the amyloid cascade theory that
describes the imbalance between Aβ production and clearance
(Selkoe and Hardy, 2016). Here, we provide an overview of the
etiology of AD, and the principal concepts that support the
critical role of the brain-blood barrier (BBB) and liver in AD
development and progression.

In neurons under physiological conditions, Aβ is secreted to
maintain normal synaptic function, morphology, and plasticity
(Wang et al., 2012; Gouras et al., 2015; Klevanski et al., 2015). Aβ

is a by-product generated from cleavage of the amyloid protein
precursor (APP). APP plays an important physiological role in
regulating γ-aminobutyric acid type B receptor (GABABR) and
modulating synaptic transmission and plasticity (Chen et al.,
2017; Doshina et al., 2017; Rice et al., 2019). In primary cortical
neurons, APP modulates frequency and amplitude of calcium
oscillations essential for synaptic transmission (Octave et al.,
2013). A mouse model deficient for APP demonstrated that
APP is necessary for the synapsis and maintenance of dendritic
integrity in the hippocampus (Tyan et al., 2012). Likewise,
hippocampal neurons in culture derived from APP knockout
mice showed APP is critical for synaptogenesis and dendritic
and axonal growth process and regulates substrate adhesion
(Southam et al., 2019).

On the other hand, in the amyloidogenic (i.e., disease-
causing) pathway, APP is cleaved by β- and γ-secretase to
generate Aβ, which accumulates as senile plaques (Hardy
and Selkoe, 2002; Konietzko, 2011). AD-related plaques are
associated with high levels of soluble oligomeric forms of Aβ

(AβOs; Esparza et al., 2013). AβOs comprise soluble dimers
and trimers of low molecular weight and soluble oligomeric
forms of 12–14 monomers (Mroczko et al., 2018). In addition,
these oligomers have been identified as the toxic conformers
of Aβ plaques in AD (Jin et al., 2011; Verma et al., 2015).
AβOs can diffuse across synaptic membranes (Hong et al.,
2014) and trigger a cascade of injurious events in neurons,
causing synaptic failure and memory loss (Morris et al., 2014;
Brito-Moreira et al., 2017). Moreover, AβOs are associated with
dystrophic neurites, reactive astrocytes, and aberrant activation
of glutamatergic neurotransmission; the consequence of these
changes is neuronal death by excessive neuronal influx of
sodium and calcium (Ziegler-Waldkirch and Meyer-Luehmann,
2018). Postsynaptic protein disruption (Lésne et al., 2013) and
hippocampal synaptic plasticity impairment by AβOs contributes
to memory loss (Müller-Schiffmann et al., 2016). Intracellular
AβOs are detectable in cholinergic neurons, suggesting that
they play a critical role in cholinergic deficiency (Baker-
Nigh et al., 2015). These devastating events not only lead to
memory loss and learning impairment in AD patients, but also

affect the capacities of reasoning, abstraction, and language
(Duyckaerts et al., 2009).

BLOOD-BRAIN BARRIER BREAKDOWN
AND ROLE OF LRP-1 IN
ALZHEIMER’S DISEASE

The blood-brain barrier (BBB) is a specialized structure that
supports brain function. This structure supports the brain
by regulating electrolyte flux, cerebral blood flow (CBF) and
efficient oxygen and metabolite delivery, and restricting entry
of potentially toxic and even some therapeutic agents into the
brain (Provias and Jeynes, 2014; Andreone et al., 2015; Di
Marco et al., 2015). BBB function is mediated by neurovascular
units (NVU) comprising neurons, glial cells, pericytes, and brain
endothelial cells, which maintain homeostasis of the cerebral
microenvironment (Armulik et al., 2011). Brain endothelial
cells are an important component mediating the flow between
brain and blood by cell-to-cell communications called tight
junctions and adherent junctions; these junctions connect cell
networks (Deli et al., 2005; Van de Haar et al., 2015) and
regulate the paracellular permeability of substances across the
BBB (Bowman and Quinn, 2008; Viggars et al., 2011; Kook et al.,
2013; Chow and Gu, 2015; Ulrich et al., 2015). Tight junctions
proteins ZO-1, Occludin and CLN-5 are key to maintaining
BBB integrity (Jiao et al., 2011). ZO-1 joins tight junctions
with the actin cytoskeleton, working as accessory proteins (Xiao
et al., 2017). Occludin and CLN-5 are transmembrane tight
junction proteins involved in signal transduction of cytokines
(Haseloff et al., 2015). The high expression of these proteins
on brain endothelial cells regulates the transport of essential
molecules through the BBB, such as the free and rapid diffusion
of oxygen and carbon dioxide (Lin et al., 2015; Pardridge,
2015). Hydrophobic molecules permeate the BBB faster and
more easily than hydrophilic molecules, while molecules that
are larger than 180 KDa or water-soluble do not penetrate
the BBB (Kroll and Neuwelt, 1998; Zlokovic, 2005; Masserini,
2013). For example, the BBB restricts the passage of albumin
and immunoglobulins, high-molecular-weight proteins from the
peripheral blood circulation (Xiao and Gan, 2013).

Another important component of brain endothelial cells is
a complex and specific transport-receptor protein system that
also contributes to BBB permeability (Zlokovic, 2011). The
luminal side of the BBB contains transporters for specific classes
of nutrients, such as glucose and vitamins, and receptors for
peptides, proteins, and hormones. These mediators facilitate
transport across the BBB from circulating blood into the
brain (Deane and Zlokovic, 2007; Simpson et al., 2007). In
contrast, the transport system of the abluminal side of the BBB
eliminates neurotoxicmolecules andmetabolic waste (Begley and
Brightman, 2003).

Dysfunction of the BBB, therefore, could result in altered
permeability. Indeed, age-dependent BBB breakdown at the
hippocampus is associated with mild cognitive impairment and
correlates with pericytes injury. This finding suggests that the
cerebrovascular integrity loss that begins at the hippocampus
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FIGURE 1 | Chronic liver diseases may increase amyloid burden and Alzheimer’s pathology. This contribution results from an imbalance in peripheral amyloid-β (Aβ)
clearance as a result of decreased LRP1 levels, general liver dysfunction, and chronic inflammation. These features may worsen blood-brain-barrier (BBB)
impairment and contribute to a vicious cycle. As an example, the figure depicts fatty liver disease as a chronic liver condition.

may contribute to early stages of dementia associated with AD
(Montagne et al., 2015). Similarly, early cognitive dysfunction
has been associated with capillary damage and BBB breakdown
in older adults (Nation et al., 2019).

This breakdown of BBB function may be related to alterations
in specific components of the BBB structure. Low-density
lipoprotein receptor-related protein 1 (LRP-1) is a membrane
receptor that mediates the cellular internalization of multiple
ligands. Further, LRP-1 regulates several tight junction proteins
in endothelial cells of the BBB (Zhao et al., 2016). Functional
LRP-1 is expressed in liver sinusoidal endothelial cells (LECs),
highly specialized scavenger cells, and LRP-1 expression
contributes to the rapid removal of its blood ligands (Øie
et al., 2011). Cell surface LRP-1 and circulating sLRP-1 are
needed for brain and systemic clearance of Aβ; however, in AD,
both cell surface LRP-1 and circulating sLRP-1 concentrations
are dramatically reduced (Sagare et al., 2012). Importantly,
these alterations may begin as early as two decades before the
manifestation of cognitive impairment symptoms (Beason-Held
et al., 2013; Jack et al., 2013; De Strooper, 2014). Clearance of Aβ

may also be affected by other pathologies, however.

CLEARANCE OF Aβ AT THE PERIPHERY:
ROLE OF THE LIVER

Peripheral organs, including the kidney and the liver, play an
essential role in the clearance of circulating Aβ. Elimination of
Aβ from the circulation may contribute to AD progression, by
helping to displace the dynamic equilibrium from Aβ deposited
in the senile plaques toward soluble Aβ. This hypothesis is
supported by evidence that peritoneal dialysis reduces the
circulating levels of Aβ in humans and diminishes AD features

in an animal model (Jin et al., 2017). Insufficient clearance of
brain Aβ also contributes to the progression of sporadic AD
(Wang et al., 2006). As brain Aβ equilibrates with Aβ in plasma,
peripheral clearance of Aβ provides a potential approach to
facilitate efflux of Aβ from the brain (Liu et al., 2015). Peripheral
organs and tissues are key in clearing brain-derived Aβ under
physiological conditions (Xiang et al., 2015).

The liver has many functions, one of which is metabolic
detoxification. When the liver is under constant injury, as is
found in metabolic diseases, it exhibits decreased detoxification
capacity. Indeed, the expression of metabolic enzymes decreases
in conditions such as obesity, diabetes, and cirrhosis (Rolle et al.,
2018). Hepatocytes can act directly on circulating Aβ, promoting
its clearance by degradation or through bile excretion. Further,
Aβ uptake from circulation can be mediated through LRP-1,
which is highly expressed in hepatocytes (Kanekiyo and Bu,
2014). Interestingly, liver dysfunction is accompanied by low
LRP-1 hepatic expression and high levels of circulating Aβ.
This correlation suggests that Aβ clearance decreases due to low
hepatic LRP-1 activity (Wang et al., 2017; see Figure 1).

AD pathophysiology has not been evaluated from a hepatic
point of view; yet, the evidence points to a critical role for
liver in AD pathogenesis. Aβ levels found in liver samples
from AD patients are lower when compared to neurologically
healthy controls, raising the possibility that the liver is not
properly eliminating circulating Aβ (Roher et al., 2009). This
observation is supported by studies where insulin promotes
LRP-1 translocation to the cell membrane in hepatocytes,
favoring Aβ clearance (Tamaki et al., 2007). The stimulation
of LRP-1-mediated liver uptake improves cognitive impairment
and decreases Aβ aggregation in the brain in AD transgenic mice
(Sehgal et al., 2012).
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NAFLD/NASH AFFECTS Aβ CLEARANCE

Non-alcoholic fatty liver disease (NAFLD) encompasses a
spectrum of liver disorders characterized by excessive fat
deposition in hepatocytes from individuals who drink little or no
alcohol. NAFLD is an umbrella term for several subtypes ranging
from isolated hepatic steatosis, or fatty liver, to nonalcoholic
steatohepatitis (NASH). NASH is defined by the presence of fatty
changes with inflammation and several degrees of hepatocellular
injury or fibrosis. Thus, NASH is the aggressive form of NAFLD
and can progress to advanced fibrosis and cirrhosis.

NAFLD/NASH is the leading cause of chronic liver disease
worldwide and has reached epidemic proportions. Interestingly,
most of the deaths in NAFLD patients are not restricted to
liver-related morbidity or mortality; rather, cardiovascular
disease (CVD) and cancer predominate (Armstrong et al.,
2014). Therefore, the presence of fatty liver is not a benign
pathology as was historically considered by most clinicians.
Indeed, extensive evidence in recent years shows that
NAFLD also increases the risk of end-stage liver disease,
hepatocellular carcinoma (HCC), liver-related mortality, and
all-cause mortality. These observations prompted the idea
that NAFLD/NASH, either independently or concomitantly
with other metabolic risk factors, determines or even drives
extra-hepatic diseases such as CVD, chronic kidney disease,
colorectal cancer, endocrine disorders like type 2 diabetes
mellitus, osteoporosis, and, indeed, AD. Recent studies have
linked insulin-resistance (the key pathophysiological feature
of NAFLD) to several of the neurodegenerative mechanisms
of AD including oxidative stress, mitochondrial dysfunction,
and inflammation, via dysregulated insulin/IGF-1 signaling
with attendant impairments in signal transduction and gene
expression (de la Monte and Tong, 2014; de la Monte, 2017;
Kim et al., 2016).

A network clustering analysis conducted by Karbalaei et al.
(2018) indicated that there are 189 genes shared between
NAFLD and AD. Further, three main groups of pathways
are candidates for contributing to both AD and NAFLD:
carbohydrate metabolism, long fatty acid metabolism, and IL-17
signaling pathways (Karbalaei et al., 2018). This suggests that
diabetes and obesity might be considered as a risk factor for AD
and NAFLD.

One study showed that NAFLD promotes AD in mice
(Kim et al., 2016). This study evaluated whether NAFLD
induction, through a dietary approach (high-fat diet), promotes
the development of AD signs. Brains of HFD-fed mice showed
increased levels of neuro-inflammation, characterized by higher
levels of cytokines, toll-like receptors, and microgliosis. These
features were accompanied by increased plaque formation in a
transgenic mouse model of AD. In addition, intense and frequent
signs of cerebral amyloid angiopathy (CAA)—a condition
characterized by the Aβ deposition in the media and adventitia
of small and mid-sized arteries—were observed in mice fed
with HFD.

An abnormal lipid metabolism is linked with increased risk
for AD development, and the liver plays a crucial role since
is the main peripheral organ responsible for lipid metabolism

(Fukumoto et al., 2002; Hooijmans and Kiliaan, 2008). Aβ is
able to bind Apolipoprotein E (ApoE) and can be cleared from
the brain together with cholesterol (Mahley, 1988). Interestingly,
ApoE is a ligand of LRP-1 and both are genetically associated
with AD and plasma Aβ levels (Kang et al., 2000). This
link is intriguing since LRP-1 is suggested to facilitate Aβ

clearance from the brain across the BBB (Deane et al., 2004;
Sagare et al., 2012; see Figure 1).

LIVER INFLAMMATION AND Aβ LEVELS

Hepatitis B is a liver infection that can become chronic
and severe. Interestingly, Hepatitis B Virus (HBV) carriers
have significantly higher plasma Aβ levels than non-carriers.
Moreover, HBV carrier status is associated with plasma Aβ

levels (Jin et al., 2017). Overall infectious burden including
cytomegalovirus (CMV), herpes simplex virus type 1 (HSV-
1), Borrelia burgdorferi, Chlamydophila pneumoniae and
Helicobacter pylori was found to significantly contribute
to AD pathogenesis (Bu et al., 2015). However, currently,
no epidemiological study has been designed to understand
the association between HBV infection and the risk for
AD. The effect of chronic inflammation on Aβ clearance is
lesser than the effects of HBV infection or liver dysfunction
(Liu et al., 2013). Further, although plasma concentrations
of cytokines IL-1β and IL-6 are significantly increased in
cirrhosis patients and plasma IL-6 levels are correlated with
Aβ40 levels (a 40 amino acid proteolytic product of APP
cleavage that has gained attention as a biomarker correlating
with AD), no association is observed by linear regression
between IL-6 and Aβ40 levels. On the other hand, the
ratio of AST/ALT, which is an indicator of liver functional
impairment (Giannini et al., 1999), is significantly associated
with circulating Aβ40 levels (Wang et al., 2017). Furthermore,
hepatic dysfunction may lead to a plethora of systemic changes.
Approximately 95% of Aβ in the blood is bound to serum
albumin (Stanyon and Viles, 2012). The serum albumin pool
represents an important reservoir for peripheral clearance of
Aβ. Thus, a diminution in blood albumin in cirrhotic patients
might contribute to the increase in plasma Aβ levels (see
Figure 1).

CONCLUDING REMARKS

AD is a degenerative condition that will afflict an
increasing number of people as the global population ages.
Unfortunately, current treatments have only transient or
modest effects. This article reviews evidence that supports
the involvement of liver diseases, a growing health concern,
in AD pathogenesis. The liver is the major player in the
clearance of Aβ at the periphery, and an impairment of
this clearance may shift the delicate Aβ equilibrium toward
brain accumulation.

As to the possible role that the liver plays in brain-derived Aβ

clearance, the impaired clearance of serum Aβ might contribute
to the high Aβ levels in NAFLD patients. This effect is likely due
to an intensification of the BBB disruption and drop in LRP-1

Frontiers in Aging Neuroscience | www.frontiersin.org 4 July 2019 | Volume 11 | Article 174

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Estrada et al. Liver Dysfunction in Alzheimer’s Progression

levels, the major receptor for Aβ efflux and important effector
of clearance.

It is possible that hepatic malfunction contributes to AD
in a plethora of non-excluding pathways, including: (i) the
failure to maintain Aβ homeostasis at the periphery; (ii) acting
as a source of pro-inflammatory cytokines when chronic
inflammation follows different types of injury (like virus
infection, drug-induced injury, and metabolic diseases); and
(iii) through metabolic impairment.
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