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Abstract: RNA sequencing is considered the gold standard for high-throughput profiling of gene
expression at the transcriptional level. Its increasing importance in cancer research and molecular
diagnostics is reflected in the growing number of its mentions in scientific literature and clinical trial
reports. However, the use of different reagents and protocols for RNA sequencing often produces
incompatible results. Recently, we published the Oncobox Atlas of RNA sequencing profiles for
normal human tissues obtained from healthy donors killed in road accidents. This is a database of
molecular profiles obtained using uniform protocol and reagents settings that can be broadly used in
biomedicine for data normalization in pathology, including cancer. Here, we publish new original
39 breast cancer (BC) and 19 lung cancer (LC) RNA sequencing profiles obtained for formalin-fixed
paraffin-embedded (FFPE) tissue samples, fully compatible with the Oncobox Atlas. We performed
the first correlation study of RNA sequencing and immunohistochemistry-measured expression
profiles for the clinically actionable biomarker genes in FFPE cancer tissue samples. We demonstrated
high (Spearman’s rho 0.65–0.798) and statistically significant (p < 0.00004) correlations between the
RNA sequencing (Oncobox protocol) and immunohistochemical measurements for HER2/ERBB2,
ER/ESR1 and PGR genes in BC, and for PDL1 gene in LC; AUC: 0.963 for HER2, 0.921 for ESR1, 0.912 for
PGR, and 0.922 for PDL1. To our knowledge, this is the first validation that total RNA sequencing of
archived FFPE materials provides a reliable estimation of marker protein levels. These results show
that in the future, RNA sequencing can complement immunohistochemistry for reliable measurements
of the expression biomarkers in FFPE cancer samples.
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1. Introduction

Both mRNA and protein levels can be used for interrogating gene expression in cancer tissues, both
types of analysis having their advantages and limitations [1]. The protein level more closely reflects
the cancer phenotype because these are proteins that execute major intracellular molecular functions.
However, the mRNA and protein levels for known genes strongly correlate in the mammalian cells,
so that mRNA levels explain ~84% of the variance in protein expression [2]. This has been also
confirmed in different organisms by strong correlations between the mRNA and ribosomal footprinting
or quantitative proteomics data (r range 0.59–0.89) [3–5].

Accurate, inexpensive, and reproducible high-throughput methods of quantitative proteomics are
still under development [6]. However, there are many practical ways of measuring the expression of
single proteins in tumor tissues, like immunohistochemistry, which has become a commonly used
technique in clinical laboratory diagnostics [7]. Cancer transcriptomics provide direct analysis of RNA
concentrations in tumor biosamples [8]. Transcriptomics have an advantage of being an approach
unparalleled in terms of generation of high-throughput gene expression data due to the use of robust
and relatively non-expensive experimental protocols applicable for the analysis of minute amounts of
fresh or fixed cancer biomaterials [9]. The analysis of expression levels per single gene using such an
approach is becoming a relatively cheap and easy task.

RNA sequencing is considered a gold standard approach in modern transcriptomics [10,11].
Various RNA sequencing platforms have been used for gene expression profiling in human cancers,
including Illumina [12], Ion Torrent/Proton [12], and Oxford Nanopore [13]. They utilize different
equipment and physical principles for detecting output signals, but also various library preparation
protocols, including different enzymes and numbers of PCR cycles [14]. This diversity results in
dramatic batch effects and incompatibility of the outputs obtained using different platforms, reagents,
and kits [15,16], which is why experimental gene expression profiles are generally compared among
those obtained using the same platform [16]. In most cancer biology applications, gene expression in the
tumor is compared with the normal samples. Case-to-normal gene expression ratios can be evaluated
per se [17,18]. Alternatively, pools of differentially regulated genes can be analyzed systemically and
systematically, e.g., by assessing enrichments of Gene Ontology (GO) terms [19,20] or interrogating
activation of molecular pathways [21–23].

However, effort should be made to compare only compatible data. Several collections of RNA
sequencing profiles have been published for normal human tissues. Ideally, they should represent
tissues from healthy donors screened in a single assay with the same equipment and reagents.
The biggest published dataset GTEx [24] (11,688 samples), however, lacks publicly available data
on the donors’ exact age and requires complicated registration steps that cannot be performed by
many researchers. There are also some basal contamination issues reported recently for GTEx [25].
Other relevant databases are freely accessible and include age information: The Cancer Genome Atlas,
TCGA [26] (625 samples), ENCODE [27] polyA RNA-seq (41 samples), and ENCODE total RNA-seq
(92 samples). Unfortunately, they also lack some of the previously mentioned features. In TCGA,
the norms are adjacent to surgically removed tumors [28], but they can be not physiologically normal
because of multiple pathologic effects tumors exert on the neighboring tissues, like inflammation [29],
altered vascularization [30], and growth factors/cytokine balances [31]. In ENCODE, datasets were
generated for the autopsy normal tissues using different library preparation methods, but they only
include 1–4 samples per tissue type (including both male and female donors) and cannot form
statistically significant reference groups in most of the cases. Finally, we recently published another
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atlas of normal tissue expression profiles termed the Oncobox Atlas of Normal Tissue Expression
(ANTE) [32]. It has statistically significant reference groups for 20 human tissues/organs, and represents
142 solid tissue samples from human healthy donors killed in road accidents and 17 blood samples
from healthy volunteers. The expressions were profiled in the experiments using the same reagents
and protocols.

However, very different RNA sequencing results can be obtained, depending on the source of
clinical biomaterials. For fresh tissue specimens, high-integrity RNAs may be isolated, resulting in
longer sequencing reads. For formalin-fixed paraffin embedded (FFPE) tissue samples, significantly
degraded RNA preparations can be obtained, typically resulting in 25–50 bp single end reads [32].
While the read length depends on sequencing strategy and short reads could theoretically be obtained
also from fresh-frozen tissues, storage in FFPE can potentially alter gene body coverage. This may
lead to lower coverage for either 3’ or 5’ end of a gene [33]. Still, previous studies comparing FFPE vs.
fresh-frozen samples obtained from the same tissues demonstrated lower (yet, comparable) gene body
coverage for both storage techniques [34].

RNA reads are mapped to genes, while excluding ambiguous mapping entries, and the relative
gene expression is then calculated. Working with degraded RNAs is problematic for the analysis of
fused oncogenes because of too short reads that cannot be confidently mapped to fusion sites [35].
This is also the case for the analysis of differential alternative splice sites, because FFPE RNAseq
results in lower percent of split-mapped reads when compared to RNAseq of fresh-frozen tissues [34].
However, degraded RNAs from FFPE specimens can provide high-quality expression profiles that
cluster together with the samples from high-integrity RNAs of the same tissue, as shown by the
ANTE project [32].

Here, we publish new original clinically and immunohistochemistry-annotated 39 breast cancer
(BC) and 19 lung cancer (LC) RNA sequencing profiles, fully compatible with the Oncobox Atlas
of Normal Tissues (ANTE). We performed the first correlation study of RNA sequencing and
immunohistochemistry-measured expression profiles for the clinically actionable biomarker genes
in FFPE cancer tissue samples. For HER2/ERBB2, ER/ESR1, and PGR genes in BC and for PDL1 gene
in LC, we demonstrated high and statistically significant correlations between the RNA sequencing
(Oncobox protocol) and immunohistochemical measurements.

These results show that RNA sequencing, at least if the Oncobox Atlas protocol for library
preparation, data mapping, and normalization is followed, in the future, can complement
immunohistochemistry for reliable measurements of the expression cancer biomarkers in FFPE
samples. In addition to the FFPE data, we also observed a good correlation between RNA sequencing
data and immunohistochemistry for the freshly frozen BC samples from the TCGA project database [36]
with known HER2, ER, and PGR statuses.

2. Materials and Methods

2.1. BC Biosamples

All experimental biosamples of tumor tissues were formalin-fixed and embedded into paraffin
blocks (FFPE). All biosamples were evaluated by a pathologist to confirm the tumor tissue origin and
only the specimens with the content of tumor cells greater than 50% were investigated further. Of them,
16 breast cancer (BC) tissue samples were obtained from the Karelia Republic Oncological Hospital,
Petrozavodsk, Russia, and 23 samples from Vitamed Oncological Clinical Center, Moscow, Russia.
There were 30 primary tumors, 3 lymph node metastases, 2 scar metastases, 2 liver metastases, 1 brain
metastasis, and 1 ovary metastasis. All the BC patients were women and the mean age was 51.9 years
old (range 27–78 y.o.). Clinical annotation of the BC biosamples investigated is summarized in Table 1.
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Table 1. Clinical and molecular annotation of the breast cancer biosamples.

Sample ID Primary Tumor or
Metastasis Age Stage HER2 Score ER Score PR Score Coverage

(mln Mapped Reads) RIN

BC-1 primary 39 T2N3aM0, IIIC 3 0 0 9.42 2.1
BC-10 primary 48 T2N0M0, II 3 0 0 6.70 1
BC-12 primary 60 T2N0M0, IIA 3 0 0 5.12 1
BC-13 primary 69 T2N3M0, III C 3 8 4 9.03 1
BC-14 primary 49 T2N2M0, IIIA 3 0 0 6.11 2.4
BC-17 primary 59 T4N2M0 3 7 2 3.96 2.5
BC-18 lymph node metastasis 47 T3N1M0, IIIA 3 0 0 6.62 2.3
BC-19 primary 48 T1N0M0, I 3 5 5 9.07 1.1
BC-20 lymph node metastasis 51 T2N0M0, II 3 0 0 10.22 2.3
BC-21 primary 49 T1N3M0, IIIC 3 0 0 9.34 2.3
BC-22 primary 47 T2N0M0, II 3 6 5 10.52 2
BC-23 primary 46 T2N2M0, IIIA 3 7 6 8.39 2.1
BC-24 primary 57 T2N0M0, IIA 3 6 4 11.21 1
BC-27 primary 44 T2N0M0 3 0 0 13.82 2.2
BC-28 ovary metastasis 53 T2N0M0, IIA 0 7 4 4.65 3.7
BC-29 primary 65 T4N3M1,IV 3 0 0 12.56 2.2
BC-3 primary 55 T2N1M0, IIIa 3 0 0 6.84 1
BC-4 primary 58 T2N1M0, IIB 3 0 0 7.17 1

BC-46 liver metastasis 27 T2N2M0 0 8 8 15.07 3.3
BC-48 relapse in the scar 36 T3N1M0 1 0 0 20.54 NA
BC-49 primary 54 T1N2M0 0 2 8 10.54 2
BC-50 primary 51 T2N0M0 0 0 0 8.49 2.6
BC-51 primary 38 T2N1M0 0 0 0 8.68 3
BC-52 primary 78 T1N2M0 1 4 8 11.92 1.7
BC-53 primary 50 T2N0M0 1 0 8 8.06 1.9
BC-54 primary 50 T2N0M0 0 0 0 7.30 1.8
BC-55 primary 71 T2N3M0 1 8 8 9.32 3.3
BC-56 primary 60 T1N1M1 0 0 8 12.66 2.4
BC-57 primary 55 T3N2M0 1 0 0 13.77 2.8
BC-58 lymph node metastasis 55 T1N0M0 0 7 7 14.24 2.1
BC-59 scar metastasis 61 T1N1M0 0 3 1 16.88 1.2
BC-60 primary 33 T2N1M0 2 0 0 10.03 1.8
BC-61 liver metastasis 38 T2N2M0 0 8 8 5.42 3
BC-62 brain metastasis 44 T2N0M0 0 0 0 10.99 3
BC-63 primary 66 T4N2M0 0 0 0 10.11 3.7
BC-64 primary 60 T3N3M0 1 0 0 12.71 3.8
BC-65 primary 42 T2N0M0 0 0 0 9.92 2.6
BC-66 primary 55 T3N1M0 3 3 3 8.96 3.1
BC-9 primary 57 T1N1M0, IIB 3 8 5 6.88 1

RIN—RNA integrity number, mln—million, NA—not assessed.

2.2. LC Biosamples

Nineteen lung cancer (LC) samples were obtained from the Vitamed Oncological Clinical Center,
Moscow, Russia (n = 6) and from Kaluga Regional Oncological Hospital, Kaluga, Russia (n = 13).
There were nine lung adenocarcinomas, seven squamous cell carcinomas, one adeno-squamous cell
carcinoma, one small cell carcinoma, and one was unidentified. The patients were 17 men and 2 women,
aged from 57 to 79 with the mean age of 67 years.

We collected information about the patients’ sex, age, diagnosis, and clinical history. Informed
written consents to participate in the study and to include the results in this report were obtained
from all patients. The consent procedure and the design of the study were approved by the ethical
committees of both the Karelia Republic Oncological Hospital, Petrozavodsk, Russia and the Vitamed
Oncological Clinical Center, Moscow, Russia. Clinical annotation of the LC biosamples investigated is
summarized in Table 2.

2.3. Preparation of Libraries and RNA Sequencing

To isolate RNA, 10 µM-thick paraffin slices were trimmed from each FFPE tissue block using
a microtome. Eight paraffin slices were used for RNA extraction. RNA was extracted from FFPE
slices using a QIAGEN RNeasy FFPE Kit following the manufacturer’s protocol. RNA 6000 Nano or
Qubit RNA Assay kits were used to measure RNA concentration. RNA Integrity Number (RIN) was
measured using Agilent 2100 bio-analyzer. For depletion of ribosomal RNA and library construction,
KAPA RNA Hyper with an rRNA erase kit (HMR only) was used. Different adaptors were used for
multiplexing samples in one sequencing run. Library concentrations and quality were measured using
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the Qubit dsDNA HS Assay kit (Life Technologies) and Agilent Tapestation (Agilent). Single-end RNA
sequencing, 50 bp read length, for ~30 million raw reads per sample, was performed at Omicslab
LLC, Moscow and at the Department of Pathology and Laboratory Medicine, University of California
Los Angeles, using the Illumina HiSeq 3000 System. A data quality check was performed using the
Illumina Sequencing Analysis Viewer and de-multiplexing was performed with Illumina Bcl2fastq2
v 2.17 software. Sequencing data were deposited to NCBI Sequencing Read Archive (SRA) under
accession ID PRJNA565016 and PRJNA578290.

Table 2. Clinical and molecular annotation of the lung cancer biosamples.

ID Histology Age Stage Sex Percent of PDL1
Positive Cells

Coverage
(mln Mapped Reads) RIN

LuC_16 squamous cell carcinoma 75 T3N2M1, IV male 1%–50% 11.54 2.4
LuC_18 squamous cell carcinoma 63 T2N1M0 male 0 15.45 3
LuC_19 squamous cell carcinoma 65 T2N0M0 male >50% 12.57 3
LuC_30 Unidentified 79 T2NXM0 male >50% 11.01 4.9
LuC_31 adenocarcinoma 66 T3N2M0 male 1%–50% 10.27 4.5
LuC_32 adeno-squamous cell carcinoma 70 T2N1M0 male >50% 12.14 2.7
LuC_33 squamous cell carcinoma 57 T3N0M0 male 0 14.12 3.8
LuC_42 adenocarcinoma 67 T1N1M0 male 1%–50% 11.9 1.4
LuC_23 adenocarcinoma 60 T2N0M0 male 0 12.06 3.2
LuC_24 adenocarcinoma 67 T2N0M0 male 0 10.77 3.8
LuC_26 small cell carcinoma 65 T3N2M0, IIIa male 1%–50% 5.71 1.1
LuC_28 adenocarcinoma 76 T2N0M0 male 0 12.37 1.8
LuC_29 squamous cell carcinoma 65 T2N0M0 male 0 16.58 2.4
LuC_34 adenocarcinoma 62 pT1bN0M0 female 0 11.82 2.3
LuC_35 squamous cell carcinoma 75 T3N0M0 male >50% 12.28 3.2
LuC_36 adenocarcinoma 57 pT2N0M0 male 1%–50% 11.3 2.6
LuC_37 squamous cell carcinoma 68 T3N1M0 male 0 11.93 2.3
LuC_38 adenocarcinoma 68 pT2aN2M0 male 1%–50% 15.38 3.5
LuC_39 adenocarcinoma 68 pT2pNXpM1 female 0 8.58

RIN—RNA integrity number, mln—million, NA—not assessed.

2.4. Processing of RNA Sequencing Data

RNA sequencing FASTQ files were processed with STAR aligner [37] in “GeneCounts” mode
with the Ensembl human transcriptome annotation (build version GRCh38 and transcript annotation
GRCh38.89). The STAR output contained expression levels for 58,233 individual genes. Ensembl gene
IDs were converted to Human Gene Nomenclature Committee (HGNC, https://www.genenames.org/,
database version from 13 July 2017) gene symbols. In total, expression level was calculated for
36,596 genes with the corresponding HGNC identifiers.

2.5. Data Clustering

Log-transformed DESeq2 [38] normalized counts were used for hierarchical clustering analysis.
The analysis was performed using R “ward.D” method. The dendrogram was visualized using a
custom R script.

2.6. Immunohistochemistry

Immunohistochemistry assay for BC samples for HER2, ESR1, and PGR proteins was performed
at the Clinical Diagnostic Laboratory of the Oncology Center of the Republic of Karelia, Russia,
using antibody kits (Roche Diagnostics, Indianapolis, IN, USA) to identify the respective statuses of
the tumors. For HER2, the output statuses were: (i) baseline staining (0), (ii) “+” (1), (iii) “++” (2),
and (iv) “+++” (3). The “++” and “+++” statuses were confirmed using ISH DNA Probe Cocktail
assay (Roche Diagnostics, USA). For ESR1 and PGR status, 0–8 grades were used.

LC biosamples were profiled at Unim Laboratory, Moscow (http://new.unim.su) for PDL1 protein
expression. Hematoxylin-Eosin and PD-L1(ZR3) antibody (Sigma-Aldrich, USA) staining was used to
assess the tumor statuses. The following output measures were used: (i) no cell membrane staining in
biosample or staining of up to 1% of cells, (ii) staining of 1%–50% of cells, (iii) staining of 50%–100%
of cells.

https://www.genenames.org/
http://new.unim.su
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2.7. Literature Gene Expression Data

To compare freshly frozen tissue RNA sequencing and IHC data, we extracted all BC gene
expression profiles with IHC-confirmed receptor status from The Cancer Genome Atlas project (TCGA),
using the R “TCGAbiolinks” package [36]. In total, we analyzed 634 samples with confirmed HER2
status, 924 samples with confirmed ESR1 status, and 922 samples with confirmed PGR status. Identifiers
of samples included in the analysis are given in Supplementary Table S1.

2.8. Statistical Analysis

Statistical analysis was performed using R software. Area under the receiver-operator curve
was calculated using ROCR package. For the ROC-AUC analysis of the experimental data we used
threshold >2 for separating ESR1-positive and PGR-positive cases from corresponding negative groups,
according to [39]; HER2 “+++” were considered as HER2-positive, according to [40]; and tumors
with more than 1% of cells stained with PD-L1 were considered as PD-L1-positive, according to [41].
Spearman’s correlation coefficient was used to test the significance of the correlation. Trendlines and
95% confidence intervals were built using stat_smooth function of ggplot2 package. The log rank test
was used for survival analysis.

3. Results

3.1. RNA Sequencing Data

In this study, we investigated correlations between gene expression profiles established for
formalin-fixed paraffin-embedded (FFPE) tissue biosamples, using RNA sequencing data and
immunohistochemistry (IHC) staining. To this end, we experimentally profiled 39 breast cancer
(BC) and 19 lung cancer (LC) FFPE tissue samples, using RNA sequencing; original data were deposited
to NCBI sequencing read archive under accession number PRJNA565016.

We used the same protocol as for generating the Oncobox Atlas of RNA sequencing profiles of
normal human tissues derived from healthy donors [32]. We found that application of the coverage
threshold of 2.5 million mapped reads resulted in tissue specific clustering, whereas for the profiles
with lower number of mapped reads, we observed biased clustering. In this study, we used the same
sequencing and data processing and filtering protocol. All the current 39 breast cancer and 19 lung
cancer RNA sequencing profiles passed the 2.5 million threshold (Tables 1 and 2) and were analyzed
further. The number of uniquely mapped reads appeared to be ranged from 3.96 to 20.54, which is
common for sequencing of the RNA derived from FFPE [9,33].

The samples investigated were stored as FFPE tissue blocks in the Clinical Diagnostic Laboratory
for 1–79 months before extraction of RNA (Figure 1). They had RNA integrity number (RIN) values
ranging from 1 to 4.9, where lower RIN generally corresponded to more degraded RNA (Figure 1).
We found significant correlation between the time from paraffinization to RNA extraction in days and
the values of RIN (Spearman’s rho = −0.496 (p-value = 0.00012); Figure 1A). However, low RIN and
samples’ age turned out not to be an informative marker of the insufficient number of gene-mapped
reads, and all samples with 1≤ RIN ≤ 2 passed the coverage threshold as well (Figure 1B,C). All tumor
gene expression profiles investigated were clustering mostly on a tissue-specific basis, thus confirming
that they are of quality sufficient for analysis (Figure 2).

We then assessed reproducibility of gene expression profiles by performing RNA sequencing for
four different slices from the same FFPE tissue block (LC specimen LuC-18, see Table 2). The resulting
four replicate samples were blinded and separately sent for sequencing. For all replicates, we observed
high pairwise correlation coefficients (Spearman’s rho 0.96) between gene expression values (Figure 3).
We, therefore, concluded that the RNA sequencing profiles obtained were reproducible for this sample.
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3.2. Comparison of RNA Sequencing and Immunohistochemistry Staining Results

We then compared expressions of clinically actionable biomarker genes measured by RNA
sequencing using Oncobox protocol (same as used previously to generate the Oncobox Atlas of Normal
Tissues Expression [32]) and by immunohistochemistry (IHC). For the 39 BC specimens, HER2 (ERBB2),
ER (ESR1), and PR (PGR) protein levels were measured by IHC. For 19 LC specimens, PDL1 protein
levels were measured by IHC. Only clinically approved protocols and reagent sets were used for the
IHC measurements. We then compared these results with the corresponding gene expression values
obtained from RNA sequencing data. We found that the gene expression values were highly congruent
with the IHC-measured protein levels for all four genes under investigation. The highest correlations
were observed for PDL1 expression in LC (Spearman’s rho = 0.797, p = 0.00004), HER2 expression in
BC (Spearman’s rho = 0.798, p = 6.9 × 10−10), and ESR1 expression in BC (Spearman’s rho = 0.777,
p = 3.8 × 10−9), while correlation with PGR in BC was lower yet still highly statistically significant
(Spearman’s rho = 0.653, p = 4.9 × 10−6; Figure 4).

In order to determine minimal numbers of uniquely mapped reads per sample required for
statistically significant correlations between IHC and RNA sequencing data, we simulated samples
with decreased coverage by randomly selecting reads from each sequencing experiment. Simulated
coverage was in the range between 500 and 3,500,000 mapped reads. For each value of simulated
coverage, we then calculated correlation coefficient and p-value for RNA sequencing-based gene
expression vs. IHC status. We found that 3.5 million of uniquely mapped reads per sample was
enough to obtain significant correlation for all biomarkers investigated, but the thresholds for minimal
number of uniquely mapped reads varied for different biomarkers. Reducing the coverage to as low as
to 100,000 mapped reads was enough for reliable estimation of HER2 and ESR1 levels in breast cancer
tissues, while not less than a million mapped reads was required for PGR (Figure 5). We had 19 lung
cancer samples, which can be the reason for greater variability observed for PDL1 correlations across
simulations. However, all correlation coefficients were significant in cases with more than 2,500,000
total coverage by gene-mapped reads (Figure 5).

To explain variability of minimal required coverage for different biomarkers, we calculated
percentiles based on raw counts of each marker gene in every sample. We found that HER2 was highly
expressed at mRNA level even in IHC-negative breast cancer samples and was always in top 10%
of most highly expressed genes (Figure 6). ESR1 was in top 40% and PGR and PDL1 in top 50% of
the most strongly expressed genes. Therefore, higher mRNA abundance may be connected with the
smaller coverage required for reliable estimation of gene expression, and vice versa.
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Figure 4. IHC results vs. mRNA level measured by NGS RNA sequencing: (A) HER2: correlation
coefficient (Spearman’s rho) = 0.798 (p-value = 6.9 × 10−10); (B) ESR1: correlation coefficient
(Spearman’s rho) = 0.777 (p-value = 3.8 × 10−9); (C) PGR: correlation coefficient (Spearman’s
rho) = 0.653 (p-value = 4.9 × 10 −6); (D) PD-L1: correlation coefficient (Spearman’s rho) = 0.797
(p-value = 4.4 × 10−5). Grey zone indicates 95% confidence interval for the trendlines; (E) PD-L1 IHC
staining examples. (F) HER2 IHC staining examples; (H) ER (ESR) IHC staining examples; (H) PR
(PGR) IHC staining examples. Cor—correlation coefficient.
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3.3. Correlation of HER2, ER, and PGR Statuses Measured by RNA Sequencing and IHC for Freshly Frozen
Tumor Samples

To estimate the ability of RNA sequencing data from fresh-frozen tissue samples to predict IHC
status, we extracted from The Cancer Genome Atlas project [36] all BC data with receptor status
confirmed by IHC. We used binary classification (IHC negative/positive) for this analysis because
only ~20% of TCGA BC samples were annotated with exact IHC scores for ESR1 and PGR. In total,
we analyzed 634 samples with confirmed HER2 status, 924 samples with confirmed ESR1 status,
and 922 samples with confirmed PGR status (Figure 7). We calculated area under the receiver-operator
curve (AUC) value so that RNA sequencing data could be used to classify samples by the IHC
status. AUC is the universal characteristic of biomarker robustness determined by its sensitivity and
specificity [42]. This statistical approach is applicable to a wide range of different types of biomarkers
in oncology [43–48]. AUC positively correlates with the quality of a biomarker and varies from 0.5 to 1.
The standard discrimination threshold is 0.7 and the parameters with greater AUC are considered as
high-quality biomarkers, and vice versa [49]. We obtained the following AUC values for TCGA data:
0.818 for HER2, 0.959 for ESR1, and 0.923 for PGR (Table 3). We then applied the same approach to our
experimental FFPE data and obtained the following AUC: 0.963 for HER2, 0.921 for ESR1, 0.912 for
PGR, and 0.922 for PDL1 (Table 3).
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Figure 7. IHC results vs. mRNA level measured by NGS RNA sequencing in The Cancer Genome Atlas
(TCGA) data: (A) HER2: area under the receiver-operator curve (AUC = 0.82); (B) ESR1: area under the
receiver-operator curve (AUC = 0.96); (C) PGR: area under the receiver-operator curve (AUC = 0.92).
* p-value < 2.2 × 10−16 (Wilcoxon rank-sum test).

Table 3. Area under the receiver-operator curve (AUC) for predicting IHC status using RNA sequencing data.

Protein Experimental Dataset The Cancer Genome Atlas

HER2 0.963 0.818
ESR1 0.921 0.959
PGR 0.912 0.923
PDL1 0.922 Not available
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3.4. Correlation of HER2, ER, and PGR Expression Measured by RNA Sequencing versus
Quantitative Proteomics

To investigate whether mRNA levels measured by RNA sequencing may serve as reliable markers
of protein abundance, we analyzed quantitative proteomic profiles from The Clinical Proteomic Tumor
Analysis Consortium (CPTAC) database [50,51]. The corresponding gene expression profiles for the
same biosamples were extracted from the TCGA project database. For HER2, ESR1, and PGR analysis,
we were able to identify 102 breast cancer samples with matched transcriptomic and proteomic profiles.
Unfortunately, lung cancer samples were not annotated with expression of PDL1 on protein level in
CPTAC database. We, therefore, correlated mRNA and protein levels for the remaining biomarkers
(Figure 8). The correlation coefficients for different biomarkers tested varied between 0.62 and 0.81.
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Figure 8. Proteomic results vs. mRNA level measured by NGS RNA sequencing in CPTAC data:
(A) HER2: correlation coefficient (Spearman’s rho) = 0.62 (p-value < 2.2 × 10−16); (B) ESR1: correlation
coefficient (Spearman’s rho) = 0.81 (p-value < 2.2 × 10−16); (C) PGR: correlation coefficient (Spearman’s
rho) = 0.74 (p-value < 2.2 × 10−16); Grey zone indicates 95% confidence interval for the trendlines.
Cor—correlation coefficient.
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4. Discussion

Immunohistochemistry (IHC) remains a method of choice for detecting expression of cancer
biomarkers in most of clinical laboratories around the world [52–54]. However, RNA sequencing can be
considered an even more accurate instrument for measuring the expression of biomarker genes, as this is
the case for PDL1 gene, whose expression positively correlates with patient’s response to anti-PD1/PDL1
immunotherapy [55]. It was previously shown that RNA sequencing of the same biosamples from
FFPE materials and matched fresh-frozen tissues produce highly concordant expression profiles for
breast [54,55] and ovarian cancers [56]. In addition, RNA sequencing generated coherent biological
signals for the same FFPE samples when compared with targeted NanoString [57] or TaqMan PCR
assays [58] for several biomarker gene products. That RNA sequencing can help accurately measure
PDL1 has been reported previously for fourteen ovarian cancer tissue specimens [56], as well as
the congruence of its concentration profiles obtained using IHC, qRT-PCR, and RNA sequencing,
for both fresh-frozen and FFPE cancer tissue materials [56]. Another investigation of 437 samples from
patients with non-small cell lung cancer revealed high correlation between PDL1 levels measured using
IHC and qRT-PCR [57]. Recently, detection of expression of mRNA in cancer cells was thoroughly
investigated using optical and electrochemical biosensors [58–60]; however, despite significant progress,
these promising methods have not been introduced into wide laboratory practice yet.

Previous studies also investigated the possibility of using RNA sequencing data for predicting the
IHC status of five conventional breast cancer biomarkers: ESR, HER2, PGR, Ki67, and Nottingham
histologic grade (NHG) [61]. The authors observed good concordance between protein status
determined by IHC and the level of corresponding gene expression determined by RNA sequencing.
However, the main limitation of the study by Brueffer et al. is the use of fresh-frozen or RNA later
preserved tissue [61]. Conroy et al. used FFPE samples for estimating PD-L1 level in various cancer
types following targeted RNA sequencing approach, which was limited by the rather small number of
genes analyzed in the experiment [55]. In our study, FFPE tissue blocks were investigated using total
RNA sequencing. Such an approach allowed reliable estimation of cancer biomarkers and additionally
provided gene expression data on a larger scale.

Multiple layers of gene expression regulation, including post-transcriptional, translational,
and post-translational, contribute to the proteomic landscape of the cell [62], and thus, may cause
inconsistencies between results of RNA sequencing and immunohistochemistry measuring cancer
biomarkers. However, ours and previous studies reported a high degree of concordance between these
methods, at least for clinically relevant genes, thus providing evidence that RNA sequencing may
complement IHC for measuring cancer biomarkers [55,61]. Although, it potentially may not be true
for genes heavily regulated by post-transcriptional or post-translational modifications, and therefore,
correlation between RNA sequencing and IHC should be independently validated for other biomarkers.

Here, we investigated correlations between the IHC- and RNA sequencing-measured expression
profiles for four clinically actionable biomarker genes in 39 BC and 19 LC cancer biosamples.
Among them, positive ESR1 and PGR status is crucial for the use of hormone therapy to treat
BC, and HER2 status of 2 or 3 is an indication for targeted anti-Her2 therapeutic antibodies prescription
in BC, e.g., trastuzumab [40]. In turn, PDL1 status is an important biomarker for immunotherapy in
several cancer types, including lung cancer, where PDL1-positive staining of membranes of more than
50% of cancer cells serves as the key indication for prescription of PD1-specific immune check-point
inhibitors, e.g., pembrolizumab, nivolumab, and atezolizumab [63]. We found that the results of RNA
sequencing strongly correlate with the results obtained by IHC methods in different clinical laboratories.
This suggests that, theoretically, RNA sequencing can be used to select the optimal treatment strategy
for FFPE cancer tissue samples as an alternative or as an addition to IHC. In addition to simply
profiling few clinical biomarker genes, RNA sequencing data enable identification of differentially
expressed drug target genes [64] and measuring molecular pathway activation [21,23]. Among the
others, this allows patient-oriented personalized ranking of cancer drugs with known molecular
specificities [21,23,65].
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However, different RNA sequencing platforms and protocols often generate incompatible results,
and it is important for data reproducibility to define the experimental procedure and analytic pipeline
used to obtain the results. This is especially important for comparisons with the expression in normal
reference tissues [66]. To obtain and analyze RNA sequencing data, we followed strictly the procedure
previously published for generating the atlas of human normal tissue transcriptomes (i.e., the Oncobox
Atlas of Normal Tissue Expression) [32]. This made these two datasets fully compatible in terms of
further data analysis. We also show that this experimental and analytic procedure ensures obtaining
high-quality transcriptomic data that strongly correlate with the gene expression values measured by
IHC. In addition to the FFPE data, we also observed a good correlation between the RNA sequencing
data and the results of immunohistochemistry for the freshly frozen BC samples with known HER2,
ER, and PGR statuses from the TCGA project database [36].

However, RNA sequencing provides expression levels for all genes, thus revealing much more
information about a tumor, which could be applied synergistically in clinical practice. For example,
high-throughput gene expression analyses were used during WINTHER [67] and Oncobox [68] clinical
trials. Both trials used gene expression profiling of tumor biopsy for personalized prescription of
targeted drugs to patients with advanced tumors. In addition, high-throughput gene expression
profiling was previously used to select successful therapies for solid tumor patients, as described
in several previous reports [69–72]. Moreover, nowadays, RNA sequencing can be performed for
approximately 250 USD per sample, and this price tends to decrease further [73]. At the same time,
single immunohistochemical staining procedure can cost up to 220 USD per sample [74]. Thus, with the
rapid emergence of new biomarkers and their introduction into clinical practice, RNA sequencing can
potentially become an at least equally useful and cost-effective solution.

Supplementary Materials: The following is available online at http://www.mdpi.com/2227-9059/8/5/114/s1,
Table S1: TCGA BC data with IHC confirmed receptor status.
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