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Abstract

Living neuronal networks in dissociated neuronal cultures are widely known for their ability

to generate highly robust spatiotemporal activity patterns in various experimental conditions.

Such patterns are often treated as neuronal avalanches that satisfy the power scaling law

and thereby exemplify self-organized criticality in living systems. A crucial question is how

these patterns can be explained and modeled in a way that is biologically meaningful, math-

ematically tractable and yet broad enough to account for neuronal heterogeneity and com-

plexity. Here we derive and analyse a simple network model that may constitute a response

to this question. Our derivations are based on few basic phenomenological observations

concerning the input-output behavior of an isolated neuron. A distinctive feature of the

model is that at the simplest level of description it comprises of only two variables, the net-

work activity variable and an exogenous variable corresponding to energy needed to sustain

the activity, and few parameters such as network connectivity and efficacy of signal trans-

mission. The efficacy of signal transmission is modulated by the phenomenological energy

variable. Strikingly, this simple model is already capable of explaining emergence of network

spikes and bursts in developing neuronal cultures. The model behavior and predictions are

consistent with published experimental evidence on cultured neurons. At the larger, cellular

automata scale, introduction of the energy-dependent regulatory mechanism results in the

overall model behavior that can be characterized as balancing on the edge of the network

percolation transition. Network activity in this state shows population bursts satisfying the

scaling avalanche conditions. This network state is self-sustainable and represents ener-

getic balance between global network-wide processes and spontaneous activity of individ-

ual elements.

PLOS ONE | https://doi.org/10.1371/journal.pone.0218304 June 27, 2019 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tyukin IY, Iudin D, Iudin F, Tyukina T,

Kazantsev V, Mukhina I, et al. (2019) Simple model

of complex dynamics of activity patterns in

developing networks of neuronal cultures. PLoS

ONE 14(6): e0218304. https://doi.org/10.1371/

journal.pone.0218304

Editor: Gennady Cymbalyuk, Georgia State

University, UNITED STATES

Received: May 3, 2018

Accepted: May 30, 2019

Published: June 27, 2019

Copyright: © 2019 Tyukin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Numerical

experiments data as well as relevant codes can be

accessed via https://github.com/tt51Storage/

Simple-model-of-complex-dynamics-in-neuronal-

cultures. All other relevant data are within the

manuscript and its Supporting Information files.

Funding: This work was supported by Ministry of

Science and Higher Education of the Russian

Federation (Project No. 14.Y26.31.0022).

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-7359-7966
https://doi.org/10.1371/journal.pone.0218304
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218304&domain=pdf&date_stamp=2019-06-27
https://doi.org/10.1371/journal.pone.0218304
https://doi.org/10.1371/journal.pone.0218304
http://creativecommons.org/licenses/by/4.0/
https://github.com/tt51Storage/Simple-model-of-complex-dynamics-in-neuronal-cultures
https://github.com/tt51Storage/Simple-model-of-complex-dynamics-in-neuronal-cultures
https://github.com/tt51Storage/Simple-model-of-complex-dynamics-in-neuronal-cultures


Introduction

Exploiting physics’ concepts for dealing with problems in life sciences is a widely recognized

and successful strategy for developing systematic and lawful understanding of complex phe-

nomena observed in empirical data. One of the most striking and fashionable illustrations

facilitating potential and power of this approach is the well-known example of using the con-

cept of self-organized criticality (SOC)—the ability of systems to selftune to the critical state—

for explaining a number of puzzling effects in biological systems. Initially proposed as a model

for explaining how an abstract system can remain at a critical state in presence of perturbations

[1, 2], the concept is now broadly used for describing biological neural networks (see e.g. [3,

4]). It was shown that adaptively evolving networks, i.e., networks combining structural evolu-

tion of the network topology with dynamics in the network nodes [5], can exhibit highly

robust global SOC-like behavior maintained by simple local network adjustment rules.

Striking examples of SOC-like behavior have been found in experimental studies of neuro-

nal cultures [6–8], with potential benefits of criticality in neural systems discussed in [9], [10].

The cultures grow autonomously and form synaptically coupled networks of living cells. After

a period of initial growth and development the cultures start to generate spontaneous activity

patterns in the form of population bursts. These bursts are shown to satisfy the power scaling

law and hence are often referred as neuronal avalanches [6, 7].

Since then a number of mathematical models have been proposed for simulation and analy-

sis of spontaneous burst generation in neuronal networks. The spectrum of network’s features

linked to emergence of persistent bursts includes, but is not limited to re-wiring, delays [11,

12], cycles [13], [14], frequency dependent and spike timing dependent synaptic plasticity [15–

17]. With regards to the mathematical frameworks describing neuronal avalanches, models

of network’s growth [18] and stochastic networks [19] have been put forward. These results

advance our understanding of the phenomenon substantially; yet macroscopic physical mech-

anisms (expressed e.g. in terms of energy balances) that are responsible for steering living neu-

ronal networks to the burst multiscale dynamics are still unclear.

It has been shown recently (see e.g. [20] and references therein) that population spikes and

bursts can be attributed to cells’ adaptation and short time plasticity mechanisms. The authors

showed that population spikes, that are similar to the ones observed in in-vitro cultures, can

occur in networks of excitatory model neurons with leaky integrate and fire dynamics. These

neurons where subjected to Gaussian white noise and equipped with adaptation and short

term plasticity mechanism. The network connectivity was all-to-all. Effect of growing neuronal

connectivity on bursts was studied in [21]. It has been found that network connectivity

expressed e.g. as the number of synaptic connections per neuron, may play an important role

for spiking and bursting activity in cultures. Additional links between connectivity develop-

ment, firing activity homeostasis, and criticality are exposed in [22].

In this work we further contribute to the idea that several features of complex and critical

behavior (e.g. the neuronal avalanches, super-bursts, periodic and chaotic spiking) observed in

live neuronal cultures and networks can be explained by just few variables. These variables can

be linked to local connectivity patterns (expressed e.g. by connection densities between cells)

and neuronal activation dynamics.

We demonstrate that main critical transitions can be captured by a hierarchy of simple

models. Starting from elementary phenomenological description of neural firing we present a

simple 2D mean-field model that is capable of showing a broad range of behaviors that are

observed in cultures. Remarkably, the network connectivity parameter appears to be a natural

bifurcation parameter of the model; it regulates emergence of activity spikes from the initial

silent mode to bursts to whole-network activation. This is in good agreement with previous
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works on SOC phenomena in developing neuronal networks [23], [22]. In contrast to [23],

[22], however, we consider the problem from a different angle. Instead of focusing on the

activity-connectivity interplay we consider and analyze the system dynamics in the activity-

energy plane for various values of connectivity. This adds additional modelling capabilities

with regards to investigating effects of oxygen and energy deprivation on neuronal networks

behavior whilst retaining important links between network activity and connectivity. Moving

further to multi-agent model reveals emergence of neuronal avalanches showing scale-free

activity.

The manuscript is organized as follows. In Results we present ingredients of the model at

three different levels of phenomenological detail. We begin with a simple percolation-based

geometric model describing the evolution of cells’ connectivity. The model allows to accom-

modate biologically relevant features such as axons and dendrites; it also enables to replicate

directional connectivity that is inherent to living systems including neuronal cultures. The

model analysis reveals that sharp changes in the overall clustering and connectivity of the

evolving network, in both directed and undirected settings, is determined by a single parame-

ter describing average connection density in the network. The effect is qualitatively consistent

with empirical evidence reported e.g. in [24]. The analysis is followed by expressing dynamics

of neuronal activity by a mean-field approximation. We show that the corresponding single-

dimensional model does not explain network spikes and bursts frequently observed in devel-

oping cultures. This limitation, however, can be resolved if neural activation is linked to an

additional exogenous regulatory energy variable. Introduction of the latter variable needs an

additional comment. It behaves as a sort of “energy” or a resource. Its physical nature, never-

theless, may or may not be associated with a specific type of the physical energy. A prototype

of such energy, the notion of adaptation energy, was introduced by Selye in his analysis of

physiological adaption [25], [26] and was successfully employed in modelling of various com-

plex phenomena [27], [28]. The extended model, which may also be viewed as a resource-lim-

ited model [29], [30], is shown to be able to reproduce periodic spiking, irregular dynamics,

and population bursts observed in live cultures. What is important is that dynamic regimes

exhibited by the model can be regulated by just a single parameter corresponding to network

connectivity. Next we provide results of large-scale simulation of evolving network of agents of

which the activation probability depends on their current energy level. The network dynamics

in this state shows population bursts satisfying the scaling avalanche conditions. This network

state is self-sustainable and represents energetic balance between global network-wide pro-

cesses and spontaneous activity of individual elements. The results are then compared with

published empirical data. Details of numerical experiments are provided in Materials and

Methods.

Results

Model

Geometric model. We start with a geometrical arrangement of the network elements.

Consider a network of N neurons whose spatial coordinates are randomly and uniformly dis-

tributed in the unit square. Each individual neuron is described by two basic elements. The

first, is the region of reception of inputs represented by a circle of a given radius R. The circle

models neuron’s ability to sense input signals from other neurons, and is referred to as the

dendrite region (in biology, dendrite is an input). The second element is an axon (in biology,

output), which in our model is simulated by a straight segment of length H (on the mature

stage of the network development H> R) and whose end point is acting as a transmitter

of the neuron’s signal. If this point reaches out to the dendrite region of another neuron, a
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connection is established between these neurons [18]. There are three different ways that yield

geometrical coupling or connectivity of the network elements:

Case 1: cells without axons, i.e. H = 0. In this case N circles with radius R are randomly and

uniformly distributed in the unit square. If a circle A overlaps with a circle B, and circle B is

connected with a circle C, then A is connected with C. Thus, a path between two distant cells

can be defined as a chain of overlapping circles joining these cells. Emergence of large groups

of connected elements in this network can be analyzed within the framework of standard circle

percolation problem. Let n be the cells density defined e.g. as the number of circles’ centers in

a unit area. According to [31, 32], emergence of large groups of interconnected cells, the perco-

lation transition, in a set of randomly distributed circles can be characterised by the mean

number of centers that fall within a circle of radius R:

B ¼ pR2n: ð1Þ

In particular, there exists a critical concentration B = Bc at which two arbitrary circles

become connected with high probability. Thus percolation occurs and a large cluster of con-

nected circles appears. In contrast with typical thermal phase transitions, where a transition

between two phases occurs at a critical temperature, percolation transition relates to distribu-

tion and topology of clusters corresponding to the values of B in a neighborhood of Bc. At low

values of B only small clusters of overlapping circles exist. When the concentration B increases

the average size of the clusters increases too. At the critical concentration value, B = Bc, a large

cluster appears; it includes groups of cells that are close to the opposing boundaries of the orig-

inal square. This cluster is called spanning cluster or percolating cluster. In the thermodynamic

limit, i.e. in the infinite size system limit the spanning cluster is called infinite cluster. For scalar

problem the value of Bc� 1.1.

Case 2. Cells have axons, H> 0, and axons are allowed to transmit signals in both direc-

tions. Each neuron can be represented as an undirected pair of head- and tail-circles both hav-

ing radius R. When the head-circle or the tail-circle of an neuron overlaps with the head- or

the tail-circles of another neuron we consider these neurons connected. Despite this setting

differs from Case 1 in that we now operate with dipoles rather than with just circles, the prob-

lem remains within a class of scalar percolation, albeit for dipoles of circles not just a single

circle.

Case 3. Cells have axons, H> 0, and these axons can only transmit signals along a straight

line which determines direction of connectivity for a given cell. The coupling direction from

soma to synaptic terminal has isotropic distribution, and hence each neuron could be repre-

sented as a directed pair of head- and tail-circles both having radius R. Vectors linking centers

of the head- and tail-circles are allowed to have arbitrary direction. Their lengths, H, however,

are fixed. When the tail-circle of a neuron overlaps with a head-circle of another neuron the

pair is considered as connected. In contrast with two other ways of establishing neuronal con-

nectivity considered above this is the most realistic scenario. It is no longer within the scope of

simple scalar circle percolation framework but is a vector percolation problem.

The three cases are illustrated with Fig 1. Fig 2 shows dependence of the percolation thresh-

old parameter, Bc, on the ratio H/R. In accordance with he definition of B in (1) the cell’s con-

centration variable B can be related to the expected number of neurons that are connected to a

randomly chosen query neuron in the system. The latter quantity is known as the average net-

work coordination number z. As can be seen from Fig 2 the value of the coordination number

z that corresponds to Bc is always bounded from above. Bc� 1.4 for all configurations consid-

ered so far.
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The above analysis reveals that networks with coordination numbers exceeding these criti-

cal values are likely to form a spanning cluster that is capable of connecting opposite edges of

the system [33, 34]. Thus, intuitively, one can argue that signals initiated by spontaneous acti-

vation of neurons in the cluster can spark waves of activity through the whole network. Such

conclusion is based on the restrictive assumption that neurons always elicit spikes in response

to a spike on their input. Not only this assumption does not necessarily hold true, but also

the above geometrical model alone does not explain the wealth of excitation propagation phe-

nomena observed in cultures. To account for more plausible situations, as well as to possibly

increase explanatory power of the model, two additional variables are introduced: one is the

probability p of neuronal activation in response to incoming spike, and the other is an exoge-

nous “resource” variable E determining if a neuron has enough energy to elicit a spike. The

consequences of adding these two variables are discussed in the next sections.

Mean-field dynamic model of neuronal excitation. We begin with a simple mean-field

approximation of the dynamics of neural excitation in the system. Consider a connected net-

work of neuronal cells. Let z be the expected coordination number, i.e. the expected number of

neighbors of a randomly chosen query cell. Suppose that at a time instance t some neurons in

the network are excited. Let qt denote the number of these neurons relative to the total number

of cells the whole network. If the value of z is sufficiently large then the number of excited neu-

rons among all neighbors of a given neuron can be estimated as zqt. Let p be the probability of

Fig 1. Schematic representation of three different percolation settings for the geometrical model.

https://doi.org/10.1371/journal.pone.0218304.g001
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neuronal activation in response to the activation of at least one neuron from its nearest neigh-

bours, and suppose that all excitatory signals are independent. Thus the probability that a

given neuron is activated equals to 1 � ð1 � pÞzqt , and hence the expected proportion of all

excited neurons at the time step t + 1 is:

qtþ1 ¼ 1 � ð1 � pÞzqt : ð2Þ

The range of dynamics which model (2) is capable to reproduce is summarized in Proposi-

tion 1.

Proposition 1 Consider (2) and let p 2 (0, 1), z> 0 be constants. Then the interval [0, 1] is
forward-invariant, all forward orbits qt are monotone functions t, and the point map (2) has
only fixed points as attractors. Furthermore

Fig 2. Dependence of the percolation threshold parameter, Bc, on H/R for 2D scalar and vector percolation problems (Case 2 and 3 respectively).

https://doi.org/10.1371/journal.pone.0218304.g002
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1. if − z log(1 − p)� 1 then the map has only one fixed point, q�
1
¼ 0, and it is an attractor;

2. if −z log(1 − p)> 1 then the map has only two fixed points with q�
1
¼ 0 being a repeller and

the other one, q�
2
2 ð0; 1Þ, a stable attractor.

Proof of Proposition 1 is provided in the Appendix.

According to Proposition 1, asymptotic mean-field dynamics (3) of the network is a steady

activity at an equilibrium in the entire domain of the model’s feasible parameters: p 2 (0, 1),

z> 0. Moreover, all transients are monotone trajectories. Emergence of the unique non-zero

asymptotic activity is fully determined by the values of the connectivity parameter, z, and the

probability of neural activation, p. Critical values of these parameters, e.g. the critical connec-

tivity, z1, at which the transition occurs, satisfies:

z1 ¼
� 1

log ð1 � pÞ
: ð3Þ

For z1 � 1, this relation is approximately reciprocal: p ’ 1=z1. Indeed, expressing p ¼

1 � exp � 1

z1

� �
from (3), and expanding exp � 1

z1

� �
as a power series with respect to 1=z1, one

obtains:

p ¼
1

z1

þ O
1

z1

2

� �

:

The value of the stable equilibrium, q�
2
, can be estimated as follows. At the steady state we

have that 1 � q�
2
¼ ð1 � pÞzq

�
2 . Hence, ð1 � q�

2
Þ

1=q�
2 ¼ ð1 � pÞz. It is well known that (1 − x)e−1

< (1 − x)1/x for all x 2 (0, 1). Thus

ð1 � q�
2
Þ < eð1 � pÞz ) q�

2
> 1 � eð1 � pÞz:

Observe that the larger the value of the connectivity parameter, z, is, the higher is the level

of the mean-field network activity.

Whilst model (3) is consistent with the very basic observation that increasing the network’s

overall connectivity may lead to emergence of a self-sustained activity in the network, the

model’s explanatory capability is limited. The model does not explain widely-reported richness

of the dynamics in live neuronal cultures, including emergence of spontaneous activity bursts

and irregular and seemingly chaotic spikes.

This limitation is not surprising since (2) is a crude approximation of the network’s dynam-

ics. Model (2) does not account for a broad spectrum of biological mechanisms involved in

spike generation and assumes that the neuron’s ability to produce spikes depends exclusively

on stimulation. A possible way to overcome this unrealistic assumption is to explicitly account

for these missing mechanisms. To keep the model simple, we account for joint effect of these

mechanisms by adding a single energy-like variable Et to (2). The new variable determines the

neuron/network’s ability to produce a spike depending on the amount of resources or “energy”

available. Generic models of this type have been proposed and analyzed in [27, 35] in the con-

text of adaption to stress and external environmental factors. These models have been shown

to capture periodic and irregular behavior in multi-agent systems [28].

Here we extend the original phenomenological mean-field model (2) as follows:

qtþ1 ¼ 1 � ð1 � p � sðEt;EÞÞ
zqt

Etþ1 ¼ ð1 � εÞEt þ εE � rqtHðEt � rqtÞ;
ð4Þ
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where

sðEt;E Þ ¼
1

2
ð tanh ðwEt � EÞ þ 1Þ;

and H is the Heaviside function. In (4) p is the maximal probability of neuronal activation,

z> 0 is the coordination number, Et is the exogenous phenomenological “energy resource”

variable; r> 0 is the energy cost of neuronal activation, E > 0 and w> 0 are parameters that

determine the minimal activation probability and the energy activation threshold, E > E is the

energy recovery value, ε 2 (0, 1) is the energy relaxation parameter. The general shape of the

function sð�;EÞ in the energy-dependent synaptic efficacy component, psð�; EÞ, is shown in

Fig 3.

Mean-field model (4) of the network dynamics inherits phenomenological transparency

of (3). It does, however, account for generic constraints of spike-generation through the

new energy variable Et and energy-modulated synaptic efficacy psð�; EÞ. Despite retaining

simplicity, the model produces remarkably rich dynamics. Its equilibria, however, can still be

described by just a few parameters as follows from Proposition 2 below.

Proposition 2 Consider (4) with p 2 (0, 1). Then the domain

fðq;EÞ jq 2 ½0; 1�;E 2 ½0; E�g

is forward-invariant. In addition,

Fig 3. General shape of the function sð�;EÞ.

https://doi.org/10.1371/journal.pone.0218304.g003
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1. If � z log 1 � ps E;E
� �� �

� 1 then (4) has only one fixed point:

ðq�
1
;E�

1
Þ ¼ ð0; EÞ: ð5Þ

This fixed point is an attractor when � z log 1 � ps E;E
� �� �

< 1.

2. If � z log 1 � ps E;E
� �� �

> 1 and E=r � 1 then (4) has at most two fixed points: fixed point
(5) and, if exists, an additional fixed point ðq�

2
;E�

2
Þ:

ðq�
2
;E�

2
Þ; 0 < q�

2
�

E
r 1þ 1

ε

� � ; q�
2
< 1;

q�
2
¼ 1 � 1 � ps E �

rq�
2

ε
;E

� �� �q�
2
z

; E�
2
¼ E �

rq�
2

ε
:

ð6Þ

The fixed point ðq�
1
; E�

1
Þ is a repeller.

3. If � z log 1 � ps E;E
� �� �

> 1 and E=r < 1 then (4) has at most three fixed points. The
fixed point ðq�

1
;E�

1
Þ specified by (5) and, possibly, additional two fixed points: the fixed point

ðq�
2
;E�

2
Þ specified by (6) and a fixed point

ðq�
3
;E�

3
Þ; 1 > q�

3
>

E
r
;

q�
3
¼ 1 � ð1 � psðE;EÞÞq

�
3
z
; E�

3
¼ E:

ð7Þ

The fixed point ðq�
1
; E�

1
Þ is a repeller, and ðq�

3
; E�

3
Þ, if exists, is a stable attractor.

Proof of Proposition 2 is provided in the Appendix.

An illustration showing relationships between parameters of the model and emergence of

the three different equilibria described in Proposition 2 is provided in Fig 4. The equilibria are

shown as white circles. Green lines show curves

E� ¼ s� 1ðq�; E Þ ¼
1

w
tanh � 1 2

p
1 � ð1 � q�Þ

1
q�z

� �
� 1

� �

þ
E
w

ð8Þ

as functions of q� > 0. According to the first equation of (4), all equilibria of the model with

q� 6¼ 0 must belong to these curves (see also the proof of Proposition 2 in Appendix). Depend-

ing on the value of z, the curves move up and down, and intersect with line segments (shown

as red solid lines in Fig 4):

E� ¼ E � r
q�

ε
; 0 < q� �

E
r 1þ 1

ε

� � ; q� < 1

and

E� ¼ E;
E
r
< q� < 1:
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These intersections correspond to equilibria (6) and (7), respectively. The equilibria persist

over intervals of z, and the greatest lower bounds of these intervals (critical values of z) are:

z2 ¼
� 1

log ð1 � psðE; EÞÞ
and z3 ¼

log 1 � E
r

� �

E
r log ð1 � psðE;EÞÞ

;
E
r
< 1: ð9Þ

We also note (see the proof of Proposition 2) that equilibria (6) are always above or on the

line E = rq (dashed orange line in Fig 4), whereas equilibria (7) are to be below this line.

According to Propositions 1, 2, models (2) and (4) share some similarity. For z sufficiently

small, all orbits are attracted to a single equilibrium. At this equilibrium, the systems are silent.

When z increases and eventually exceeds the first critical value (Eq (3) for (2) and z2 for (4)),

the silent equilibrium becomes a repeller and the systems start to exhibit non-zero activity.

However, further increases of z trigger drastically different dynamics in these models.

All orbits of model (2) with q0 6¼ 0, as ensured by Proposition 1, converge monotonically

to a single non-zero steady state regardless of how large the values of z become. The spectrum

of orbits in model (4) is different. Our numerical experiments demonstrated that, in addition

to equilibria, the model is capable of generating periodic orbits too. Moreover, for a broad

Fig 4. Arrangement of equilibria in (4). The model parameters were set as follows: w = 1.5, p = 0.1, E ¼ 4, E ¼ 2, ε = 0.05, r = 10, with z taking values

in the set {10, 12.2, 25, 50} (these values are denoted as z1, z2, z3 and z4).

https://doi.org/10.1371/journal.pone.0218304.g004
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range of parameters it produced complicated and apparently chaotic motions. Examples of

these complicated motions are shown in Fig 5. Observe that the model parameters corre-

sponding to the trajectories in Fig 5 satisfy statement 2) of Proposition 2. In this case, at

most two equilibria may exist. As we can see from Fig 5, these equilibria (fixed points (5) and

(6)) are not attracting the orbits, and trajectories appear to be chaotic with some apparent

intermittency.

In order to gain additional insight into the model’s dynamics, we numerically explored

asymptotic regimes of (4) for varying values of z, E, and r. Other parameters were as follows:

ε = 0.05, w = 1.5, E ¼ 4, p = 0.1. Outcomes of these experiments are summarized in Figs 6–8

(see Materials and methods for details of the steps taken to produce these figures). In these

experiments, the values of E were chosen from a uniform equispaced grid of 21 points in the

interval [1, 3]. This grid is shown as grey dashed horizontal lines in Figs 6–8. Parameter z was

varying adaptively (increments ranged from 0.1 in the intervals (0, 50] and (200, 300] to 5 in

the interval (50, 200]). For these values of model parameters, we assessed the type of the mod-

el’s asymptotic dynamics and mapped these onto relevant parametric regions. These regions

are shown with different colour in Figs 6–8.

Fig 5. Complex behaviour of orbits generated by (4). Top panels correspond to z = 210, r = 1, and bottom panels show dynamics of (4) for z = 135,

r = 1.5. Other parameters of the model are: w = 1.5, p = 0.1, E ¼ 4, E ¼ 2, ε = 0.05. Green curves show (8), solid red line shows E� ¼ E � rq�=ε, and

dashed orange line corresponds to E� = rq�. Intersection of the solid green and red curves above the dashed curve reveals equilibrium (6). Left panels
present the evolution of qt and Et as functions of t. Right panels show the values of pairs (qt, Et) for t 2 [2.8 � 105, 3 � 105].

https://doi.org/10.1371/journal.pone.0218304.g005
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According to Figs 6–8, development and evolution of the dynamics of (4) follows a robust

pattern. For a fixed value of E 2 ½1; 3� and z small, trajectories of the model converge to a

unique attractor (fixed point 5). This attractor corresponds to the system’s state in which no

elements/neurons are excited. When the value of z increases and exceeds z2 (specified in (9)

and shown as blue dashed lines in 6–8), equilibrium (5) becomes a repeller and a second

Fig 6. Complex dynamics of model (4). Top row: parametric portrait of the qualitative dynamics of model (4) in the domain fðE; zÞjE 2 ½1; 3�; z 2
ð0; 300�g at r = 1, w = 1.5, p = 0.1, E ¼ 4, ε = 0.05. White areas show the parameter regions in which only one fixed point, (5), was detected. This fixed

point is an attractor. The blue region bordering the white one corresponds to the case in which fixed point (5) becomes a repeller and the second

equilibrium, (6), emerges. Equilibrium (6) is locally asymptotically stable. Green areas are the domains in which an attracting periodic orbit was

detected. Red and violet domains correspond to regions where complex chaotic-like dynamics were observed. Black stars, �, indicate observed co-

existence of multiple attractors. Inlet linked to the gray area shows theoretical estimates of transition boundaries (dashed blue and green lines) relative

to the ones observed in experiments. A,B,C,D,E,F: typical dynamics observed in the corresponding parametric regions.

https://doi.org/10.1371/journal.pone.0218304.g006
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equilibrium emerges (fixed point (6). Numerical evaluation of the eigenvalues of the Jacobian

at this equilibrium showed that it is locally asymptotically stable. Further increments of z lead

to that fixed point (6) loses stability thorough the Neimark-Sacker bifurcation, and an attract-

ing periodic orbit emerges. The boundary of this transition is depicted as green dashed lines in

Fig 7. Complex dynamics of model (4). Top row: parametric portrait of the qualitative dynamics of model (4) in the domain fðE; zÞjE 2 ½1; 3�; z 2
ð0; 300�g at r = 1.5, w = 1.5, p = 0.1, E ¼ 4, ε = 0.05. White areas show the parameter regions in which only one fixed point, (5), was detected. This fixed

point is an attractor. The blue region bordering the white one corresponds to the case in which fixed point (5) becomes a repeller and the second

equilibrium, (6), emerges. Equilibrium (6) is locally asymptotically stable. Green areas are the domains in which an attracting periodic orbit was

detected. Red and violet domains correspond to regions where complex chaotic-like dynamics were observed. Black stars, �, indicate observed co-

existence of multiple attractors. Turquoise blue islands mark regions in which burst-like trajectories were observed. Inlet linked to the gray area shows

theoretical estimates of transition boundaries (dashed blue and green lines) relative to the ones observed in experiments. A,B,C,D,E,F: typical dynamics

observed in the corresponding parametric regions.

https://doi.org/10.1371/journal.pone.0218304.g007
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Figs 6–8. As we keep increasing the values of z, non-trivial and complex dynamics eventually

occur (red area in Figs 6–8). Complex orbits and behavior persist over intervals of values of z.

Emergence of rich activity patterns in neuronal as a direct result of the network connectiv-

ity has been investigated in [36]. It has been found in [36] that the generation and spatiotem-

poral patterns of propagation were most variable in networks with intermediate clustering and

lowest in uniform networks. Whilst our model (4) does not allow to discriminate between clus-

tered and uniform connectivity explicitly, Figs 6–8 capture the general connectivity effect on

the system’s dynamics: rich and complex trajectories occur at the “intermediate” values of con-

nectivity parameter z (see e.g. Fig 8). Figs 6–8 also show that exact bounds of such “intermedi-

ate” values of z may depend on the values of other model parameters.

Notice that some of the complex trajectories shown in panel C, 8 eventually converge to the

stable equilibrium specified by (7). This is an empirical manifestation of slow relaxations and

Fig 8. Complex dynamics of model (4). Top row: parametric portrait of the qualitative dynamics of model (4) in the domain fðE; zÞjE 2 ½1; 3�; z 2
ð0; 50�g at r = 10, w = 1.5, p = 0.1, E ¼ 4, ε = 0.05. White areas show the parameter regions in which only one fixed point, (5), was detected. This fixed

point is an attractor. The blue region bordering the white one corresponds to the case in which fixed point (5) becomes a repeller and the second

equilibrium, (6), emerges. Equilibrium (6) is locally asymptotically stable. Green areas are the domains in which an attracting periodic orbit was

detected. The red area corresponds to regions where complex chaotic-like dynamics were observed. The black line indicates a boundary beyond which

co-existence of multiple attractors was observed consistently in all experiments. Inlet linked to the gray area shows estimates of transition boundaries

(dashed blue (z2 in (9)), green, and black (z3 in (9)) lines) relative to the ones observed in experiments. The yellow region shows the domain in which all

trajectories converged to (7). A,B,C,D: typical dynamics observed in the corresponding parametric regions.

https://doi.org/10.1371/journal.pone.0218304.g008
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critical delays in model (4) [37], [38]. For z sufficiently large, these complex orbits disappear

and reduce to periodic orbits, Figs 6 and 7, or mere equilibria, Fig 8.

Mean-field bursting dynamics, shown e.g. in panels D and E in Figs 6 and 7, resembles that

of the population bursts observed in live neuronal evolving cultures. An important factor in

successful replication of this behavior was the energy variable, Et, coupled with the energy-

dependent activation probability psðEt;EÞ. The mean-field model, however, does not capture

spatial effects and as such is only a rough approximation of activity propagation in neuronal

cultures. In the next section we extend the proposed mean-filed model (4) to a multi-agent

network with randomized energy-dependent activation and numerically assess relevant

parameters of its dynamics, including distributions of sizes and durations of firing avalanches.

Multi-agent model of neuronal excitation. As a natural extension of (4), we consider a

connected network of N neurons. The network’s topology is determined by an adjacency

matrix, C, whose elements cij are:

cij ¼

(
1; if there is a link from the i� th node to the j� th

0; otherwise:

No links from a node to itself are permitted, but cycles are allowed. For simplicity, all links

in the network have been assigned equal weights of which the value was assumed to be 1. For

the given adjacency matrix C, we determined the average number of inputs, hNini, and the

average number of outputs hNouti

hNini ¼
1

N

XN

i¼1

XN

j¼1

cji; hNouti ¼
1

N

XN

i¼1

XN

j¼1

cij:

Dynamics of each i-th node in the network is described by two variables: the activity vari-

able, qi;t 2 R, and the energy variable, Ei;t 2 R. Equations governing evolution of these vari-

ables have been defined as follows:

qi;tþ1 ¼ ai;t;

Ei;tþ1 ¼ ð1 � εÞEi;t þ εE � ai;tEfire
i;t ;

ð10Þ

where

Efire
i;t ¼

r1

PN
j¼1

cij
hNouti

þ
r2

PN
j¼1

cjiqj;t
hNini

;

and

ai;t ¼

(
1 with probability pfirei;t ; if Ei;t > Efire

i;t ;

0; otherwise;

pfirei;t ¼ ð1 � psðEi;t;EÞÞ
1þ
Pn

j¼1
cjiqj;t

:

The variables qi,t take values in the set {0, 1}, and Ei,t are in the interval ½0;E�. The function

sð�;EÞ is as in (4).

Phenomenological motivation for the dynamics of individual nodes in model (10) is similar

to that of the mean-field model, (4). There are, however, several key differences. The evolution

of variables qi,t and Ei,t in (10) explicitly accounts for local network topology and is directly

driven by activity of the node’s neighboring cells (as opposed to mean connectivity z and
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activity in (4)). The energy balance equation, the second equation in (10), accounts for the

costs of transmitting active signals at the neuron’s input (term r2

PN
j¼1

cjiqj;thNini
� 1

) and gener-

ating activity signals on the neuron’s output (term r1

PN
j¼1

cijhNouti
� 1

). If the node’s energy

level is insufficient to trigger a spike, Ei;t � Efire
i;t , then no spikes are generated at t+ 1. The latter

property is difficult to fully capture at the level of the mean-field approximation, as low sub-

threshold values of the bulk energy do not necessarily imply absence of activity at the level of

individual neurons (cf. Proposition 2, alternative 3, and Fig 4).

In our numerical experiments, we focused largely on fully connected networks for which

cij = 1 − δij, where δij is the Kronecker’s delta. Addition of a fraction of inhibitory connections

did not result in qualitative changes in the network’s dynamics. These simplifications are con-

sistent with the approaches and observations reported in earlier works [23]. The model param-

eters where set as follows:

p ¼ 0:01; E ¼ 2; E ¼ 4; w ¼ 1:5; ε ¼ 0:0025; N ¼ 625;

and parameters r1 and r2 varied in the intervals [1, 1.5] and [4, 6], respectively.

We simulated forward orbits of model (10) for various initial conditions and parameter val-

ues, and determined sizes and durations of avalanches of firing events. In our experiments, the

avalanches were defined as events corresponding to the intervals Tj = [tj, tj+1] of the network

nonzero firing activity such that
PN

i¼1
qi;t > 0 for all t 2 [Tj] and

PN
i¼1

qi;tj � 1 ¼
PN

i¼1
qi;tjþ1þ1 ¼ 0.

Each orbit was simulated for 106 time steps, with qi,0 = 0, i = 1, . . ., N and Ei,0, i = 1, . . ., N chosen

randomly in the interval ½0:5E; E�. For each orbit, we gathered statistics of sizes and durations of

the observed avalanches. A brief summary of these experiments is shown in Figs 9 and 10. Fig 9

presents size and duration histograms as a function of parameters r1 and r2 in (10). As we can

see from this figure, energy feedback has the capacity to inhibit system-size events in networks

sharing the same graph topologies, and parameters of this feedback may affect the exponents of

size and duration histograms. In particular, we observed that increasing the values of ε lead to

increases of system-size events and pushing the system eventually into the super-critical state.

Fig 10 shows statistics and estimated exponents of avalanches for r2 = 5.5, r1 = 1.1. The esti-

mated exponents are close to those reported for live neuronal cultures [7], [8], [39]. Observe

that the size and duration curves have noticeable humps (cf. [39], Fig 2; [40], Figs 3–6), albeit

different and less prominent exponents than those reported in [39].

Activity of individual nodes, as a function of t, appeared to be synchronized with the peaks

of their corresponding energy variables. Similar dependency has been observed in the mean-

field approximation too. These observations suggest that exogenous energy may be a relevant

factor in understanding dynamics of neural networks. Complementary to connectivity-activity

relations revealed in e.g. [17], [23], here we show that energy balance may modulate dynamics

of activity patterns in the network. Indeed, in our experiments the network was fully con-

nected and as such its connectivity was always above the network’s percolation threshold. Yet,

as Fig 9 illustrates, occurrences and parameters of system-size events in such systems can be

controlled by energy balance within individual nodes. This gives rise to functional dynamical

clustering in the model, as opposed to clustering induced merely by network connectivity.

Modelling dynamics observed in neuronal cultures

The mean-filed and multi-agent models introduced and investigated in the previous sections

show a range of behaviors which are controlled by just few parameters. These parameters,

in turn, may be related to physical quantities and variables such as the connectivity density

parameter, thresholds, energy balance parameters (costs of spike generation and transmission),
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and energy recovery times. Figs 6–8 (see also the online repository [41] containing extended

simulation results) show different dynamical modes and behaviors corresponding to these

parameters and their combinations. For a broad range of parameters (red areas in Figs 6–8),

dynamics of the activity variable qt in (4) bears qualitative similarity to some of the patterns

Fig 9. Sizes and durations of avalanches for different parameters of the model.

https://doi.org/10.1371/journal.pone.0218304.g009
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Fig 10. Statistics of sizes and durations of avalanches for r2 = 5.5, r1 = 1.1, and their estimated exponents. Red bars

indicate intervals within which the values of empirical frequencies varied over 10 different simulations. Blue curves

show empirical means. Dashed gray curve in the bottom plot shows a part of the curve corresponding to events for

which the data was limited to just few records.

https://doi.org/10.1371/journal.pone.0218304.g010
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observed in evolving neuronal cultures at different development stages [42], [43]: tiny bursts,

fixed size bursts, variably sized bursts, and superbursts.

In addition to patterns in model trajectories, we looked at statistics of the Array-wide Spike

Detection Rates (ASDR) and Burstiness Indexes (BI) over various days in development (DIV)

[42] and compared it with that of the values of ASDR and BI derived from the data generated

by our model (see Methods for details). To relate empirical observations to our model, we

assumed that the model coordination number z is representative of DIV for cultures. Results

are shown in Fig 11.

Similarly to how the median ASDRs change in real cultures with DIV (Fig 4, Panel A, [42]),

the sample average of the model’s median ASDRs first grows and then decreases with the

growth of the model connectivity parameter z. Note that the initial growth phase is in agree-

ment with the supercritical Neimark-Sacker bifurcation of the stable equilibrium of (4) (Prop-

osition 2 and discussion afterwards). Moreover, the sample average of the model’s BI as a

function of z (Fig 11, bottom panel) shows a development trend that is very similar to the one

observed in real neuronal cultures (Fig 4, Panel B, [42]).

Last but not least, the proposed model enables explicit modelling of the influence of exter-

nal metabolic factors on the overall activity in the cultures. This is an advantage over networks

of classical conductance-based models like e.g. Hodgkin-Huxley, Hindmarsh-Rose, and Fitz-

hugh-Nagumo equations [44].

To demonstrate this possibility we modelled the network’s activity during and after acute

but short oxygen deprivation as reported in [45]. In [45], primary cultures of hippocampal

cells were subjected to 10min of acute oxygen deprivation in the 21st DIV. Reoxygenation

after short-term hypoxia rapidly restores energy deficit and neuronal ATP levels and increases

the release of glutamate. Glutamate is a major excitatory neurotransmitter in mammalian cen-

tral nervous system. Glutamatergic neurons form the main excitatory system in the brain and

play a pivotal role in many neurophysiological functions [46]. Excessive glutamate releasing is

homeostatic response to the hypoxia-induced network silence [47]. It is directed at restoration

of network activity and results in an over-activation of ATP-dependent ion pumps and bioe-

nergetic-dependent network burst. However, excessive glutamate releasing over-activates its

receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular

events causing neuronal degeneration and referred to as excitotoxicity [48], [49].

To simulate, albeit qualitatively, changes in firing dynamics caused by the hypoxia as well as

by the sequence of complex biological of changes related to oxygen deprivation, the following

numerical experiments we performed. The model, Eq (4), with r = 1.5, z = 170, ε = 0.05,

w = 1.5, E ¼ 2, E ¼ 4, p = 0.1 was iterated for 1500 steps. Then for the next 1000 steps the

value of E was reduced to 0.4 and then restored back to the nominal level of 4 for t> 2500.

This modelled energy deficit caused by acute oxygen deprivation. At t = 2500, however, the

value of p was increased to 0.15 to account for glutamate release, and then dropped to the

level p = 0.07 in the interval [2700, 5000] to emulate glutamate-induced suppression [50]. For

t> 5000 the value of p was made to decrease linearly to account for degenerative processes

triggered by oxygen deprivation. Model behaviour as well as the evolution of p and E over

time are shown in Fig 12. Overall activity levels, which the model shows in this regime, are in

qualitative agreement with empirical observations reported in [45].

Materials and methods

Construction of Figs 6–8

To construct the figures, we run 3 � 105 iterations of model (4) from 5 random initial conditions

for each relevant set of parameters E, z, r, whilst keeping the values of w; p; E, and ε constant
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Fig 11. Firing and bursting activity of (4) as a function of z. Top panel shows the values of median ASDRs calculated across 1000 of

adjacent and non-overlapping intervals of t (see Methods), each containing k = 30 elements. Bottom panel shows the values of BI (see

Methods). The values of median ASDRs and BIs derived for the same values of p, r, and E are shown in the same color. Black lines show

sample averages.

https://doi.org/10.1371/journal.pone.0218304.g011
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(w = 1.5, p = 0.1, E ¼ 4, ε = 0.05). The values of parameter E where chosen in the equispaced

grid of 21 points in the interval [1, 3]. The values of z were varying adaptively. In the intervals

(0, 50] and (200, 300] these values were taken from equispaced grids with distances between

the grid’s nodes being equal to 0.1. In the interval (50, 200] these distances were set to 5. For

each set of model parameters and each initial condition, last 2 � 104 points in each run have

been recorded. Points corresponding to orbits from different initial conditions have been col-

lated together (color-coded), plotted in (qt, Et) space and stored as .gif files at [41]. This resulted

in circa 32000 images for r = 1 and r = 1.5, and circa 10000 images for r = 10. The resulting fig-

ures were visually inspected and classified into orbits converging to a) single equilibrium (5),

b) single equilibrium (6) c) single periodic orbit, d) complicated sets like the ones shown in Fig

5, and e) multiple attractors. These were color-coded and mapped onto the relevant parametric

domains.

Construction of Fig 11

To model ASDR and BI data, we generated 60 × 86 orbits of (4) for different values of z, r, p,

and E. The values of p, r, and E were chosen randomly (60 samples in total) in the intervals [1,

0.11], [1.5, 2] and [2, 2.5], respectively. Randomized choice of p, r, and E simulated fluctuations

in neuronal excitability and in the energy balance dynamics across cultures; increments of the

values of z modelled development of the network connectivity with the culture’s age or DIV.

Each triple of fixed but randomly chosen p, r, E was assigned 86 equally spaced values of z in

the interval [10, 180]. Such model parametrization enabled us to simulate an ensemble of neu-

ronal cultures capturing culture-to-culture variability as well as the cultures’ development over

time.

For each triple of p, r, E and every z, we generated an orbit of (4) comprising of 2 � 105 iter-

ates, and the orbits’ segments composed of the last 3 � 104 elements were used in the calcula-

tions. For each segment, we calculated the model’s analogue of the ASDR, as well as the

model’s BI. The model’s ASDR was defined as

ASDRt ¼ ðqt � yÞHðqt � yÞ;

Fig 12. Behavior of the model with phenomenological simulation of the effect of acute oxygen deprivation. Zone a in the left plot corresponds to

normal functioning, b shows effect of acute hypoxia, c emulates glutamate induced increase of activity, d and e are the intervals corresponding to

glutamate-induced suppression of neurons and degenerative damage.

https://doi.org/10.1371/journal.pone.0218304.g012
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where the value of threshold θ was set to 1/0.6745 of the median of qt in the segment (cf. [51]).

The model’s BI was determined in accordance with the approach presented in [42]. The entire

segment of the orbit was partitioned into adjacent and non-overlapping bins, each containing

k consecutive measurements of ASDRt. In our numerical experiments, we set k = 30. For each

bin, we calculated the sum of ASDRt in the bin. This was followed by determining the fraction

of the total activity contained in the top m% of the bins. This fraction was recorded as the vari-

able fm. The model’s BI was then defined as [42]:

BI ¼
fm � m

100

1 � m
100

:

Since the average width of ASDRt spikes in the model was about 10 steps, the value of m
was set to 50 (cf. [42]).

Conclusion

In summary, we have proposed a simple network model explaining burst generation in living

culture networks. A distinct feature of our model is presence of a dynamic exogenous energy

variable and neuronal activation probability that is made dependent on the energy, like in

general models of physiological adaptation [28]. We showed that introduction of these modifi-

cations already enables to explain evolution of cultures from resting state to population bursts,

at least in the mean-field approximation. In accordance to the model, emergence of bursts and

spikes is regulated by just few parameters that correspond to network connectivity and efficacy

of synaptic transmission. We also note that our energy-based model is complementary to

more traditional connectivity-focused approaches [23].

In this particular study, when comparing empirical data with model behavior, the number

of days in development has been related to network connectivity. We note, however, that the

latter in a broader biological context, can depend on various external factors such as e.g. stress

[52]. The proposed model hence might be able to predict qualitatively the effect of stress and

adaptation to stress on neuronal activity.

Large-scale multi-agent simulations demonstrated that these additional variables are capa-

ble of governing the network’s dynamical state and keeping it at the edge of percolation transi-

tion, depending on parameters. The energy feedback acts as as a mechanism for controlling

and maintaining metabolic homeostasis; this enables communication between nodes across

the whole network and at the same time prevents network’s overload caused by excessive prop-

agation of activity. The energy feedback suppresses excitation in individual neurons by dis-

abling, in effect, high-frequency local spike generation. It can therefore be also viewed as an

implementation of frequency dependent synaptic plasticity [17].

Despite qualitatively explaining certain phenomena observed in neuronal cultures, the

model is simplistic. It does not account for varying strengths of synaptic efficacy, plasticity

mechanisms and their time scales, and density of cells. It also may be interesting to look at

and thoroughly investigate the distributions of neural firing rates for different values of model

parameters and relate these distributions to empirical evidence reported in the literature [53].

Accounting for these is the subject of our future work.
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Appendix. Proofs of technical statements

Proof of Proposition 1

Notice that a = (1 − p)z 2 (0, 1) for all p 2 (0, 1), z> 0. Thus 1 � aqt 2 ½0; 1� for all qt 2 [0, 1],

and forward invariance of [0, 1] follows. The right-hand side of (2) is continuous and strictly

monotone with respect to qt on (0, 1], with qt = 0 being an equilibrium. Hence all forward

orbits of this map, i.e. qt, qt+1, qt+2, . . . are monotone, and map (2) has only fixed points as

attractors. Furthermore, the right-hand side of (2) is strictly concave, which implies that the

number of fixed points is at most two.

If the value of p is such that the right derivative of

f ðqtÞ ¼ 1 � ð1 � pÞzqt

qt = 0 is less or equal to 1 then strict concavity of f(�) implies that f(qt)< qt for all qt 2 (0, 1].

Hence (2) has only one fixed point, qt = 0. The corresponding condition is −z log(1 − p)� 1.

This fixed point is attracting: limt!1 qt = 0. If −z log(1 − p)> 1 then the trivial equilibrium

qt = 0 becomes a repeller and the second fixed point qt ¼ ~q, ~q 2 ð0; 1Þ appears. At this point,

the line y = q and the curve y = f(q) = 1 − (1 − p)zq intersect transversely. Indeed, if this is not

the case then there is a point q0 > 0 such that 1 � ð1 � pÞzq
0

¼ 0 (see Fig 13, left panel). The

latter, however, is impossible as (1 − p) 2 (0, 1). Moreover, at the point of this intersection, the

slope of the curve y = f(q) = 1−(1 − p)zq is always strictly smaller than one (see Fig 13, right

panel). In order to see this, recall that the following must hold at q ¼ ~q:

~q ¼ f ð~qÞ ¼
Z ~q

0

df
dq
ðqÞdq:

If df =dqð~qÞ � 1 then strict concavity of f implies that df/dq(q)> 1 for all q 2 ð0; ~q�. This,

however, contradicts to that ~q ¼ f ð~qÞ. Hence the slope of the function f(�) at the second fixed

point, ~q, is strictly smaller than one, and the fixed point is locally exponentially stable.

Proof of Proposition 2

Forward invariance. Similar to the proof of Proposition 1, we observe that 0 < psðEt;EÞ < 1

for all Et. Hence a ¼ ð1 � psðEt; EÞÞ
z
2 ð0; 1Þ and 1 � aqt 2 ½0; 1� for all qt 2 [0, 1]. This

Fig 13. Illustration to the proof of Proposition 1.

https://doi.org/10.1371/journal.pone.0218304.g013
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implies that qt 2 [0, 1] for all t regardless of the values of Et. Let Et 2 ½0;E� and Et< rqt. In this

case, Etþ1 ¼ ð1 � εÞEt þ εE 2 ½0; E�. If Et 2 ½0;E� and Et� rqt, then

Etþ1 ¼ ð1 � εÞEt þ εE � rqt � εðE � EtÞ � 0

Etþ1 � ð1 � εÞE þ εE � rqt � E:

Thus the domain fðq; EÞ jq 2 ½0; 1�; E 2 ½0; E�g is forward-invariant.

Statement 1. Observe, that q�
1
¼ 0, E�

1
¼ E is always an equilibrium of (4). At this equilib-

rium, E ¼ E�
1
� rq�

1
¼ 0, and hence the Jacobian Jðq�

1
;E�

1
Þ of the right-hand side of (4) at this

equilibrium is:

Jð0;EÞ ¼
� z log ð1 � psðE;EÞÞ 0

� r 1 � ε

0

@

1

A

It is clear that the eigenvalues of Jð0;EÞ are l1 ¼ � z logð1 � psðE;EÞÞ, λ2 = 1 − ε. There-

fore, the fixed point ðq�
1
;E�

1
Þ is an attractor when � z logð1 � psðE; EÞÞ < 1 and is a repeller

when � z logð1 � psðE;EÞÞ > 1. This proves statement 1 of the proposition.

Statements 2,3. Let (q�, E�) with q� 6¼ 0 be another equilibrium of (4). All such equilibria of

(4) must satisfy

q� ¼ 1 � ð1 � psðE�;EÞÞq
�z

E� ¼ ð1 � εÞE� þ εE � rq�HðE� � rq�Þ:

Depending on the sign of E� − rq�, the above system splits into the following two cases:

( q� ¼ 1 � ð1 � psðE�;EÞÞq
�z

E� ¼ E �
rq�

ε
; if E� � rq�;

(
q� ¼ 1 � ð1 � psðE�;EÞÞq

�z

E� ¼ E; if E� < rq�:
ð11Þ

Let gð�Þ ¼ sð�; EÞ. Note that the function gð�Þ : R! ð0; 1Þ is continuous and strictly

increasing for w> 0. Hence g � 1ð�Þ : ð0; 1Þ ! R exists, and is continuous and strictly increas-

ing too. Moreover, points (q�, E�) satisfying (11) should satisfy conditions below (and vice-

versa):

E� ¼ g � 1
1

p
1 � ð1 � q�Þ

1
q�z

� �� �

;

E� ¼ E �
rq�

ε
; if E� � rq�;

E� ¼ g � 1
1

p
1 � ð1 � q�Þ

1
q�z

� �� �

;

E� ¼ E; if E� < rq�:

8
>><

>>:

8
>><

>>:

ð12Þ

Consider the functions

hðq�Þ ¼ g � 1
1

p
1 � ð1 � q�Þ

1
q�z

� �� �

;

f ðq�Þ ¼ ð1 � q�Þ
1
q� :

Let O be the domain of the definition of the function h(�). If a solution of (12) exists with

q� 2 (0, 1) then the intersection

ð0; qÞ ¼ O \ ð0; 1Þ
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must be non-empty. The function f(�) is continuous on (0, 1), and its first derivative,

d
dq�

f ¼ ð1 � q�Þ
1
q� �

1

q�2
log ð1 � q�Þ �

1

q�ð1 � q�Þ

� �

¼ �
1

q�2
ð1 � q�Þ

1
q� log ð1 � q�Þ þ

q�

1 � q�

� �

;

is strictly negative in (0, 1). This implies that the function h(�) is strictly increasing in ð0; qÞ.
Consider the case when E� � rq�, (left system in (12)). Given that E� ¼ E � rq�=ε, as a

function of q�, is strictly decreasing on (0, 1), and h(�) is strictly increasing on ð0; qÞ, there

must be at most one equilibrium of (4) in ð0;minf1; qgÞ � ð0; 1Þ. If such equilibrium exists

then it must satisfy

q� ¼ 1 � 1 � ps E �
r
ε
q�;E

� �� �zq�

ð13Þ

for some q� 2 (0, 1). This, however, is possible only if the the derivative of the right-hand side

of (13) at q� = 0 is larger than 1. The corresponding condition is

d
dq�

1 � 1 � ps E �
r
ε
q�; E

� �� �zq�
� �

¼ �
d
dq�

1 � ps E �
r
ε
q�;E

� �� �zq�
� �

¼

� 1 � ps E �
r
ε
q�;E

� �� �zq�
�
�
�
�
�
q�¼0

�

� z log 1 � ps E �
r
ε
q�; E

� �� �
þ

zq�p
1 � ps E � r

ε q�;E
� �

d
dq�

s E;E
� �

" #�
�
�
�
�
q�¼0

¼ � z log ð1 � psðE;EÞÞ > 1:

Consider the case when E� < rq� (the right system in (12)). Equilibria corresponding to this

alternative must satisfy q� > E=r. This, however, is possible only if E=r < 1. The alternative

condition, E=r � 1, therefore implies that E� � rq�. The latter observation completes the proof

of statement 2.

Let E=r < 1 (or E� < rq�). Given that the function h(�) is strictly monotone on

ð0;minf1; qgÞ, only one equilibrium with E� ¼ E may exist. At this equilibrium,

z log 1 � ps E;E
� �� �

¼
log ð1 � q�Þ

q�
< � 1

and

�
�
�
�
d
dq�
ð1 � ð1 � psðE;EÞÞq

�z
Þ

�
�
�
� < 1:

The latter inequality is due to that 1 � ð1 � psðE;EÞÞq
�z

is strictly concave with respect to

q� on (0, 1) (see the proof of Proposition 1). Consider the Jacobian Jðq�;EÞ:

Jðq�;EÞ ¼

d
dq�
ð1 � ð1 � psðE;EÞÞq

�z
Þ ½��

0 ð1 � εÞ

0

B
@

1

C
A;
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where [�] stands for the corresponding entry of the Jacobian matrix. The absolute values of its

eigenvalues are clearly less than 1, and hence the fixed point is a stable attractor.
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