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ABSTRACT: Computing the free energy of binding a ligand
to a protein is a difficult task of essential importance for which
purpose various theoretical/computational approaches have
been pursued. In this paper, we develop a hybrid steered
molecular dynamics (hSMD) method capable of resolving one
ligand−protein complex within a few wall-clock days with high
enough accuracy to compare with the experimental data. This
hSMD approach is based on the relationship between the
binding affinity and the potential of mean force (PMF) in the
established literature. It involves simultaneously steering n (n =
1, 2, 3, ...) centers of mass of n selected segments of the ligand using n springs of infinite stiffness. Steering the ligand from a
single initial state chosen from the bound state ensemble to the corresponding dissociated state, disallowing any fluctuations of
the pulling centers along the way, one can determine a 3n-dimensional PMF curve connecting the two states by sampling a small
number of forward and reverse pulling paths. This PMF constitutes a large but not the sole contribution to the binding free
energy. Two other contributors are (1) the partial partition function containing the equilibrium fluctuations of the ligand at the
binding site and the deviation of the initial state from the PMF minimum and (2) the partial partition function containing
rotation and fluctuations of the ligand around one of the pulling centers that is fixed at a position far from the protein. We
implement this hSMD approach for two ligand−protein complexes whose structures were determined and whose binding
affinities were measured experimentally: caprylic acid binding to bovine β-lactoglobulin and glutathione binding to Schistosoma
japonicum glutathione S-transferase tyrosine 7 to phenylalanine mutant. Our computed binding affinities agree with the
experimental data within a factor of 1.5. The total time of computation for these two all-atom model systems (consisting of 96K
and 114K atoms, respectively) was less than one wall-clock week using 512 cores (32 Xeon E5-2680 processors).

■ INTRODUCTION
Accurately computing the free energy of binding a ligand to a
protein is a task of essential importance in biochemical and
biophysical studies that still presents us considerable difficulty
to overcome.1−14 An effective approach in the current literature
is to use the relationship1,4,14 between the potential of mean
force (PMF)15−19 and the binding affinity. The equilibrium
approaches, based on PMF or not, are not brute force in nature
but require delicate choices of biasing/constraining potentials
during the simulation processes. The nonequilibrium steered
molecular dynamics (SMD)20−38 approach, seemingly brute
force, can be very efficient in sampling forced transition paths
from the bound state to the dissociated state of the ligand but
has not been used reliably for free-energy calculations with
quantitative accuracy.37

In this paper, we present a hybrid steered molecular
dynamics (hSMD) approach that produces binding affinities
in quantitative agreement with experimental measurements
(within a factor of 1.5 in terms of the dissociation constant kD
defined as the ligand concentration at which the holoprotein
concentration equals the apoprotein concentration). The
hSMD approach is based on the relationship between the

PMF and the binding affinity in the established literature. The
widely used SMD involves pulling one center of mass of one
selection of the ligand atoms using a spring of finite, carefully
chosen, stiffness. In contrast, the hSMD approach involves
pulling n (n = 1, 2, 3, ...) centers of mass of n selected segments
of the ligand (using n springs of infinite stiffness to disallow any
fluctuation of the pulling centers along the way) to produce a
3n-dimensional (3n-D) PMF curve leading from the binding
site on or inside the protein to the dissociated state in the bulk
region far from the protein. This PMF difference between the
bound state and the dissociated state gives a large (but not
dominant) part of the absolute binding free energy. Another
part of the hSMD approach is the equilibrium molecular
dynamics (MD) sampling of the ligand’s fluctuations at the
binding site that also contribute to the binding free energy. The
third, final, part of the hSMD approach is SMD stretching and
equilibrium MD sampling of the ligand in the dissociated state
when one of the n pulling centers is fixed at a point in the bulk

Received: December 20, 2014
Published: February 11, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 1928 DOI: 10.1021/ct501162f
J. Chem. Theory Comput. 2015, 11, 1928−1938

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/ct501162f
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


far from the protein. This contributes the final piece of the
absolute binding free energy.
We carry out applications of this hSMD approach to two

ligand−protein complexes whose binding affinities were
experimentally measured and whose crystal structures are
available: OCA−GLB, caprylic acid (25 atoms, neutral) bound
to bovine β-lactoglobulin; and GSH−SjGST(Y7F), glutathione
(36 atoms, singly negatively charged) bound to Schistosoma
japonicum glutathione S-transferase tyrosine 7 to phenylalanine
mutant. The computing times required were approximately 62
wall-clock hours for OCA−GLB (all-atom model of 95 296
atoms) and 88 wall-clock hours for GSH−SjGST(Y7F) (all-
atom model of 114 538 atoms), respectively, using 32 Xeon E5-
2628 processors (512 cores) in parallel. In each of the two
cases, the computed absolute binding free energy agrees well
with the experimental data.

■ METHODS
Absolute Binding Energy from the 3n-D PMF.

Following the standard literature,1,4 the binding affinity at
one binding site is

∫
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where c0 is the standard concentration. For clarity and for
convenience of unit conversion, we use two different but
equivalent forms: c0 = 1 M on the left-hand side and c0 = 6.02 ×
10−4/Å3 on the right-hand side of eq 1. kB is the Boltzmann
constant and T is the absolute temperature. The three-
dimensional (3D) integrations are over the x-, y-, and z-
coordinates of the ligand’s position r1 that can be chosen as the
center of mass of one segment of or the whole ligand. The
integral has the units of Å3 that renders the right-hand side
dimensionless, as it should be. W[r1] is the 3D PMF. The
subscripts “site” and “bulk” indicate that r1 is near the PMF
minimum and r1 = r1∞ in the bulk region far from the protein,
respectively.
For a ligand whose size is not small and whose shape is not

simple, the position of one segment center r1 will not be
sufficient/efficient to represent its location and situation.
Instead, the ligand can be better described with the positions
(r1, r2, ..., rn) of n centers of mass of its n chosen segments.
Figure 1 shows an example of n = 3, where the positions (r1, r2,

r3) of the three α-carbons of glutathione are chosen to quantify
the location and situation of the ligand. These n positions
fluctuate without being in any way biased/constrained during
the equilibrium MD simulation of the bound state. They are
steered during the SMD runs from the bound state to the
dissociated state for constructing the 3n-D PMF W[r1, r2, ..., rn]
as a function of these positions. In the dissociated state, one of
them will be fixed at r1 = r1∞ while all others (r2, ..., rn) rotate
and fluctuate according to the stochastic dynamics of the
system without any other bias/constraint.
Note that in the relationship between the 3D and 3n-D

PMFs
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the 3(n − 1)-D integration over the (n − 1) positions (r2, ..., rn)
is effectively in a defined neighborhood of r1 because the ligand
as one whole molecule dictates that the n centers cannot be
stretched much farther from one another than its molecular
size. When r1 is near the binding site, so will be (r2, ..., rn).
When the ligand is in the dissociated state, r1∞ needs to be so
far from the protein that integration over (r2, ..., rn) will be all in
the region far from the protein. C is the normalization constant
that will be canceled out in the following expressions.
Making use of eq 2 twice in eq 1 (for the binding site and for

the bulk), one has the following expression for the binding
affinity.
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Now inserting the Boltzmann factor at a single state (r10, r20,
..., rn∞) chosen from the bound state ensemble and the
Boltzmann factor at the corresponding dissociated state (r1∞,
r2∞, ..., rn∞), the binding affinity can be expressed as three
contributing factors: the partial partition function at the binding
site Zn0, the PMF difference between two chosen states (r10, r20,
..., rn0) and (r1∞, r2∞, ..., rn∞), and the partial partition function
in the dissociated state Zn∞. Mathematically

Here (r1∞, r2∞, ..., rn∞) can be connected to (r10, r20, ..., rn0) via
many curves in the 3n-D space, but the PMF is a function of
state. Computation of the PMF difference between the two
states can be achieved along a single curve passing through
them both. The partial partition function Zn0 of the bound state
has the integration over all n centers and thus has the units of
Å3n.

Figure 1. Glutathione (GSH) at the binding site. The coordinates are
taken from the PDB (code 1U87). The three α-carbons of GSH are
shown as yellow balls marked with their position vectors. The protein
surface is shown as wire frames and the ligand is shown as licorice, all
colored according to atom names. All graphics of this paper were
rendered with VMD.39
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The partial partition function Zn∞ of the dissociated state has
the integration over n − 1 centers and thus has the units of
Å3n−3.
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Again, the use of c0 = 6.02 × 10−4/Å3 on the right-hand side
of eq 3 renders it a pure number as desired. The dissociation
constant will conveniently be in the unit of M = moles per liter.
The 3n-D PMF difference

Δ = −∞ ∞ ∞ ∞W W Wr r r r r r[ , , ..., ] [ , , ..., ]n n0, 10 20 0 1 2 (7)

is between one chosen bound state and its corresponding
dissociated state. This PMF difference can be computed by
means of the SMD simulations described in the latter part of
this section. Note that the one chosen position of the ligand in
the bound state
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is the starting point for SMD runs. It is taken from the bound
state ensemble of the system. It does not have to be the
minimum of the PMF but any one state in its close
neighborhood. Note that we take the collection of coordinate
vectors, e.g., eq 8, as a single-row 1 × 3n matrix. Its transpose in
the following eq 13 is a single-column 3n × 1 matrix. The one
state chosen from the dissociated state ensemble
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is related to the SMD starting point by a large enough
displacement in the 3n-D space.
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(10)

Here vd is the constant velocity of the SMD pulling and t is the
time it takes to steer/pull the ligand from the binding site to the
bulk.
The reference point for the PMF, W[r1∞, r2∞, ..., rn∞] = 0, is

chosen as when the ligand is far from the protein. The absolute
free energy of binding is

= −
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With all this, one needs to compute three factors to
determine the absolute free energy of binding. (1) The first
factor is the PMF difference between one chosen bound state
and its corresponding dissociated state that can be computed by
running SMD simulations of pulling the ligand forward and
backward along a 3n-D line connecting the two states. Note
that the PMF is a function of state (a point in the 3n-D space)
and the PMF difference is independent of the paths connecting
the two end points. (2) The second factor is the partial
partition function in the bound state that can be approximated
as Gaussian in cases of strong binding or can be numerically
evaluated by running equilibrium MD simulation. (3) The third
factor is the partial partition function in the dissociated state
that needs to be computed case by case for n = 2, 3, ....
When the binding is tight, one can approximate the integral

of eq 5 as Gaussian in the neighborhood of the PMF minimum.
The coordinates of the minimum of a Gaussian distribution are
equal to the average coordinates, of course, (⟨r1⟩, ⟨r2⟩, ..., ⟨rn⟩).
Carrying out the Gaussian integral, one has

π= Σ Δ k TZ (2 ) Det ( ) exp[ / ]n
n

n n0
3 /2 1/2
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Here the dimensionless quantity Δn/kBT gives a measure of
how far (r10, r20, ..., rn0), the initial state chosen for SMD, is
from the PMF minimum (⟨r1⟩, ⟨r2⟩, ..., ⟨rn⟩).
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Det represents the determinant. Σn is the 3n × 3n matrix of
the fluctuations/deviations of the pulling center coordinates δx1
= x1 − ⟨x1⟩, etc., in the bound state ensemble:
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Σn
−1 is the inverse matrix of Σn which can be accurately

evaluated by running equilibrium MD in the bound state of the
ligand−protein complex. This approximation is generally valid

if the ligand does not deviate much from the binding site.
However, it is invalid if the binding is extremely weak or the
binding site is not well localized. Then one would have to
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evaluate the 3n-D integral in eq 5 directly by numerical means.
To decide whether the Gaussian approximation is suitable or
not, one can evaluate how far from the Gaussian distribution is
the distribution of the fluctuations at the binding site. Note that
this evaluation does not require additional equilibrium MD
runs in the bound state of the ligand−protein complex. The
only computing effort needed is statistical analysis of the
fluctuation data. For example, by computing the first to the
fourth moments of the fluctuations and checking their
relationships, one can readily determine the non-Gaussian-
ness of the fluctuations.
Unlike the partial partition function Zn0 of the bound state,

the computation of the partial partition function of the
dissociated state, Zn∞ in eq 6, needs to be done individually
for each case of n = 1, 2, .... In the following, we detail three
cases: n = 1, 2, and 3.
One Center of Mass Is Steered. When one center of mass is

steered, n = 1, Z1∞ = 1, all we have to do is to evaluate the
fluctuations around the binding site (the 3 × 3 matrix Σ1) along
with the PMF difference. In this case, we have the dissociate
constant, within the Gaussian approximation of the fluctuations
at the binding site

π= Σ Δ
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and the absolute free energy of binding the ligand to the
protein

π
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It needs to be pointed out that the method of pulling one
center of the ligand is only practical for small ligands of simple
shapes. Furthermore, the Gaussian approximation of the ligand
fluctuations at the binding site in eq 12 is inapplicable to cases
of large fluctuations. For example, glycerol binds to GlpF inside
the conducting channel40 and its fluctuations inside the channel
are large and non-Gaussian. In the computation of its binding
affinity, some special attention needs to be paid to the integral
of eq 5 instead of using the Gaussian approximation in eq 12.41

Two Centers of Mass Are Steered. When two centers of
mass are steered, n = 2, one has
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which is an integration over the second steering center when
the first steering center is fixed in a position r1∞ far from the
protein. All one needs to do now is to evaluate the integral of
eq 17 around the position (r1∞, r2∞). Over there, far from the
protein, the ligand’s environment is spherically symmetrical
around the position of the first pulling center r1∞ that is fixed
while the second pulling center r2 is free to sample all space
available. Therefore, the 3D integral becomes the following
one-dimensional integral:

∫π= −∞ ∞Z r W r k T r4 d exp[ [ ]/ ]2 B
2

(18)

where r = |r2 − r1∞| is the distance between the two pulling
centers. W∞[r] here, as a function of r, is the PMF (reversible
work) for stretching the ligand between the two pulling centers.
It can be evaluated by conducting SMD runs of steering the

second pulling center r2 to and from the first pulling center that
is fixed at r1∞ along the axis passing through (r1∞, r2∞). In this,
we have the absolute free energy of binding the ligand to the
binding site

= − −∞ ∞ ∞E W W k T c Z Zr r r r[ , ] [ , ] ln[ / ]b 10 20 1 2 B 0 20 2
(19)

and the dissociation constant
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Here the partial partition function of the dissociated state Z2∞
is given in eq 18 and the partial partition function of the bound
state is approximated below as Gaussian.

π= Σ ΔZ k T(2 ) Det ( ) exp[ / ]20
6/2 1/2

2 2 B (21)

where Σ2 is a 6 × 6 matrix of coordinate deviations defined in
eq 14 and Δ2 is defined in eq 13 with n = 2.
It is worth noting that, for protein−ligand complexes whose

binding is strong, the computation of Z20 and Z2∞ can be
carried out efficiently with sufficient accuracy. However, the
computation of the PMF difference W[r10, r20] − W[r1∞, r2∞]
may be difficult. Particularly, if the orientational entropy plays a
large role, one needs to pull three or more centers of the ligand
segments.

Three Centers of Mass Are Steered. When three centers of
mass are steered, n = 3, we need to evaluate the integral of eq 6
around the position (r1∞, r2∞, r3∞) when the ligand is far from
the protein. Over there, the ligand’s environment is spherically
symmetrical around the position of the first pulling center r1∞
that is fixed while the second and the third pulling centers r2
and r3 are free to sample all space available. The PMF W[r1∞,
r2, r3] is only dependent upon three of the six degrees of
freedom contained in (r2, r3). Namely

θ=∞ ∞W W r rr r r[ , , ] [ , , ]1 2 3 21 31 (22)

where r21 = |r2 − r1∞| and r31 = |r3 − r1∞| are the distances
between the second/third pulling center and the first pulling
center that is fixed at r1∞. θ is the angle between (r2 − r1∞) and
(r3 − r1∞). Therefore, the six-dimensional integral of eq 6
becomes the following 3D integral:
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In terms of the 3D probability distribution ρ(r21, r31, θ), the
integral becomes

π θ
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which can be evaluated by equilibrium sampling in the 3D
space (r21, r31, θ) from MD runs with r1 being fixed at r1∞. θ∞ is
the angle between (r2∞ − r1∞) and (r3∞ − r1∞), of course.
If the equilibrium sampling in 3D cannot be achieved with

sufficient accuracy, we can approximate the PMF as three
separable terms:

θ θ

θ

−

≈ + +
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Correspondingly, we obtain
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Here γ is a factor negating the possible error introduced in eq
25. The PMF W∞[r21], as a function of the distance between
the two pulling centers r21, can be evaluated by conducting
SMD runs of steering the second pulling center r2 to and from
the first pulling center that is fixed at r1∞ along the axis passing
through (r1∞, r2∞). The PMF W∞[r31], as a function of the
distance between the two pulling centers r31, can be evaluated
by conducting SMD runs of steering the third pulling center r3
to and from the first pulling center that is fixed at r1∞ along the
axis passing through (r1∞, r3∞). The θ-integral can be
approximated by conducting equilibrium MD runs with the
first pulling center fixed at r1∞ to sample angular distribution.

Note that the direct sampling method in eq 24 is exact but it
requires sufficient sampling in the 3D phase space (r21, r31, θ),
which is not an easy task. The approximation eq 26 can be
evaluated with much less sampling effort in the dissociated
state, but it involves the approximation in eq 25 that is
somewhat arbitrary. When the two methods produce similar
results (as is the case in this work), one can be confident of the
computation, of course.
After all this, we have the free energy of binding the ligand to

the binding site:
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The corresponding binding affinity is
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Note that, by pulling three centers of the ligand, it is easier to
compute the PMF differenceW[r10, r20, r30] −W[r1∞, r2∞, r3∞]

Figure 2. (a) The in silico system box of the OCA−LGB complex (95 296 atoms, 100 Å × 100 Å × 92 Å in dimension). Na+ and Cl− ions are
represented by VDW (spheres) colored in yellow and cyan, respectively; water is represented by red and white dots; protein is represented by
ribbons colored by residue types; and the ligand (not easily visible) is represented by licorices colored according to atom names. (b) Caprylic acid
bound to bovine β-lactoglobulin. Caprylic acid, visible on top of the figure, is represented by licorice while protein is represented by ribbons and by
CPK (ball-and-stick), both colored according to residue types. (c) Caprylic acid (in licorice colored in green) resides in the binding pocket of the
protein (in surface representation colored according to atom names). (d) Caprylic acid in licorice representation colored according to atom names.
The two groups (highlighted in red and green respectively) are selected for steering/pulling.
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as the overall orientation of the ligand is fixed along the pulling
paths. Also, the computation of Z30 is not difficult for
complexes of strong binding whose equilibrium fluctuations
can be well approximated as Gaussian:

π= Σ ΔZ k T(2 ) Det ( ) exp[ / ]30
9/2 1/2

3 3 B (29)

where Σ3 is a 9 × 9 matrix of coordinate deviations defined in
eq 14 and Δ3 is defined in eq 13 with n = 3. However, the
computation of Z3∞ will be considerably more elaborate than
Z2∞. Nevertheless, for long ligands of irregular shapes, pulling
three or more centers should be the optimal method for
accurately computing the binding free energy or binding
affinity.
PMF from SMD Simulations. In an SMD20 simulation of

the current literature, one steers/pulls one center of mass of
one selection of atoms, using a spring with a carefully chosen
stiffness (spring constant). The use of a spring of finite stiffness
introduces fluctuations and dissipation in the added degrees of
freedom.35 In this paper, we choose n segments (mutually
exclusive n selections of atoms) of the ligand molecule for
steering/pulling with n infinitely stiff springs (n = 1, 2, 3, ...).
Namely, the n centers of mass of the chosen n segments will be
controlled as functions of time t

= ± =t i nr r v , 1, ...,i iA d (30)

while all the other degrees of freedom of the system are freely
subject to stochastic dynamics. Here ri = (xi, yi, zi) is the center
of mass coordinates of the ith segments. vd is the pulling
velocity. The + and − signs are for the forward and reverse
pulling paths, respectively. {ri} denotes (r1, r2, ..., rn), etc. We
adopt the multisectional scheme of ref 41. The path from the
bound state to the dissociated state is divided into a number of
sections. Within a given section whose end states are marked as
A and B, respectively, multiple forward and reverse pulling
paths are sampled along which the work done to the system is
recorded. The Gibbs free energy difference (namely, the PMF
or the reversible work) is computed via the Brownian dynamics
fluctuation−dissipation theorem (BD-FDT)42 as follows:
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Here the brackets with subscript “F” and “R” represent the
statistical average over the forward/reverse paths. W{riA} → {ri} is
the work done to the system along a forward path when the
ligand is steered from A to r.W{ri}→{riA} =W{riB}→{riA} −W{riB}→{ri}

is the work for the part of a reverse path when the ligand is
pulled from r to A. {riA}, {ri}, and {riB} are the coordinates of
the centers of mass of the steered segments of the ligand at the
end state A, the general state r, and the end state B of the
system, respectively. At each end of a section, A/B, the system
is equilibrated for a time long enough to reach conditioned
equilibrium while the steered centers are fixed at {riA}/{riB}. In
this way, running SMD section by section, we map the PMF
W[{ri}] as a function of the steered centers along a chosen path
from the ligand’s bound state to its dissociated state.

Simulation Parameters. In all the equilibrium MD and
nonequilibrium SMD runs, we used the CHARMM3643,44 force
field for all intra- and intermolecular interactions. We
implemented Langevin stochastic dynamics with NAMD45 to
simulate the systems at a constant temperature of 298 K and a
constant pressure of 1 bar. Full electrostatics was implemented
by means of particle mesh Ewald (PME) at 128 × 128 × 128.
The time step was 1 fs for short-range interactions and 2 fs for
long-range interactions. The PME was updated every 4 fs. The
damping constant was 5/ps. Explicit solvent was represented
with the TIP3P model. Selected α-carbons on α-helices and β-
sheets far from the binding site are fixed to their crystal
structure coordinates, fully respecting the experimentally
determined ligand−protein structures. The pulling was along
the z-axis at a speed of 2.5 Å/ns in all SMD runs. Namely, vd =
(0, 0, 2.5 Å/ns).

■ RESULTS

OCA Binding to LGB. The simulation system of the OCA−
LGB complex46 is illustrated in Figure 2, which was set up by
taking the crystal structure of the protein−ligand complex from
the PDB (code 3NQ9), putting it in the center of a box of
water, neutralizing the system, and then salinating it with Na+

and Cl− ions to the concentration of 150 mM. Running
equilibrium MD for 25 ns leads to the equilibrated system
shown in Figure 2. In particular, the equilibrium structure of
OCA bound to the protein is shown in Figure 2d, where the C8
(position vector r1) and C1 atoms (position vector r2) were
highlighted with the green and red balloons, respectively. These

Figure 3. (a) PMF W[r1, r2] as a function of the ligand displacement from its binding site along the pulling path when two centers are steered away
from the protein. (b) PMF W∞[r] in the dissociated state as a function of the distance r between the two steered centers (the C1 and C8 atoms).
W∞[r0] = 0 where r0 = 8.40 Å is the distance between C1 and C8 atoms of OCA at the binding site.
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two atoms were chosen as the two steering/pulling centers for
the nonequilibrium SMD runs.
At the binding site, the two pulling centers (r1, r2) fluctuate

inside the binding pocket with small amplitudes (shown in the
Supporting Information, Figure S1). These fluctuations give us
the following statistics at the binding site: the determinant of
the deviation matrix Det(Σ2) = 2.42 × 10−1 Å12 and the
deviation of the SMD initial state from the PMF minimum Δ2
= 1.68 kcal/mol.
Conducting multiple SMD runs starting from the initial state

(r10, r20) to the final state (r1∞, r2∞) along the z-axis, we
sampled four forward and four reverse pulling paths connecting
the two states. The curves of work done to the system along the
pulling paths are shown in the Supporting Information, Figure
S2. From those work curves, we computed the PMF as a
function of the z-displacement Δz shown in Figure 3a. This
PMF curve gives us the PMF difference between the one
chosen bound state and its corresponding dissociated state:

− = − ±∞ ∞W Wr r r r[ , ] [ , ] 10.2 0.6 kcal/mol10 20 1 2 (32)

Note that the PMF rises gradually all the way until Δz = 8 Å
as the ligand is steered out of the binding pocket. After that, the

PMF levels off. This behavior clearly reflects the hydrophobic
nature of the deep binding pocket of LGB and that of OCA’s
long hydrocarbon chain.46 The van der Waals attraction
between OCA and LGB is gradually reduced along the
dissociation path, and meanwhile, the hydrophobic surfaces of
LGB and OCA are increasingly exposed to water as they are
steered apart from one another. These two together are
responsible for binding OCA’s hydrocarbon chain inside LGB’s
β-barrel, giving rise to a large part of the binding free energy.
There are two other parts of the binding free energy: First,
fluctuations of OCA inside the barrel as represented by Z20.
Second, the rotation and fluctuations of OCA in the dissociated
state represented by Z2∞.
In the dissociated state, we fixed the C8 atom at r1∞ and

steered the C1 atom (position vector r2) toward and away from
C8, sampling four forward paths and four reverse paths (shown
in the Supporting Information, Figure S2). From the work
curves along those pulling paths, we obtained the PMF W∞[r]
in the dissociated state as a function of the C1−C8 distance r
shown in Figure 3b. Carrying out the integral of eq 18 using
this PMF curve, we obtained the partial partition function in
the dissociated state Z2∞ = 2.01 × 103 Å3.

Figure 4. (a) The in silico system box (114 538 atoms, 100 Å × 100 Å × 113 Å in dimension). Na+ and Cl− ions are represented by VDW (spheres)
colored in yellow and cyan respectively; water is represented by red (oxygen) and white (hydrogen) balls and sticks (CPK); protein is represented
by ribbons colored according to residue types; and the ligand GSH (not easily visible) is represented by licorices colored according to atom names.
(b) GSH (licorice colored according to atom names) in complex with the protein (ribbons colored according to residue types and CPK colored
according to atom names). (c) GSH (licorice colored according to atom names) in the binding pocket. Here the protein surface (colored according
to atom names) near or around the binding site is shown. (d) GSH in licorice with its three α-carbons bubbled in red (CA1), green (CA2), and blue
(CA3) balloons. These three α-carbons are chosen as the three pulling centers. The orientation of GSH here is identical to (c).
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It is not surprising to note that the ligand conformation in
the bound state represented by the distance between the two
pulling centers (C1 and C8 atoms)

= | − | = | − | =∞ ∞r r r r r 8.4 Å0 10 20 1 2 (33)

is not optimal in the dissociated state. For a range of r values,
the PMF has lower values:

< < <∞ ∞W r W r r[ ] [ ] for 7.0 Å 8.4 Å0 (34)

In the bulk region, away from the protein, the linear OCA
hydrocarbon carbon chain will fluctuate more freely than in the
binding pocket of LGB. These effects constitute a significant
contribution to the binding free energy represented in the
partial partition function Z2∞.
Putting all the afore-presented results together into eq 19, we

obtain the absolute binding energy of −5.7 ± 0.6 kcal/mol
(corresponding to a dissociation constant of kD = 71 μM) that
is in comparison with the in vitro result of −5.5 kcal/mol (kD =
92.6 μM).47

GSH Binding to SjGST(Y7F). The simulation system box of
the GSH−SjGST(Y7F) complex48 was set up by taking the
crystal structure of the protein−ligand complex from the PDB
(code 1U87), putting it in the center of a box of water,
neutralizing the system, and then salinating it with Na+ and Cl−

ions to the concentration of 150 mM. Running equilibrium MD
for 30 ns leads to the equilibrated system shown in Figure 4. In
particular, the equilibrium structure of glutathione is shown in
Figure 4d, where the three α-carbons CA1 (position vector r2),
CA2 (position vector r1), and CA3 (position vector r3), were
highlighted with the red, green, and blue balloons, respectively.
These three atoms were chosen as the three steering/pulling
centers for the nonequilibrium SMD runs.
At the binding site, the three pulling centers (r1, r2, r3)

fluctuate inside the binding pocket with small amplitudes
(shown in the Supporting Information, Figure S3). These
fluctuations give us the following statistics at the binding site:
The determinant of the deviation matrix Det(Σ3) = 2.53 ×
10−11 Å18 and the deviation of the SMD initial state from the
PMF minimum Δ3 = 5.78 kcal/mol.
Conducting multiple SMD runs starting from the initial state

(r10, r20, r30) to the final state (r1∞, r2∞, r3∞) along the z-axis,
we sampled four forward and four reverse pulling paths
connecting the two states. The curves of work done to the
system along the pulling paths are shown in the Supporting
Information, Figure S4. From those work curves, we computed
the PMF as a function of the z-displacement (shown in Figure
5). This PMF curve gives us the PMF difference between the
one chosen bound state and its corresponding dissociated state.

−

= − ±
∞ ∞ ∞W Wr r r r r r[ , , ] [ , , ]

13.7 0.9 kcal/mol
10 20 30 1 2 3

(35)

Note that the shape of GSH is irregular. Pulling its center of
mass (n = 1) would not be efficient for sampling the relevant
phase space. Pulling three centers (n = 3) turned out to be
effective as indicated in the PMF curve of Figure 5. The PMF
rises most rapidly during the first 1.5 Å of displacement,
showing effectiveness of pulling the three α-carbons of GSH
simultaneously to separate its backbone from the protein. From
1.5 to 7 Å the oscillatory rise in PMF indicates separation of
GSH side chains from the protein. After that, the PMF
gradually rises some more and then levels off after 15 Å,
indicating the ligand is in the bulk region (dissociated from the

protein). Pulling three centers here is advantageous over pulling
one center because the separation of the ligand from the
protein, if pulled by one center, involves tight entanglement of
the ligand’s fluctuations in conformation and in orientation
with the fluctuations of the many residues at and near the
binding site. By pulling three centers, the ligand conformation
and orientation are not allowed to fluctuate. Their fluctuations
are sampled in the dissociated state far from the protein. This
disentanglement of two sets of fluctuations turned out to be
very effective.
In the dissociated state, we computed the partial partition

function Z3∞ in two ways. First, we used eq 24 on the long time
equilibrium fluctuations of CA1 (r2) and CA3 (r3) around CA2
(fixed at r1∞) shown in the Supporting Information, Figure S5.
Second, we computed the PMFs in eq 26. Fixing CA2 at r1∞,
we conducted SMD runs steering CA1 (r2) toward and away
from CA2, sampling four forward and four reverse pulling paths
(shown in the Supporting Information, Figure S6a). Likewise,
steering CA3 (r3) toward and away from CA2, we sampled four
forward and four reverse pulling paths (shown in the
Supporting Information, Figure S6b). From those work curves,
we extracted the PMF W∞[r21] as a function of the CA1−CA2
distance in Figure 6a and the PMF W∞[r31] as a function of the
CA3−CA2 distance in Figure 6b. Meanwhile, we approximate
W∞[θ] ≈ 0 and γ ≈ 1. With all these put together into eq 26,
we obtained the partition function Z3∞ in the dissociated state.
In two different ways described above, we obtained identical
results for the partial partition function of the dissociated state,
Z3∞ = 1.2 × 104 Å6.
It is interesting to note that the PMF W∞[r31] (Figure 6b)

has a deep, nearly harmonic well centered at a CA3−CA2
distance r31 ∼ |r3∞ − r1∞| = |r30 − r10| = 3.8 Å. This indicates
that binding GSH to the protein does not significantly stretch
CA3 from CA2. In contrast, the PMF W∞[r21] as a function of
the CA1−CA2 distance (Figure 6a) behaves very differently.
The PMF well is anharmonic and its minimum is lower than
the PMF value at the CA1−CA2 distance |r2∞ − r1∞| = |r20 −
r10| = 6.2 Å of the bound state. Binding GSH to the protein
actually causes CA1 to stretch away from CA2 and reduces the
fluctuations of CA1. This gives rise to a nonnegligible
contribution to the binding free energy.
Putting together the bound state fluctuations, the PMF

difference, and the dissociated state fluctuations into eq 27, we
obtain the absolute binding energy of −7.0 ± 0.9 kcal/mol
(corresponding to a dissociation constant of kD = 8.2 μM) that

Figure 5. PMF W[r1, r2, r3] along the path of pulling GSH out of the
binding pocket.
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is in comparison with the ITC result of −6.75 kcal/mol (kD =
13 μM).49

■ DISCUSSION

In terms of a computational approach, we have developed a
hybrid steered molecular dynamics approach for computing
absolute binding energy from the PMF along a dissociation
path. Applying this hSMD approach with high-performance
parallel processing, one can achieve, within a few wall-clock
days, the computation of the binding affinity of one ligand−
protein complex with accuracy comparable with experimental
measurements. The hSMD approach is “brute force” in the
sense that one does not have to delicately devise biasing and
constraining potentials during the course of simulations. Also, it
does not involve sophisticated ways of removing the artifacts
introduced by biasing/constraining the ligand in other PMF-
based and non-PMF-based approaches. hSMD can be
implemented straightforwardly by steering/pulling the n
centers of mass of n chosen segments of a ligand using n
infinitely stiff springs along one predetermined dissociate path,
disallowing any deviations from the path. This use of a single
path is correct because the PMF is a function of state.
Therefore, the PMF difference between two states is
independent of the paths connecting them. All other
contributions, in addition to the PMF difference between the
two end states of this one dissociation path, are rigorously
accounted for in the partial partition functions of the bound
and the dissociated states. The segments chosen to be steered,
however, need to be the most stable parts of the ligand in the
bound state because the coordinate integrations of these
centers then can be approximated as Gaussian. The Gaussian
approximation is expected to be valid for a wide range of
ligand−protein complexes because there should always be at
least one center of a ligand that does not deviate greatly from
its bound-state coordinates but is tightly bound to the protein
except for the cases of very weak binding. Another possible
difficulty for the hSMD approach lies in the coordinate
integration in the dissociated state when three segments’
centers of mass are steered. The approximation in eq 26 is
based on the assumptions that two of the three pulling centers
do not have significant contribution from the stereo collision
between them and that the angle between the lines they form
with the other center is approximately free to bend. When these

two assumptions are not valid, the coordinate integration in eq
23 will necessitate further new schemes of approximation.
In terms of biophysics, we have provided atomistic details in

support of the binding mechanisms of two ligand−protein
complexes elucidated in the experimental investigations.46−49

For both OCA−GLB and GSH−SjGST(Y7F) complexes, our
equilibrium MD simulations confirm the experimentally
determined binding conformations. During the long time
dynamics, the ligands were found to fluctuate with small
deviations at the binding sites determined in the crystal
structures of the ligand−protein complexes (see Figures 2b,c
and 4b,c and the Supporting Information, Figures S1 and S3).
Also, our computed dissociation constants agree with the
experimentally measured values within a factor of 1.5.
Therefore, it is expected that hSMD can be used to reliably
predict binding affinities of ligand−protein complexes whose
structures are available in the PDB without data for binding
affinities yet and that the hSMD predictions would be validated
by future experimental measurements. Finally, the agreement
between the computed results in this work and the
experimental data was based on the CHARMM force field,
indicating its accuracy. The hSMD approach, however, is
independent of which force field to use. It can be implemented
with other force fields, of course, which may or may not
produce similar results.
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