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Abstract

Pulmonary hypertension (PH) is a highly morbid condition. PH due to left

heart disease (PH‐LHD) has no specific therapies and pulmonary arterial

hypertension (PAH) has substantial residual risk despite several approved

therapies. Multiple lines of experimental evidence link metabolic dysfunction

to the pathogenesis and outcomes in PH‐LHD and PAH, and novel metabolic

agents hold promise to improve outcomes in these populations. The anti-

diabetic sodium–glucose cotransporter 2 (SGLT2) inhibitors and glucagon‐like
peptide‐1 (GLP1) agonists targeting metabolic dysfunction and improve out-

comes in patients with LHD but have not been tested specifically in patients

with PH. The angiotensin receptor/neprilysin inhibitors (ARNIs) produce

significant improvements in cardiac hemodynamics and may improve meta-

bolic dysfunction that could benefit the pulmonary circulation and right

ventricle function. On the basis of promising preclinical work with these

medications and clinical rationale, we explore the potential of SGLT2 in-

hibitors, GLP1 agonists, and ARNIs as therapies for both PH‐LHD and PAH.

KEYWORD S

metabolic dysfuction, pulmonary arterial hypertension

INTRODUCTION

Group II pulmonary hypertension (PH) is a hemody-
namic change of the pulmonary venous vasculature dri-
ven by elevated postcapillary pressure transmitted from
the left heart from either heart failure with reduced or
preserved ejection fraction (HFrEF and HFpEF, respec-
tively).1–3 Group II PH driven by left heart disease (PH‐
LHD) can be clinically isolated or occur in conjunction
with elevated precapillary pulmonary arterial hyperten-
sion (combined pre‐ and postcapillary PH [CPH]), giving

a spectrum of disease across the pulmonary vascular
bed.1–3

PH‐LHD is the most common manifestation of PH, oc-
curring in 40%–75% of patients with HFrEF and 36%–83%
with HFpEF.4–10 The prognosis following the development
of PH‐LHD is poor, with multiple studies showing increased
mortality beyond that of left heart failure.5,7,11–14 Manage-
ment for PH‐LHD is limited to management of any co‐
occurring conditions, and to date no therapies have been
shown to be effective for the prevention or progression of
PH‐LHD.3 Even for those patients with CPH, trials of
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treatment with typical Group I pulmonary arterial hy-
pertension (PAH) therapies such as endothelin‐1 (ET‐1) re-
ceptor antagonists or phosphodiesterase‐5 (PDE5) inhibitors
have not shown meaningfully improved outcomes.15–17 Ad-
ditional studies, including ones investigating prostanoids, are
ongoing; however alternative therapies need to be in-
vestigated given the lack of clear benefit in the PH‐LHD and
CPH populations.3

Recently, several classes of medication have been or
are anticipated to be approved to reduce clinical events

in heart failure. The mechanisms of these agents sug-
gest that they may be beneficial in patients with PH‐
LHD and perhaps even PAH. Accordingly, this review
will investigate the work of three novel classes of
medication in the setting of PH‐LHD and PAH: the
sodium–glucose cotransporter 2 (SGLT2) inhibitors,
the glucagon‐like peptide‐1 (GLP1) receptor agonists,
and the angiotensin receptor/neprilysin inhibitors
(ARNIs) (Table 1). These agents show promise as po-
tential therapies for both myocardial diseases that

TABLE 1 Overview of the effects of SGLT2 inhibitor, GLP1 agonist, and ARNI therapy 2

Organ SGLT2 inhibitors GLP1 agonists ANRI therapy

• Reduce PA
pressures

• Reduce adverse
remodeling

• Reduce inflammation,
fibrosis, and adverse
remodeling

• Increase nitric oxide

• Reduce PA pressures
• Reduce adverse
remodeling

• Reduce RV
pressures

• Improve
metabolism

• Reduce
inflammation

• Reduce adverse
remodeling

• Improved RV function
• Reduce inflammation
• Cardioprotective in ischemia
• Reduce adverse remodeling

• Reduce RV pressures
• Reduce adverse
remodeling

• Reduce hypertrophy

• Improve insulin
sensitivity

• Improve insulin sensitivity
• Weight loss
• Brown fat thermogenesis

• Potentially improve
insulin sensitivity

• Enhance osmotic
diuresis

• Enhance natriuresis

Abbreviations: ARNI, angiotensin receptor (blocker)/neprilysin inhibitor; GLP1, glucose‐like peptide (1); PA, pulmonary artery; RV, right ventricle; SGLT2,
sodium–glucose cotransporter.
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leads to Group II PH and for pulmonary vascular
dysfunction in patients CPH or PAH.

Metabolic dysfunction as a driver
of pulmonary vascular disease and
myocardial dysfunction

While the precise mechanisms of PH‐LHD and PAH re-
main unclear, there is growing evidence that metabolic
dysfunction is injurious to the right ventricle (RV) and
pulmonary vasculature. Obesity and insulin resistance/
glucose intolerance are strongly associated with increased
risk of developing and can modify the severity of pul-
monary vascular dysfunction manifested as Group II PH‐
LHD (particularly CPH) and PAH.7,12,18–29 Exposure to a
high‐fat diet (HFD), an inducer of metabolic dysfunction,
can produce pulmonary vascular dysfunction in multiple
animal models and is enhanced by alterations in apoli-
poprotein E, a protein involved in lipid metabolism.30–34

The HFD results in increased pulmonary vascular reactive
oxygen species, inflammation, and remodeling, leading to
increased pulmonary artery stiffness and pressure.33–35

Bone morphogenic protein receptor type 2 (BMPR2) mu-
tations appear to contribute to the development of insulin
resistance and weight gain in mice models of PAH.36–38

HFD exposure in BMPR2 mutant models augments the
severity of PAH and is strongly correlated with fasting
insulin levels rather than glucose, further suggesting
metabolic dysfunction is deleterious to the pulmonary
vasculature.35 This is significant when considering that
BMPR2 mutations drive ~25% of idiopathic PAH and its
expression is altered in almost all cases of connective
tissue‐associated PAH.39–41 Several of these HFD models
have shown that the metabolic sensitizers metformin and
rosiglitazone can rescue (i.e improve insulin sensitivity,
RV function, and pulmonary artery pressures in) the PAH
phenotype.32,34

Metabolic dysfunction is also toxic to the myocardium.
Under normal conditions, the heart preferentially uses
lipids in the form of fatty acids for energy production
which is pathologically shifted to glycolysis in PAH and
PH‐LHD.42,43 Metabolomic profiling of PAH patients
shows abnormal lipid homeostasis with increased proin-
flammatory lipids.44 The RVs of PAH patients mirror this
disruption, with increased myocardial triglyceride levels
and elevated markers of lipotoxic ceramides on cardiac
magnetic resonance imaging.45 A mouse model of
HFD‐induced PAH showed increased myocardial lipid
accumulation and hypertrophy, which correlated with
impaired RV diastolic and systolic function.34 In well‐
controlled, type‐2 diabetic patients without complications,
myocardial triglyceride levels correlate with impaired

echocardiographic strain, a marker of subclinical myo-
cardial dysfunction.46,47 Moreover, individuals with me-
tabolic syndrome are more likely to have RV dysfunction,
with an increased incidence of RV hypertrophy, elevated
pulmonary artery systolic pressures, and abnormal RV
diastolic function.48,49 This unaddressed myocardial dys-
function might explain the continued deterioration of RV
function in PAH despite full medical treatment with
current indicated therapy such as prostacyclins, ET‐1 re-
ceptor antagonists, and PDE5 inhibitors.50 Preclinical and
clinical studies suggest that RV dysfunction may be
modifiable with exposure to therapies that improve me-
tabolic status. For example, an 8‐week‐long phase‐2 clin-
ical trial of metformin in patients with PAH showed
significant improvement in RV fractional area change on
echocardiography and decreased RV lipid content as ex-
ploratory endpoints, indicating that metabolic dysfunction
is a promising therapeutic target.51

Metabolic dysfunction also drives inflammation that
contributes to PH. Metabolic function is closely linked to
immune regulation as part of an organism's homeostatic
equilibrium.52 Obesity is associated with elevations in
inflammatory markers such as C‐reactive protein, trans-
forming growth factor‐β (TGFβ), neutrophil myeloper-
oxidase, and calprotectin.53–57 Adipocytes themselves
produce proinflammatory signals including in-
flammatory fatty acids, interleukin‐1 (IL‐1), interleukin‐6
(IL‐6), and tumor necrosis factor‐α (TNFa) which sti-
mulate immune system activation and in turn worsen
metabolic dysfunction.58 Animal models have shown
that increased inflammatory signaling can also lead to
the development of PH. Treatment of mice with exo-
genous IL‐6 has been shown to induce PH, with animals
showing increased RV pressures and RV hypertrophy.
This effect was augmented by exposure to hypoxia
chronic.59 A mouse model of IL‐6 overexpression re-
sulted in PH with the formation of T cell lesions in the
pulmonary vasculature.60 Overexpression of Fos‐related
antigen 2 and resultant activation of the Fos pathway, a
downstream pathway of inflammatory signaling, has
been shown to result in the development of pulmonary
fibrosis in mice.61 Lung tissue from PAH samples shows
increased pulmonary vascular infiltration of chronic in-
flammatory cells such as T cells, B cells, and macro-
phages.62,63 Depletion of T cells with anti‐CD4
monoclonal antibodies in an ovalbumin‐induced mouse
model of PH reduced pulmonary artery muscularization,
further reinforcing the pathogenic nature of chronic in-
flammation in PH.64 Chronic inflammation in the pul-
monary vasculature reduces nitric oxide (NO)
production, increases fibrosis, and induces an endothelial
to mesenchymal transition (EMT).65 EMT is implicated
in a variety of pathologic vascular phenotypes, including
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PAH where it contributes to the muscularization of the
pulmonary vasculature.66–69 Chronic inflammation is
also found in the RV and likely contributes to the myo-
cardial dysfunction that exacerbates clinical deterioration
in PAH.70,71 A mouse model of HFD‐induced PAH
showed that the anti‐inflammatory fatty acid ni-
trooctadecenoic acid could rescue the PAH phenotype,
including the metabolic dysfunction.33 Work is ongoing
to elucidate if targeting this proinflammatory environ-
ment has a potential therapeutic target for PAH.70,72,73

SGLT2 inhibitor therapy

The sodium–glucose cotransporter 2 (SGLT2) is a trans-
port protein located in the proximal tubule of the ne-
phron responsible for the reuptake of filtered glucose
from the glomerular filtrate.74 The SGLT2 inhibitors
block the transporter thereby lowering the reabsorption
threshold of glucose, resulting in glucosuria which low-
ers serum glucose.74 Four SGLT2 inhibitors have been
approved after trials showed them to be efficacious in
lowering hemoglobin A1c, starting with first‐in‐class
canagliflozin in 2013 and subsequently followed by da-
pagliflozin, empagliflozin, and ertugliflozin.75–83 Sub-
sequent Food and Drug Administration (FDA)‐mandated
cardiovascular outcome trials of novel antidiabetic agents
showed treatment with canagliflozin, dapagliflozin, and
empagliflozin resulted in significant improvements in a
composite outcome of major adverse cardiovascular
events (MACE; cardiovascular death, nonfatal stroke or
myocardial infarction), with secondary endpoints sug-
gesting improvement in renal function. Dapagliflozin
and empagliflozin additionally showed reduced hospita-
lizations for heart failure.84–87 Ertugliflozin showed no
significant difference in either cardiovascular or renal
outcomes.88 This led to subsequent studies showing that
canagliflozin and dapagliflozin reduce renal dysfunction,
and others showing that dapagliflozin and empagliflozin
improve outcomes in HFrEF. Notably, these trials did not
exclude patients with PH‐LHD unless they required
oxygen, while they did exclude patients with PAH.89–92

Subsequent analysis of the canagliflozin cardiovascular
outcomes trial (CANVAS) also showed a reduction in
hospitalization and death in both the HFpEF and HFrEF
subgroups.93

SGLT2 inhibitors have multiple effects that may be
beneficial in patients with PH‐LHD. They directly address
insulin resistance and improve cardiac energy utilization
by reducing glycolysis and increasing fatty acid
oxidation.94,95 They induce osmotic diuresis via glucosuria
and have shown a primary benefit in improving outcomes
in both the HFrEF and HFpEF populations.91–93,96 Their

role in reducing the progression of chronic kidney disease
(CKD) might also be therapeutically important as CKD
is associated with PAH and its presence worsens
outcomes.97,98 There is also growing evidence that SLGT2
inhibitors reduce inflammation and prevent cardiac re-
modeling, although further work is needed to determine if
this is a direct effect on cardiomyocytes or secondary to
improvement in the inflammatory dysmetabolic
state.95,99–104

Evidence is accumulating of their potential efficacy in
both PAH and PH‐LHD. An ex‐vivo study of pulmonary
and coronary arteries in a diabetic mouse model showed
that SGLT inhibition, using both a nonspecific SGLT
inhibitor and the SGLT2 specific inhibitor canagliflozin,
resulted in direct, specific vasodilation of the pulmonary
arteries.105 In a rat model of monocrotaline‐induced
PAH, empagliflozin treatment resulted in reduced mor-
tality, hemodynamic, pulmonary vasculature and myo-
cardial architecture alterations.106 A randomized,
controlled, open‐label trial of 78 patients with a baseline
normal EF, type 2 diabetes, hypertension, and/or stable
ischemic in Japan showed that treatment with dapagli-
flozin attenuated the development of exercise‐induced
PH defined as an echocardiographic RV systolic pressure
(RVSP) > 50mmHg post‐exercise. The trial excluded pa-
tients with advanced heart failure (New York Heart As-
sociation class 3 or 4, or any prior heart failure
hospitalization), or with a resting RVSP > 50mmHg.107

EMBRACE‐HF randomized 65 stable heart failure pa-
tients with preserved and reduced EF in a double‐blind
study of empagliflozin to study its effects on pulmonary
artery (PA) pressures. All patients had implantable PA
pressure monitors and the mean PA pressure of both
groups on enrollment was 30mmHg. Treatment with
empagliflozin resulted in a reduction in PA diastolic
pressure of 1.7 mmHg at 12 weeks. The secondary end-
points of decreased PA systolic and mean pressures were
not significant, but the PA mean decrease trended to-
wards significance (p= 0.07). The study was limited by
the small sample size and significant differences in age,
glomerular filtration rate, and mineralocorticoid receptor
antagonist usage.108 Both human studies, while metho-
dologically limited, suggest that SGLT2 inhibitors may be
effective in addressing both myocardial dysfunction and
pulmonary vascular disease in patients with PAH and
PH‐LHD. Future work is needed to explore this possibi-
lity further with adequately powered clinical trials.

GLP1 receptor agonist therapy

Glucagon‐like peptide‐1 (GLP1) is an incretin hormone
secreted by the intestinal L cells in response to nutrients
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in the gut lumen.109 GLP1 has pleiotropic effects with its
major functions occurring at the pancreas to regulate
insulin secretion, the gastrointestinal tract to coordinate
digestion, adipose tissue to promote brown fat thermo-
genesis, and the hypothalamus to regulate satiety.109,110

GLP1 is rapidly degraded by dipeptidyl‐peptidase 4
(DPP4), with a half‐life of only 1–2min.109 Given its
beneficial effects to correct metabolic dysfunction, mul-
tiple agents were developed to target the GLP1 axis.
Novel small‐molecule inhibitors of DPP4 prevent de-
gradation of endogenous GLP1.111,112 Degradation‐
resistant GLP1 agonists activate the GLP1 receptor.113,114

These agents are effective in lowering hemoglobin A1c
and promote significant weight loss, with semaglutide
generally showing superiority.113–119 GLP1 agonists have
also been studied for their outcomes in cardiovascular
disease, with dulaglutide, liraglutide, and semaglutide
showing significant improvement in MACE outcomes
primarily driven by ischemic event reductions.120–123

The GLP1 receptor is expressed in multiple tissues,
including the heart and the smooth muscle cells of the
main pulmonary artery branches in primates.124 GLP1
agonists reduce inflammatory signaling at a cellular
level, and animal studies show GLP1 agonists reduce
infarct size and improve outcomes in the setting of in-
duced acute myocardial infarction (AMI), strongly
suggestive of a cardioprotective role.125–131 Following a
small nonrandomized trial of 10 patients with AMI who
received GLP1 agonist infusions peri‐AMI and had sig-
nificant improvement in post‐AMI cardiac function, a
larger randomized trial of GLP1 infusion in ST‐elevation
AMI showed a significant decrease in infarct size and
increase in salvaged myocardium following coronary
intervention as compared to ischemic area matched
controls.132,133 A cardioprotective effect has also been
shown in non‐AMI settings, with GLP1 agonists im-
proving cardiac function in the setting of dobutamine‐
induced cardiac stress, and in patients undergoing
elective coronary intervention requiring temporary
coronary artery balloon occlusion.134,135 A subsequent
safety and efficacy study of higher dose GLP1 agonist in
AMI showed safety but was underpowered to assay for
cardioprotective effects.136

Outside the ischemic setting, GLP1 agonists and
DDP4 inhibitors have been evaluated for their ability to
improve cardiac function. In a small nonrandomized
cohort of patients with symptomatic HFrEF, a GLP1
agonist infusion resulted in improved LV function and
exercise capacity, however, subsequent randomized
controlled trials demonstrated no difference in outcomes
with GLP1 agonists in HFrEF patients.137–140 Subsequent
analysis of the EXSCEL trial showed that while exenatide
had no overall benefit for patients with type 2 diabetes, in

patients without heart failure it did reduce new heart
failure hospitalizations and risk of death.140,141

Diabetic patients seem to benefit most from GLP1
agonist therapy, with a large retrospective cohort show-
ing GLP1 agonist therapy in patients with diabetes was
associated with reduced incidence of new heart
failure.142 A rat model of diabetes‐induced cardiomyo-
pathy showed the DPP4 inhibitor sitagliptin prevented
myocardial remodeling and improve left ventricle (LV)
function.143 A small randomized, double‐blind trial of
liraglutide in diabetic patients showed improvement in
LV function on cardiac MRI.144 Another small rando-
mized non‐blinded trial of liraglutide versus metformin
showed a significant improvement in the primary end-
point of echocardiographic strain imaging with GLP1
agonist therapy. The study additionally showed sig-
nificant improvements in its secondary endpoints of re-
duced arterial stiffness and decreased oxidative stress as
measured by serum oxidized lipids and proteins.145 A
nondiabetic rat model of aortic‐band induced HFpEF
showed that GLP1 agonist therapy improved LV function
and survival, suggestive that GLP1 agonists can be ben-
eficial in HFpEF and act directly on cardiomyocytes to
prevent adverse remodeling.146 Further work is needed
but the animal models and clinical data suggest that
GLP1 therapy could substantially reduce and possibly
treat heart failure associated with metabolic dysfunction,
potentially reducing the burden of PH‐LHD.

The GLP1 axis is a promising target for PAH as well.
In vitro studies show that GLP1 agonists reduce in-
tracellular inflammatory signals, increase NO signaling,
and prevent the EMT which is linked to abnormal lipid
metabolism and a number of disease states including
PAH.147–149 While the precise mechanism is yet to be
fully elucidated, in hepatocytes GLP1 agonists increase
lipid efflux and restore cellular viability suggesting that
the restoration of normal cellular lipid metabolism is
key.150 GLP1 agonist therapy in a rat model of
bleomycin‐induced idiopathic lung fibrosis (IPF) atte-
nuated both the inflammatory and fibrotic phases of the
model, improved lung architecture, and reduced RV
hypertrophy.151 Additional studies in rat PAH models
induced by bleomycin, monocrotaline, and hypoxia have
shown that DPP4 agonists protect against pulmonary
vascular remodeling, that the effect is abolished by GLP1
antagonist therapy, and then rescued by GLP1 agonist
therapy.147,152 In these models, GLP1 activation reduced
inflammatory signaling, reduced smooth muscle cell
proliferation, and reversed TGFβ mediated EMT.147,152 A
murine hypoxia model of PAH showed GLP1 agonist
therapy improved directly measured RVSP, decreased
pulmonary arteriole thickening, and augmented intrinsic
NO production.153 An angiotensin‐II induced model of
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PAH in mice suggests these effects are mediated by en-
dothelial cells, as an endothelial cell‐specific GLP1 re-
ceptor knockout population showed no response to
liraglutide.154 Additional studies are needed to determine
if these effects are seen in humans, but accumulating
data is encouraging that GLP1 agonists may benefit PAH.

The endogenous natriuretic peptide
system: A regulator of hemodynamic
and metabolic homeostasis

B‐natriuretic peptide (BNP) is an endogenous natriuretic
peptide‐hormone released primarily from ventricular
cardiomyocytes in response to stretch.155 Secreted Pro‐
BNP is cleaved to form BNP and the N‐terminal frag-
ment, NT‐Pro‐BNP, which is also released. BNP is
cleared by binding to the natriuretic peptide clearance
receptor (NPCR, also known as natriuretic peptide
receptor [NPR] C) or degradation by neprilysin, an en-
dopeptidase.155 Atrial natriuretic peptide (ANP) is re-
leased from the atrial cardiomyocytes and functions
similarly to BNP.156

The natriuretic system acts to reduce heart afterload
by increasing natriuresis/diuresis, vasodilatation, and
inhibition of the renin–angiotensin–aldosterone (RAA)
and sympathetic axes.157 If not cleared by NPCR, BNP
binds NPR‐A and B receptors which increase in-
tracellular cyclic guafnosine monophosphate (cGMP) to
trigger these effects.156,158 In the endothelium, this re-
sults in vasodilation, reduced sodium reabsorption in the
nephron, RAA antagonistic intracellular signaling, and
diminished sympathetic outflow from the nervous
system.159–162 BNP also is a well‐established biomarker of
ventricular hemodynamic overload for both PAH and left
heart failure.163,164

There is growing evidence that the natriuretic system
is a modulator of metabolism and that its dysfunction
seen in both PAH and PH‐LHD might play a causative
role. Increased natriuretic peptides have been shown to
promote thermogenic browning of white adipose tissue
in both human and mouse adipocytes.165 Insulin re-
sistance and especially obesity are associated with de-
creased circulating natriuretic peptides, which might
represent a natriuretic peptide deficient state similar to
that of insulin resistance.166,167 Adipose‐specific deletion
of NPCR in mice has been shown to be protective against
insulin resistance, obesity, and visceral fat accumulation,
potentially by decreasing natriuretic peptide clearance
and shunting the natriuretic peptides to the other na-
triuretic peptide receptors, NPR‐A and ‐B.168 Activation
of NPR‐A and ‐B receptors increases intracellular cGMP
which promotes mitochondrial biogenesis, increases fat

metabolism, prevents obesity, reduces insulin resistance,
and attenuates inflammation.169–171 Modulation of cGMP
with PDE5 inhibitors such as sildenafil and tadalafil has
also been shown to result in improved metabolic function
in humans, suggesting another mechanism of these
agents' action in PAH.172,173 NRPA stimulation with
natriuretic peptides is protective against hypoxia‐induced
PAH in a mouse model, with NRPA deletion resulting in
increased RV and PA pressures, and RV and pulmonary
vascular remodeling.174

The natriuretic system also plays a role in the reg-
ulation of the cellular architecture of the myocardium.
Multiple animal studies have shown that NRPA activa-
tion and natriuretic peptides attenuate fibrosis and car-
diomyocyte hypertrophy.156 In preclinical models,
natriuretic peptide signaling counteracts profibrotic
TGFβ signaling, suppresses ET‐1 expression, and acts on
numerous other pathways to produce these beneficial
effects.156,175,176 A mouse model of HFD‐induced HFpEF
and PH‐LHD found increased expression of the NPCR in
the RV and that its overexpression in cardiomyocytes
resulted in hypertrophy. This effect was attenuated by
NPCR stimulation with a natriuretic peptide.177

Angiotensin receptor/neprilysin
inhibitor therapy

The natriuretic peptide system, including both BNP and
ANP, therefore, has numerous effects that may benefit
patients with PAH, PH‐LHD, heart failure, and/or me-
tabolic syndrome. Both BNP and NT‐Pro‐BNP have been
well studied as prognostic biomarkers for multiple car-
diovascular conditions, including PAH, and have been
targeted therapeutically.178–185 Recombinant ANP was
approved for decompensated heart failure in Japan in
1995.156,186 Initial trials of synthetic BNP (nesiritide) and
a neprilysin inhibitor (ecadotril) showed no effect in
heart failure, however, when the neprilysin inhibitor
sacubitril was combined with the angiotensin receptor
blocker valsartan (termed angiotensin receptor/neprily-
sin inhibition or ARNI), a significant improvement in
cardiovascular mortality was found in patients with
HFrEF.187–190 While ARNI therapy has not been shown
to benefit mortality in a multinational population of pa-
tients with HFpEF, it is FDA‐approved for all patients
with HF as a posthoc analysis suggested a particular
benefit in the postdecompensation setting.191,192

Correcting the relative deficiency of both BNP and
ANP with ARNI therapy seeks to improve cardiac he-
modynamics, metabolic homeostasis, and cellular func-
tion. The available data suggests testing ANRI therapy in
patients with both PAH and PH‐LHD is warranted. There

6 of 16 | KING AND BRITTAIN



is evidence that ARNI therapy directly reduces hemo-
dynamic alterations of PH, with case series of HFrEF
patients with both PH‐LHD and CPH treated with ARNI
therapy showing significant reductions in PA pressures,
to the point of reversal of some patients' PH.193,194 A rat
model of PAH induced by PA banding showed ARNI
therapy improved hemodynamics and prevented myo-
cardial architecture disruption.195 A hypoxic model of
PAH in rats also showed ARNI therapy improved he-
modynamics, prevented RV remodeling, and reduced PA
vascular wall thickness.196 Combination of ANP therapy
with a PDE5 inhibitor was shown in a rat model of
hypoxia‐induced PAH to enhance pulmonary vasculature
dilation, resulting in reduced pressures and vascular re-
modeling beyond either agent alone.197 A rat model of
AMI showed that ARNI therapy reduced cardiomyocyte
size, hypertrophic biomarkers, and prevented interstitial
fibrosis.198 Analysis of profibrotic serum biomarkers ob-
tained from the participants in the PARADIGM‐HF trial
of ARNI therapy showed significant reductions of ana-
lytes associated with extracellular matrix fibrosis.199

ARNI therapy is, therefore, a potentially efficacious
therapy for both PAH and PH‐LHD which deserves fur-
ther investigation.

CONCLUSION

Metabolic dysfunction is a likely driver of both PH‐LHD
and PAH due to toxic effects on both the myocardium
and pulmonary vasculature. Recently developed drug
classes hold promise as potential future treatments based
on animal and early clinical studies. The SGLT2 in-
hibitors improve metabolic dysfunction, improve hemo-
dynamic measures, and may directly prevent cardiac
remodeling in animal models. Small trials in humans
have shown improvements in pulmonary artery pres-
sures with therapy. The GLP1 agonists are highly effi-
cacious agents to treat obesity, diabetes, and metabolic
dysfunction, and might prevent the onset of heart failure
in diabetics. Emerging evidence suggests they might be
cardioprotective by reducing cardiac remodeling in the
acute ischemic and chronic heart failure setting. Animal
models also show they improve RV hemodynamics and
pulmonary vascular remodeling in PAH. ARNI therapy
enhances natriuretic peptide signaling and has been
shown to result in improved RV hemodynamics in pa-
tients with PH and heart failure. Emerging evidence
implicates natriuretic peptide deficiency in metabolic
dysfunction and in adverse cardiac remodeling. These
findings suggest SGLT2 inhibitors, GLP1 agonists, and
ARNI therapy could provide significant therapeutic
benefit in patients with PH due to PAH, PH‐LDH, or

CPH (Table 1). Further work is needed to elucidate the
mechanisms of each agent's diverse actions and to de-
termine if their promise translates into these highly
morbid populations.
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