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Abstract

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is
implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics,
polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have
evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean
genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK 2/2), and reconstituted
with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in
advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other
p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-
sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-
proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between
integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK’s role in survival after stress is context-
dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in
combination with radiation, as this may not always be clinically advantageous.
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Introduction

Radiotherapy is a mainstay of cancer therapy in multiple disease

contexts, but treatment is not always curative. A great deal of effort

is directed not only at improving the delivery of radiotherapy by

increasingly sophisticated spatial and dosimetric methods, and also

to identify combination strategies to improve radiation responses.

In regard of the latter, ionizing radiation can promote activation of

receptor and non-receptor tyrosine kinases (TKs), and modulation

of cytoprotective influences, such as increased DNA repair,

proliferation and reduced apoptosis [1,2,3,4,5,6,7]. Since these

responses contribute to cellular radio-resistance, which can

obviously limit the effectiveness of radiotherapy in cancer

treatment, understanding the contribution of TKs may provide

new molecular targets for radio-sensitisation, and potentially

improve tumour responses. One example is the Epidermal Growth

Factor Receptor (EGFR), which is the current most extensively

studied TK in this context. Strong preclinical evidence implies a

capacity of EGFR inhibition to enhance the anti-tumour effects of

ionizing radiation, and this has translated into the clinical setting

based on results of a Phase III trial in head and neck cancer [8,9].

This demonstrates the importance of robust intervention strategies

to establish whether particular TKs contribute to cellular radio-

sensitivity, or to radio-resistance.

In contrast to the emerging evidence for EGFR, the role of

other TKs, especially non-receptor TKs, is less clear. Focal

Adhesion Kinase (FAK) is located at sites of integrin adhesion

from where it transduces signals into cells that control multiple

cancer-associated properties, including adhesion and actin dy-

namics, migration, invasion, angiogenesis, protection of cells from

suspension-induced cell death (sometimes termed anoikis) and

proliferation in 3-dimensions [10,11,12,13,14,15,16,17]. FAK is

often over-expressed in human cancer [18,19,20,21], and plays a

role in tumorigenesis, as demonstrated in multiple tissue types in

vivo [22,23,24,25,26,27,28]. We previously showed that FAK

deletion inhibits mouse skin cancer development and malignant

progression, and that FAK deletion promotes apoptotic death of

normal skin keratinocytes in culture [25]. More recently, we have

also made use of the K14-Cre-ERT2/flox-FAK mouse system to

derive squamous cancer cells (SCC) from chemically-induced

tumours [29,30]. FAK deletion causes multiple defects, including

impaired polarization and responses to directional cues, such as

chemotactic invasion, as well as impaired growth in 3-dimensions

(although growth on 2-D plastic is unaffected) and delayed growth

as xenografts in vivo [29,30].

FAK mediated pro-survival functions are thought to play an

important role in cancer cell survival, and that this likely involves

the p53 pathway [31]. Moreover, the FAK promoter contains p53
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responsive elements and can be down-regulated by DNA-damage

in a p53-dependent manner, while FAK expression correlates with

mutant p53 in breast cancer [32,33,34]. There is also in vitro and in

vivo evidence demonstrating that FAK knock-down can sensitise

cells to cytotoxic chemotherapy [2,35,36,37,38,39,40,41]. In

contrast, there are relatively few studies on the role of FAK in

radiation sensitivity. FAK phosphorylation is induced following

exposure to ionizing radiation in vitro [42], although this may only

have been a transient stress response as FAK’s role was not

explore. However, there is one report that siRNA-mediated FAK

knock-down promotes radio-sensitisation in pancreatic cancer cells

[43], although the underlying mechanism is unclear. Additionally,

over-expression of FAK in HL-60 cells confers marked resistance

to a variety of apoptotic stimuli, including ionizing radiation [44],

all suggesting that inhibition of signaling through FAK is likely to

promote radio-sensitivity. Here we have used a clean genetic

deletion/reconstitution system to test FAK’s role in cellular

radiation response in vitro and in vivo, specifically in FAK-deficient

SCC cells (and their FAK-expressing counterparts), and begin to

dissect out the underlying mechanism.

Results

We derived SCC cells from chemically-induced squamous cell

cancers in mice that expressed a floxed form of the ATP-binding

coding exon of fak under the control of skin-specific (K14) Cre

recombinase fused to the estrogen-receptor [25]. Excision of floxed-

fak upon a single treatment with 4-hydroxy-tamoxifen (4-OHT)

resulted in complete FAK protein deficiency [29,30] (see also

Fig. 1C and 2B), which we could reverse by re-expressing wt

FAK, allowing us to study how cancer cells cope with severe

perturbation of the integrin/FAK signalling pathway. To assess

radio-sensitivity, a limiting dilution clonogenic assay was per-

formed comparing FAK 2/2 with FAK wt cells at increasing

doses of radiation up to 10 Gy. This revealed that the complete

absence of FAK in these cells was associated with increased radio-

resistance in vitro (Fig. 1A). A statistically significant difference in

surviving fraction was seen at doses of 4 Gy, 6 Gy, 8 Gy and

10 Gy (p values of 0.0136, 0.0097, 0.0045, and 0.0036

respectively, analysed by student’s unpaired t-test, n = 9).

We also tested whether FAK influenced radio-sensitivity in vivo,

by comparing FAK 2/2 and FAK wt SCC xenografts. 26105

cells were injected subcutaneously into the right flank of female

nude mice and the animals were either irradiated with 5 Gy (in the

form of whole body irradiation) or mock irradiated when the

xenografts reached approximately 150 mm3. This size was

selected as the FAK 2/2 tumours had overcome an initial delay

in their growth in vivo, and their proliferation rate at this point did

not significantly differ from their FAK wt counterparts. Previous

studies demonstrated that the CD1 strain of nude mice could

tolerate 5 Gy total body dose for 10–14 days. After 7 days, the

xenografts were measured and the animals were sacrificed.

Tumour volumes were calculated before and after 5 Gy

irradiation or mock irradiation, and analysed by student’s

unpaired t-test. A statistically significant reduction in tumour

volume was observed in the irradiated FAK wt xenografts

compared with the mock-irradiated controls (p = 0.0030, n = 10),

but this was not replicated in the FAK 2/2 xenografts

(p = 0.3300, n = 10) (Fig. 1B). Protein extracts were prepared

from 5 mice in each group and subjected to western blotting to

confirm the level of FAK expression in FAK 2/2 and FAK

wt tumours (Fig. 1C). The low levels of FAK present from FAK

2/2 tumour-derived material is likely from the small amount of

stromal or immune infiltrate (Fig. 1C).

The SCC cells we used here expressed wild type p53 (confirmed

by sequencing (not shown)), and we identified a FAK-dependent

difference in induction of the p53 target gene, p21, after

irradiation (Fig. 2; see also later). Specifically, induction of p21

was evident by 2 hours after treating FAK 2/2 cells with 5 Gy

irradiation; by contrast, p21 was not induced when FAK was

present (Fig. 2A). Interestingly, basal levels of p21 protein and

mRNA in sub-confluent populations of both FAK 2/2 and FAK

wt cells were similar (Fig. 2B and 2C, respectively), while p21

levels were elevated in both cell lines with increasing confluency

(Fig. 2D). This was in keeping with the widely accepted role for

p21 in contact-induced cell cycle arrest (Fig. 2D), and

demonstrated that a different stimulus was able to increase p21

levels irrespective of FAK status. To ensure the discrepancy in

induction of p21 following exposure to ionizing radiation was not

related to differences in cell density, care was taken in all

experiments to ensure that cells were irradiated at comparable

confluency, typically 70%.

The FAK-dependence of p21 regulation was reproduced in vivo.

Specifically, nude mice were injected subcutaneously with 2.56105

FAK 2/2 or FAK wt cells, xenografts were allowed to establish,

and the animals were then irradiated with 5 Gy irradiation when

tumours reached approximately 500 mm3 in volume. Mice were

sacrificed at 0, 2 hrs, 6 hrs, and 24 hrs after irradiation (n = 3 per

group) and p21 levels were assessed by both western blotting of

tumour lysates and immunohistochemistry (IHC) staining of

paraffin embedded tissue. The FAK 2/2 xenografts exhibited

an increase in p21 protein levels as early as 2 hours post

irradiation (Fig. 3A, left panels); p21 levels appeared maximal

around this time. The increase in p21 was also visible by IHC

(Fig. 3A, right panels). Mean p21 positivity (based on scoring of 20

fields) was analysed across all time points and this demonstrated a

significant difference in the p21 levels in the tumours of irradiated

versus un-irradiated animals (Kruskal-Wallis, p = 0.038, n = 3).

Further, individual comparison of the separate time points

illustrated a statistically significant increase in p21 scoring

compared with baseline levels (Mann Whitney, p = 0.0404,

n = 3). In contrast, the FAK wt xenografts did not demonstrate

any consistent increase in p21 levels at any of the time points

examined. Western blotting of FAK wt-expressing tumour lysates

confirmed the presence of FAK, but there was no appreciable

increase in p21 protein levels (Fig. 3B). Further analysis of IHC

(Fig. 3B, right panels) confirmed there was no significant increase

in p21 expression at 2 hrs (p = 0.6625), 6 hrs (p = 0.6625), or

24 hrs (p = 0.3827) (Mann Whitney, n = 3), when compared with

controls.

We extracted RNA from sub-confluent populations of FAK

2/2 and FAK wt cells at various time points following 5 Gy

irradiation, and qRT-PCR was performed using primers for

endogenous p21. There was a biphasic increase in p21 mRNA

levels, peaking at 2 hours and 6 hours post irradiation in FAK

2/2 cells; by contrast p21 mRNA levels were not induced in the

FAK wt cell line after irradiation (Fig. 4A). RNA was also

extracted from both cell lines 2 hours after a range of radiation

doses (0, 2, 5, 10, 20, and 30 Gy) and analysed by qRT-PCR. We

found that p21 mRNA levels increased in FAK 2/2 SCC cells in

a dose-dependent fashion (range from 2 Gy to 10 Gy); further

dose escalation did not result in further increased p21 mRNA. The

dose-dependent increase in p21 transcription was attenuated upon

re-expression of FAK wt in the FAK-deficient SCC cells (Fig. 4B).

In parallel experiments, we found that increased steady state levels

of p21 protein were evident after irradiation at various doses in

FAK 2/2 SCC cells, and that this was attenuated when FAK

expression was restored (Fig. 4C, compare left and right panels).
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To complement the genetic deletion of FAK, we also used a FAK

kinase inhibitor (PF-562,271; [45]) at a dose of 0.5 mM (which is

optimal for inhibition of FAK kinase activity in these cells (not

shown)) for 2 hours prior to irradiation, and collected protein

lysates for immunoblotting at 0, 2, 4, and 6 hours after 5 Gy. p21

levels were visibly increased by 2 hours after radiation in 0.5 mM

PF-562,271 treated FAK wt cells when compared to untreated

cells (Fig. 4D).

As expected, p21 steady state levels in the SCC cells were at

least partly dependent on p53, and radiation-induced p21 in SCC

cells was inhibited by knock-down of p53 using siRNA (Fig. 5A–
C). However, we also noted that p53 induction after irradiation

was not particularly strong and was similar in both FAK 2/2 and

FAK wt SCC cells (Fig. 5D), indicating that the presence of FAK

was leading to some uncoupling of p53 and p21 induction, and

sensitivity to irradiation in these cancer cells. Densitometry was

carried out to quantify fold changes in p21 and p53 protein levels

after irradiation of FAK-proficient and FAK-deficient SCC cells

(Figure S1). These findings imply that substantially increased

transcription and expression of p21 protein occurs in FAK 2/2

cells after clinically relevant doses of ionizing radiation, and that

this response is blunted by the presence of FAK. Thus, FAK

functions in these advanced cancer cells to suppress the p53-

dependent transcription of p21 after irradiation. This is not visibly

linked to differential induction of cell cycle arrest (Figure S3

(determined as described in Methods S1)) or apoptosis, which is

difficult to detect after SCC cell irradiation as judged by lack of

sub-G1 DNA content (not shown). This is despite differential

regulation of expression of the p53 target gene PUMA (Figure S4)

that can be associated with apoptosis.

Previous work has established clear links between FAK and p53

that promotes survival after stress-induced signalling (in cells that

lack p21), via the FAK FERM domain binding to p53 in the

nucleus, facilitating p53 degradation and survival [46]. Therefore,

we immunoprecipitated FAK from lysates of FAK wt SCC cells

before and after 5 Gy irradiation, and immunoblotted for p53 and

for Src (as a positive control). As expected, Src was bound to FAK,

and this was unaltered by irradiation (Figure S2A (determined as

described in Methods S1)). However, we found that FAK did not

interact with p53 (Fig. S2A). Lysates were probed for FAK, Src

and p53 to ensure equal loading (Fig. S2B). We also found that

p53 was efficiently translocated to the nucleus in both FAK 2/2

and FAK wt cells after irradiation (not shown).

Since p21 has been associated with both resistance and

sensitivity to DNA damaging agents, including ionizing radiation,

we next depleted p21 using siRNA. We achieved around 90%

knock-down of p21 in SCC cells (Fig. 6A and 6B). Clonogenicity

was then assessed at 0, 4, and 8 Gy and comparison made between

cell populations transfected with p21 siRNA, scrambled siRNA or

control cell populations which had been mock transfected. We

found a significant difference in surviving fraction at 8 Gy

(p = 0.0129) between the scrambled siRNA- and p21 siRNA-

treated cells, such that p21 promoted radio-resistance in the SCC

cells (Fig. 5C). There is therefore a strong link between radiation-

induced p21 in FAK-deficient cells (but not in their FAK-

expressing counterparts) and the finding that FAK loss induces

radio-resistance in which p21 has a causal role in the SCC cells.

Finally, we assessed whether FAK deficiency affected more

general features associated with DNA damage. We found that

mRNA levels of a number of p53 target genes, which are involved

in repair following ionizing radiation, namely gadd45, p53R2 and

ddb2, and are known to be down-regulated by c-Myc [47], were

stimulated in FAK 2/2 SCC cells, but consistently less so in their

FAK-expressing counterparts (Fig. 7). This was particularly true

for ddb2 at the 2 hour time point, for gadd45 at later time points,

and for p53R2 throughout the 0–24 hours after irradiation

(Fig. 7A, B and C). Since we showed that FAK is required for

c-Myc up-regulation downstream of Apc deletion in mouse

intestine [22], it may be that FAK impairs radiation-induced

expression of the genome integrity maintenance genes in SCC cells

via c-Myc-mediated repression. However, we noted that BRCA1

provides an example of a DNA-damage responsive gene that is

only minimally affected by FAK loss; indeed, BRCA1 expression is

suppressed by FAK deficiency at later times after irradiation

(Fig. 7D). Thus, we conclude that radiation-induced transcription

of a sub-set of p53-responsive genes is modulated by the presence

or absence of FAK, and so is not simply due to general p53

dysfunction.

As mentioned, there was no readily detectable apoptosis or

differential cell cycle arrest that can be attributed to FAK status.

Hence, we next examined phosphorylation on serine 139 of

Histone cH2AX that occurs in response to ionizing radiation [48]

and is considered to be a reliable surrogate of double strand break

repair. Quantification of the percentage of nuclei containing ,5

or $5 cH2AX foci showed that both FAK 2/2 and FAK wt

populations had $5 cH2AX foci in virtually all cells 1 hour post

irradiation with 5 Gy (Fig. 8A). However, the FAK 2/2 cells

started to clear these foci within 6 hours and these returned to

baseline level within 24 hours; in contrast FAK re-expression in

the FAK wt cells caused a slower foci clearance rate (compare 6

and 24 hour time points, (Fig. 8A). This is consistent with more

efficient DNA repair activity in the FAK 2/2 cells, and a slower

rate of repair when FAK is present. Representative images of

cH2AX immunofluorescence in FAK 2/2 cells (before and

1 hour after 5 Gy irradiation) are shown (Fig. 8B). We also found

that FAK 2/2 SCC cells appeared to have generally higher levels

of cH2AX foci under control conditions (0 hours) than their FAK-

expressing counterparts (images not shown), with most FAK 2/2

cells displaying several foci and around 10–15% displaying $5 foci

(Fig. 8A, 0 hours). This suggests that FAK-deficient SCC cells

Figure 1. FAK deficiency is associated with increased radioresistance in SCC cells. (A) Subconfluent populations of FAK 2/2 and FAK wt
cells were trypsinised and diluted in growth medium to a final concentration that would permit single colony growth. 100 ml of this suspension was
added to each well of a 96 well plate. Following incubation for 6 hours to allow cell attachment the plates were irradiated with 0, 2, 4, 6, 8 or 10 Gy.
The cells were analysed in triplicate for each radiation dose. After 7 days, the number of colonies per plate was counted and the surviving fraction
calculated. The graphical representation shown represents the mean 6 SEM from three separate experiments. Surviving fractions at each dose of
radiation were compared with un-irradiated cells by student’s unpaired t-test, n = 9. (B) 26105 FAK 2/2 and FAK wt cells were injected
subcutaneously into the right flank of female nude mice. Xenografts were allowed to reach approximately 150 mm3. The animals were then irradiated
with 5 Gy whole body irradiation or mock irradiated. After 7 days the xenografts were measured and the mice were sacrificed. The mean xenograft
volumes 6 SEM before radiation (upper panels) and after radiation (lower panels) are shown. Statistical analysis of mock irradiated versus irradiated
volumes at 7 days was assessed by student’s unpaired t-test, * denotes p,0.05, n = 10. (C) Protein extracts were prepared from the xenografts,
separated by SDS-PAGE, transferred to nitrocellulose, and blotted with anti-FAK (upper) and anti-b-actin (lower) antibodies. A sample of five distinct
extracts from each group is shown. A positive control (FAK wt cell extract) was added to the final lane of the FAK 2/2 xenograft samples.
doi:10.1371/journal.pone.0027806.g001
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may have greater genetic instability than their FAK wt

counterparts; at least it appears that the FAK 2/2 SCC cells

have generally enhanced DNA repair functions and this correlates

with radio-resistance. Interestingly, we did not find any difference

in FAK-dependent regulation of radiation-induced phosphoryla-

tion of either p53 or Chk2 (Fig. S5).

Discussion

We here show that, in stark contrast to a previous report in

which FAK knock-down sensitised pancreatic cancer cells to

ionizing radiation [43], FAK deletion (and a FAK kinase inhibitor)

can suppress signalling to radiation-induced, p53-mediated

Figure 2. Ionising radiation results in p21 induction in FAK 2/2 cells but not in FAK wt cells. (A) FAK 2/2 and FAK wt cells were
irradiated with 5 Gy at 70% confluence and lysates prepared at the indicated time points. Immunoblotting was then performed with anti-p21 (upper
panel), and anti-b-actin (lower panel). (B) Protein extracts were prepared from subconfluent FAK 2/2 and FAK wt cell populations, separated by SDS-
PAGE, transferred to nitrocellulose, and blotted with anti-FAK (upper panel), anti-p21 (middle panel) and anti-b-actin (lower panel) antibodies. (C)
RNA was extracted from subconfluent FAK 2/2 and FAK wt cells, PCR performed and product analysed. b-actin loading is also shown (lower panel).
(D) Protein extracts were prepared from FAK 2/2 and FAK wt cell populations at the level of confluency indicated. Immunoblotting was then
performed with anti-p21 (upper panel) and anti-b-actin (lower panel) antibodies.
doi:10.1371/journal.pone.0027806.g002
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induction of p21, and this is linked to radio-resistance in advanced

SCC cells. We think it is important to record that FAK’s role in

cellular responses to ionizing radiation, and perhaps pro-survival

signalling in general, may be context dependent, and that there

needs to be caution when considering therapeutic combinations of

FAK inhibitors and radiotherapy, as this may not always be

clinically beneficial.

In the work described here, we show that deleting FAK (or

inhibiting its kinase activity) can release constraints FAK places on

signalling from p53 to the induction of several target genes,

namely p21 and at least a sub-set of p53-regulated genes involved

in DNA repair in SCC cells. Moreover, FAK 2/2 SCC cells

appear to be more efficient at repair after radiation-induced DNA

damage. However, in these cells we did not find any significant

effect of FAK deletion on p53 protein stability (whether in

response to irradiation or DNA damaging drugs), p53 phosphor-

ylation or the ability of p53 to translocate to the nucleus, and we

could not find evidence of a FAK/p53 complex that has been

reported to operate in other contexts. Thus, our work adds to a

growing body of evidence that there is functional cross-talk

Figure 3. Ionizing radiation results in p21 induction in FAK deficient xenografts. (A) FAK 2/2 SCC cells or (B) FAK wt SCC cells, were
injected subcutaneously into the right flank of female nude mice. When xenografts reached approximately 500 mm3, mice were irradiated with 5 Gy
and sacrificed at 0, 2 hrs, 6 hrs, and 24 hrs (n = 3 per group). Half of the xenograft was fixed in formalin then embedded in paraffin and the other half
was snap frozen in liquid nitrogen. Protein extracts were prepared from the frozen sections, separated by SDS-PAGE, transferred to nitrocellulose, and
blotted with anti-FAK (upper blot panel), anti-p21 (middle blot panel), and anti-b-actin (lower blot panel). The paraffin embedded sections were
stained with p21 and the p21-positive cells visualised by IHC (right panels). Representative bright field images of p21 stained tissue at 0, 2 hrs, 6 hrs,
and 24 hrs post radiation are shown (scale bar, 0.1 mm).
doi:10.1371/journal.pone.0027806.g003
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between the FAK and p53 signalling pathways, but demonstrates

that there are additional ways in which this can occur. Although

we do not fully understand the mechanism, we found that in

the SCC cells from which we could delete FAK by genetic

recombination, FAK functions to suppress the radiation-induced

DNA repair functions of p53 by blocking induction of p21, and

that this is linked to enhanced resistance to ionizing radiation upon

loss of FAK signalling.

Materials and Methods

Cell culture
Squamous carcinoma cells (SCC) were isolated from chemically

induced skin tumours removed from K14CreER FAKflox/flox

transgenic FVB mice. Skin carcinomas were induced using a

two-stage chemical carcinogenesis protocol as previously described

[25]. Cells were grown in growth media (DMEM, 10% foetal

bovine serum and 2 mM glutamine) and maintained in a dry 5%

CO2 incubator at 37uC, and sub-cultured using standard

trypsinisation procedures.

Subcutaneous tumour growth
Cells were trypsinised, washed in Hanks Balanced Saline

Solution (HBSS; Invitrogen, Paisley, UK), and re-suspended at a

concentration of between 2.56105 and 16106 cells/100 ml in

HBSS. 100 ml of cell suspension was injected into the flanks of

immune-compromised CD1 nude mice (Charles River Ltd,

Margate, Kent, UK) and tumour growth measured every two to

three days using callipers. Tumour volume measurements were

taken from at least 8 mice for each cell line.

Irradiation of cells and mice
Cells were grown to 70% confluency and exposed to c-

irradiation from a cobalt (60Co) source (Alcyon II teletherapy unit,

General Electric, France). The receptacles were set at a distance of

80 cm from the source and a Perspex layer added to the surface of

the receptacles in order to achieve build-up. The average dose rate

was 1–1.20 Gy/minute and doses of 1–30 Gy were applied. Mice

with tumours were treated with whole body irradiation using the

cobalt source described.

Clonogenic assay (limiting dilution method)
Cells were passaged at 70% confluence, counted, and diluted in

complete growth medium to yield a final concentration that would

permit single colony growth after the required period of

incubation. 100 ml of this cell suspension was added to each well

of a flat bottomed 96 well microplate. The plates were incubated

for 6 hours to allow cell adhesion then irradiated at increasing

doses of irradiation. After 7 days (to allow 6 cell doubling times),

the plates were washed in PBS, fixed in methanol, and stained with

crystal violet (Sigma Chemical Co, Poole, UK). The numbers of

colonies present per plate were counted on low power bright field

microscopy. Plating efficiency was determined by dividing the

number of colonies present by the total number of cells seeded per

plate. Surviving fraction was then calculated by dividing the

plating efficiency at each radiation dose by the plating efficiency of

unirradiated cells. Each experiment was performed in triplicate

and on at least 3 separate occasions. The data was combined and

displayed graphically as mean 6 SEM.

Transient transfection with siRNA
The Dharmacon Smartpool method (Dharmacon, Abgene Ltd.,

Epsom, UK) of mammalian cell transfection was used for the

transfection of sub-confluent SCC 7.1 FAK 2/2 and FAK wt

cells. The siRNA for transfection was diluted in sterile PBS and

added to serum free MEM containing 5 ml of Dharmafect

Transfection Reagent 1 to give a total volume of 400 ml. The

complexes were incubated at room temperature for 20 minutes

then added directly to wells containing 1600 ml of complete

medium (final concentration of siRNA, 100 nM). The plates were

incubated for 24 hours at 37uC in an atmosphere of 95% air and

5% CO2 prior to any cell treatments and harvesting. In each

experiment, a scrambled pool of siRNA was used as control.

Immunohistochemsitry and immunofluorescence
Fixed paraffin embedded tissue sections mounted on slides were

dewaxed in xylene solution followed by stepped rehydration via a

series of graded alcohols to water. Antigen retrieval was then

performed by boiling the slides in sodium citrate solution (pH 6)

for 20 minutes. The slides were incubated with peroxidase block

for 5 minutes to quench endogenous peroxidase activity, blocked

in 10% FBS in 0.01 M Tris buffered saline (pH 7.5) for one hour

at room temperature, and incubated with p21 antibody (SC-421

(Autogen bioclear (Wiltshire UK) at 1:800 dilution) overnight at

4uC. A non-immune IgG control was compared in parallel to the

investigated sections by omitting the primary antibody step.

Visualisation was carried out with a DAKO EnVision kit TM

(Dako UK Ltd, Ely, UK) as per manufacturers’ instructions. The

resulting sections were analysed and images captured digitally

using an Olympus BX51 microscope and cell‘D software

(Olympus UK Ltd, Hertfordshire, UK). For phospho-cH2AX

staining, cells were fixed in 4% paraformaldehyde for 15 minutes.

Permeabilisation was with 0.2% Triton X-100 in PBS for

5 minutes, staining with primary antibody (anti-phospho-gH2AX

(1:250; Upstate (Millipore), Hampshire, UK)) and treatment with

secondary antibody conjugated to AlexaH 488 or 594 fluorescent

dyes (Invitrogen, Paisley, UK) at a 1/200 dilution for one hour.

Cells were visualised by confocal microscopy.

Protein analysis: SDS-PAGE and Western blotting
Confluent cells were harvested in RIPA (50 mM Tris/HCl,

pH 7.4, 150 mM NaCl, 1% Sodium Deoxycholate, 1% NP40,

5 mM EGTA plus standard protease inhibitor cocktail) lysis

buffer. Cell lysates were centrifuged in a bench-top, refrigerated

centrifuge at 13000 rpm at 4uC and the supernatant retained. The

Figure 4. p21 induction following radiation is regulated at transcriptional level in FAK 2/2 cells. (A) RNA was extracted from
subconfluent FAK 2/2 and FAK wt cell populations at various time points after 5 Gy irradiation. qRT-PCR analysis was then performed in triplicate.
Fold increase in p21 mRNA levels was calculated using the ddC(t) method with b-actin as a loading control. Graphical representation of combined
mean 6 SEM from three experiments is demonstrated. (B) RNA was extracted from sub-confluent FAK 2/2 and FAK wt cell populations 2 hours after
0, 2, 5, 10, 20, and 30 Gy irradiation. cDNA was then generated and qRT-PCR for p21 performed as outlined above. (C) Protein extracts were prepared
from FAK 2/2 and FAK wt cell populations 2.5 hours after exposure to various doses of radiation. The extracts were separated by SDS-PAGE,
transferred to nitrocellulose, and blotted with anti-p21 (upper panels) and anti-b-actin (lower panels). (D) FAK wt cells were incubated for 2 hours
with either the FAK inhibitor PF-562,271 at 0.5 mM, or 0.1% DMSO only, then irradiated with 5 Gy. Protein extracts were prepared at 0, 2, 4, and
6 hours and immunoblots probed with anti-p21 (upper panels), and anti-b-actin (lower panels). Representative immunoblots from 0.1% DMSO (left)
and 0.5 mM drug treated (right) cell populations are shown.
doi:10.1371/journal.pone.0027806.g004
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Figure 5. p21 induction in FAK 2/2 cells is p53 dependent. (A) FAK 2/2 cells were transfected with 100 nM siRNA (either scrambled pool or
p53 siRNA) at 50% confluency. After 24 hours, protein extracts were prepared and immunoblots probed with anti-p53 (upper panel), anti-p21 (middle
panel) and anti-b-actin (lower panel). (B) Densitometry comparing p21 levels in FAK 2/2 protein extracts treated with either a scrambled pool of
siRNA or p53 siRNA was performed. The p21 protein levels were normalised to b-actin and results shown are representative of one of three separate
experiments. (C) FAK 2/2 cells at 50% confluency were transfected with either 100 nM scrambled siRNA or 100 nM p53 siRNA, incubated for
24 hours, then irradiated with 5 Gy. Lysates were collected at the time points indicated and immunoblots probed with anti-p53 (upper panel), anti-
p21 (middle panel) and anti-b-actin (lower panel). (D) Protein extracts were prepared from FAK 2/2 and FAK wt cells 2 hours after exposure to
various doses of radiation (0–30 Gy). The extracts were separated by SDS-PAGE and immunoblots probed with anti-p53 (upper panels) and anti-b-
actin (lower panels). The right lane in each gel contains protein extracts from FAK 2/2 or FAK wt cells exposed to overnight treatment with 0.1 mM of
actinomycin D.
doi:10.1371/journal.pone.0027806.g005

Figure 6. p21 knockdown increases radiosensitivity in FAK 2/2 cells. (A) FAK 2/2 SCC cells were transfected with 100 nM siRNA (either a
scrambled pool or p21 siRNA) at 50% confluency. Following incubation for 24 hours, protein extracts were immunoblotted and probed with anti-p21
(upper panel) and anti-b-actin (lower panel). (B) Densitometry comparing p21 levels in FAK 2/2 protein extracts treated with either a scrambled pool
of siRNA or p21 siRNA was performed. The p21 protein levels were normalised to b-actin level and results shown are representative of one of three
separate experiments. (C) FAK 2/2 cells were mock transfected or transfected with 100 nM of either a scrambled siRNA pool or p21 siRNA at 50%
confluency. After 24 hours the cell populations were trypsinised and diluted in growth medium to a final concentration that would permit single
colony growth. 100 ml of this suspension was then added to each well of a 96 well plate. Following incubation for 6 hours to allow cell attachment
the plates were irradiated with 0, 4, or 8 Gy. The plates were set up in triplicate for each radiation dose. After 7 days the number of colonies per plate
was counted and the surviving fraction calculated. The graph shows the mean 6 SEM from three separate experiments. Surviving fractions of p21
siRNA treated cells were compared with scrambled siRNA treated cells at each dose of radiation and statistical significance assessed by student’s
unpaired t-test, * denotes p,0.05, n = 9.
doi:10.1371/journal.pone.0027806.g006
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cell lysates were then snap frozen on dry ice and stored at 280uC.

Animal tissue was removed post mortem and immediately frozen

in liquid nitrogen for storage at 280uC. At the required time the

frozen tissue was added to a Precellys tube (Bertin Technologies,

Provence, France) with 100 ml of ice-cold T-PER buffer. The

samples were homogenised (Precellys 24 device – Bertin

Technologies, Provence, France), transferred to a 1.5 ml Eppen-

dorfH tube and centrifuged as outlined above. Protein concentra-

tion was determined using the MicroBCATM Protein Assay Kit

(PERBIO, Glasgow, UK) and quantified by measuring light

absorbance with a DUH 650 spectrophotometer at a wavelength of

562 nm (Beckman Coulter UK Ltd, Buckinghamshire, UK).

Figure 7. Induction of some p53 target genes involved in DNA repair is modulated by FAK. RNA was extracted from subconfluent FAK
2/2 and FAK wt cell populations at various time points after 5 Gy irradiation. qRT-PCR analysis was performed using primers directed against Ddb2
(A), gadd45 (B), p53R2 (C) and BRCA1 (D), and these were all normalised to b-actin.
doi:10.1371/journal.pone.0027806.g007
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Figure 8. FAK 2/2 cells are more efficient at resolving DNA damage. (A) FAK 2/2 and FAK wt cells were plated at low density on glass
coverslips, incubated for 24 hours and irradiated with 5 Gy. At various time points, the cells were fixed, permeabilised, stained with anti-phospho-
cH2AX (serine 139) and visualised using confocal microscopy. The number of foci per nucleus (,5 foci or $5 foci) was documented in at least 100
cells. Results shown are representative of one of two separate experiments. (B) Representative images demonstrate un-irradiated and irradiated FAK
2/2 cells at 1 hour post 5 Gy are shown, green – phospho-cH2AX and blue – DAPI (scale bar, 20 mm), arrow in top right hand box shows at a nucleus
with ,5 foci and broken arrow in bottom right hand box pointing at a nucleus with $5 foci.
doi:10.1371/journal.pone.0027806.g008
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Proteins were separated on SDS-polyacrylamide gels; specifically,

protein lysates of 5–40 mg were denatured and reduced by

addition of NuPAGEH 46LDS sample buffer (Invitrogen, Paisley,

UK). The samples were boiled for 5 min and then loaded directly

to an appropriate well of a NuPAGEH Bis-Tris polyacrylamide gel

immersed in InvitrogenTM NuPAGEH MOPS SDS running

buffer. 10%, 12% or 4–12% gradient gels were used depending

on the molecular weight of the protein of interest. The gels were

run at 200 V for 1 h. For western blotting, separated proteins were

transferred to a nitrocellulose membrane using wet blotting

apparatus (Jencons, Leighton Buzzard, UK) with an applied

voltage of 30 V for 90 minutes, blocked in 5% bovine serum

albumin (BSA), re-constituted in 20 mM Tris-Cl; pH 7.6,

150 mM NaCl and 0.1% Tween20 (TBST), for one hour at

room temperature with gentle agitation. The primary antibody

(FAK (New England Biolabs) – 1:1000; b-actin (Sigma) – 1:5000;

p21 – 1:1000; p53 (C12 New England Biolabs) – 1:1000);

phospho-Chk2 (S68 New England Biolabs) – 1:1000); phospho-

p53(IC12 New England Biolabs) – 1:500 was added at the

dilutions stated overnight at 4uC. The membrane was then washed

several times with TBST before the application of the appropriate

horseradish peroxidase (HRP) conjugated anti-immunoglobulin G

(IgG) secondary antibody diluted 1:5000 in 5% BSA - TBST

solution. Detection was by Amersham Biosciences (Little Chalfont,

UK) enhanced chemiluminescence (ECL).

Extraction of RNA and qRT-PCR analysis
RNA was isolated from 16106 cells using miRNeasy mini RNA

extraction kit (Qiagen, Crawley, UK). 1 mg of RNA was then

converted to cDNA using Superscript First-Strand cDNA synthesis

kit (Qiagen, Crawley, UK). The cDNA was diluted 1 in 5 then

prepared for qRT-PCR analysis by adding 5 ml to 45 ml

SybrGreen master mix (Invitrogen, Paisley, UK) containing

1 mM of paired validated primers directed against the target gene

of choice (Qiagen, Crawley, UK). All primer pairs were assessed

for linearity prior to use and produced a PCR single product of the

correct size as outlined by the manufacturer. Real time PCR was

performed on a gradient cycler (Bio-Rad, Hertfordshire, UK) with

the following programme: 95uC for 15 minutes (1 cycle); 95uC for

15 seconds+55uC for 30 seconds+72uC for 30 seconds (39 cycles);

72uC for 5 minutes (1 cycle); melting curve 70–95uC, hold every

0.1 seconds; 72uC for 10 minutes (1 cycle); 15uC for 10 minutes (1

cycle). Data was analysed using Opticon software V3.1 (Bio-Rad,

Hertfordshire, UK). Beta-actin controls were included with each

reaction to act as a housekeeping gene and fold change in mRNA

levels calculated by the ddC(t) method {Livak, 2001 #476}. The

samples were loaded in triplicate and the mean 6 SEM from three

combined experiments displayed graphically. Primers for p21 were

59-39 AGC CTG ACA GAT TTC CAC and 59-39 CTT TAA

GTT TGG AGA CTG GGA (provided by VH Bio, Gateshead,

UK); primers for ddb2, gadd45, p53R2, Brca1, PUMA and b-

actin genes are Quiagen Quantifect Validated Primer Pairs for

which the sequences were not disclosed to us.

Statistical analysis
Graphs and bar charts were created in Excel and represent the

mean value 6 SD or mean value 6 SEM from three separate

experiments. Statistical tests were performed in Minitab 15,

p,0.05 was considered significant and is denoted by *. An

unpaired t-test was used to compare the means of two

populations with approximately equal variance and normal

distribution, where n = number of data sets that contributed

towards the mean. For the purposes of IHC data analysis, the

mean percentage of positively stained cells per xenograft was

calculated based on examination of twenty high powered fields.

The mean values of two test groups were analysed by either the

Kruskal-Wallis test or the Mann Whitney U test (typically three

to five xenografts from separate mice were included in each

defined experimental group).

Supporting Information

Figure S1 p21, but not p53, induction after irradiation
of SCC cells is dependent on FAK status. Densitometric

quantification of p21 at times after 5 Gy irradiation of SCC cells

(A; upper panel) and of p53 at 2 hours after various radiation doses

or following overnight treatment with 0.1 M actinomycin D (B;

lower panel).

(TIF)

Figure S2 There is no interaction between FAK and p53
in SCC cancer cells. (A) FAK wt cells were irradiated at around

70% confluency and lysates prepared at 0 (FAK wt) and 2 hours

(FAK wt+5 Gy). 1 mg of protein was immunoprecipated with an

anti-FAK agarose conjugated antibody at 4uC overnight. The IPs

were separated by SDS-PAGE and immunoblots probed with

anti-FAK (upper panel), anti-Src (middle panel), and anti-p53

(lower panel). As a negative control, irradiated FAK wt cell lysates

were also immunoprecipitated with an anti-histidine agarose

conjugated antibody. (B) 20 mg of protein lysates were immuno-

blotted and probed with anti-FAK, anti-Src, anti-p53, and anti-b-

actin.

(TIF)

Figure S3 FAK loss does not promote radioresistance by
increasing the length of cell cycle arrest in response to
ionising radiation. FAK 2/2 (A) and FAK wt (B) cells were

irradiated with 5 Gy at 70% confluence; at various time points

samples were fixed in 70% ethanol, stained with propidium iodide

and subjected to cell cycle analysis. The percentage of gated cells

in each of the component phases (G1, S, and G2/M) of the cell

cycle was evaluated at each time point. The graphs shown

represent the mean 6 SEM from three experiments.

(TIF)

Figure S4 PUMA is stimulated in FAK 2/2 cells after
irradiation. (A) RNA was extracted from subconfluent FAK

2/2 and FAK wt cell populations at various time points after

5 Gy irradiation. qRT-PCR analysis was then performed as

previously described using PUMA primers with b-actin as a

loading control. (B) FAK 2/2 and FAK wt cells were irradiated

with 5 Gy at 70% confluence and lysates prepared at the indicated

time points. Immunoblotting was then performed with anti-

PUMA (upper) and anti-b-actin (lower) antibodies. Species

corresponding to PUMA-a and PUMA-b are shown.

(TIF)

Figure S5 Phosphorylation of p53 and Chk2 after
irraditaion are similar in FAK-proficient and FAK-
deficient SCC cells. Subconfluent populations of FAK 2/2

and FAK wt cells were irradiated with 5 Gy and protein extracts

were prepared at various time points. The extracts were then

separated by SDS-PAGE, transferred to nitrocellulose, and probed

with anti-phosph-p53, anti-p53, and anti-b-actin as indicated (A),

and anti-phospho-Chk2 and anti-b-actin (B).

(TIF)

Methods S1 Supplementary methods are provided for
immunoprecipitation and cell cycle analysis.

(DOCX)
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