Immunogenicity of live *phoP* gene deletion strain of *Riemerella anatipestifer* serotype 1

Jian Li,* Yanhao Zhang,* Ying Wang,* Yang Zhang,* Baolan Shi,[§] Luoxin Gan,* Shuang Yu,* Xiangchao Jia,* Kang Yang,* and Zili Li ^(0*,†,‡,1)

^{*}State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; [†]Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China; [‡]Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China; and [§]Sinopharm Animal Health Corporation Ltd., Wuhan, 430070, China

ABSTRACT Duck infectious serositis is an acute and infectious disease caused by *Riemerella anatipestifer* (*R. anatipestifer*) that leads to perihepatitis, pericarditis, meningitis, and airbag inflammation in ducks, which causes serious economic losses to the global duck industry. The *phoP/phoR* is a novel 2-component signal transduction system first reported in gram-negative bacteria, of which phoP acts as a global regulator and virulence factor. In this study, the *phoP* gene from the *R. anatipestifer* YM strain was knocked out using homologous recombination technology and replaced with the spectinomycin resistance gene (*Spec*). The virulence of the *R. anatipestifer* YM Δ *phoP* strain was reduced by approximately 47,000 times compared to that of the

Key words: Riemerella anatipestifer, R. anatipestifer $YM\Delta phoP$, Immunity

infectious serositis.

2023 Poultry Science 102:102294 https://doi.org/10.1016/j.psj.2022.102294

INTRODUCTION

Riemerella anatipestifer (formerly Pasteurella anatipestifer) is a gram-negative rod-shaped bacterium that mainly infects ducks at 1-8 weeks of age, with particularly high infection rates at 2 to 3 wk of age (Segers et al., 1993; Pathanasophon et al., 1995; Birkey et al., 1998; Hu et al., 2011). Once *R. anatipestifer* invades the host body, the bacterium multiplies rapidly and reaches various tissues and organs through the blood, causing systemic serositis. The main clinical anatomical manifestations of *R. anatipestifer* infection are fibrinous pericarditis, perihepatitis, airsacculitis, and meningitis (Liu et al., 2015; Fernandez et al., 2018; Wang et al., 2019a; Yang et al.,

Accepted October 22, 2022.

2019). Duck infectious serositis was first reported in Long Island, New York in 1932 and subsequently spread throughout Australia, the United Kingdom, the former Soviet Union, and other countries (Hendrickson and Hilbert, 1932). Currently, duck infectious serositis occurs worldwide with high morbidity and mortality rates, and causes considerable economic losses to the duck industry (Cobb and Smith, 2015; Fernandez et al., 2016). Because long-term dependence on antibiotics may lead to drug resistance in pathogenic bacteria and drug residues in meat products (Gao et al., 2014; Tang et al., 2018; Yang et al., 2020), the development and application of safe and efficient vaccines are needed to prevent and control this infectious disease (Kang et al., 2018).

wild-type R. anatipestifer YM strain. Ducks were immu-

nized with live R. anatipestifer $YM\Delta phoP$ strain by sub-

cutaneous inoculation at a dose of 10^6 to 10^7 CFU

(0.2 mL per duck) and challenged with the wild-type *R*. anatipestifer YM strain 14 days later. The protection

rate in the immunized group was 100%. The growth

characteristics of ducks in the immunized and negative

control groups were normal, and the research demon-

strated R. anatipestifer $YM\Delta phoP$ strain have suitable

immunogenicity and protective effects. Thus, the study

findings suggest that the novel R. anatipestifer $YM\Delta$ -

phoP strain may provide a candidate for the develop-

ment of a gene deletion activated vaccine against duck

Many R. anatipestifer serotypes have been identified, displaying dynamic distribution in different countries and regions. Serotypes were reported with no cross-protective effects. Sandhu and Harry (1981) reported that serotypes 1, 2, and 5 were the main serotypes in the United States. Many studies have evaluated the use of inactivated vaccines against R. anatipestifer, revealing

[@] 2022 The Authors. Published by Elsevier Inc. on behalf of Poultry Science Association Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

Received June 2, 2022.

¹Corresponding author: lizili@mail.hzau.edu.cn

that their immune effects are directly related to locally circulating serotypes. However, producing inactivated vaccines is expensive, the immunization period is short, and the appropriate bacterial count and adjuvant type must be evaluated in depth. Indeed, a *P. anatipestifer* vaccine comprising a combination of inactivated Escherichia coli serotype O78 and P. anatipestifer bacterin showed high protection rates in ducks at 10 and 17 d of age but the protective effect only lasted for 2 wk, and research demonstrated that vaccination with aluminumhydroxide-gel-adsorbed bacterin did not improve immunity compared to that achieved with the nonadjuvanted vaccine. Moreover, inoculation with oil-emulsion bacterin conferred adequate protection up to market age. but it caused local damage at the inoculation site (Sandhu and Layton, 1985). In contrast, live vaccines can induce humoral, cellular, and mucosal immune responses in the body for an extended period of time.

phoP/phoR is a novel 2-component signal transduction first reported in gram-negative bacteria (Wang et al., 2017), and also exists in many gram-positive bacteria, including *Bacillus subtilis* (Guo et al., 2010) and Mycobacterium tuberculosis (Cimino et al., 2012). The *phoP* gene is a member of the *pho* regulator family and is subject to autoregulation via promoter binding (Liu and Hulett, 1997; Sieberi et al., 2020; Singh et al., 2020). PhoP acts as a global regulator and virulence factor, playing important roles in the regulation of upstream and downstream gene regulation. Therefore, the objective of this study was to use homologous recombination technology (Lu et al., 2013; Luo et al., 2015) to replace phoP with the spectinomycin-resistance gene (Spec) in the R. anatipestifer YM strain (serotype 1), evaluate its virulence, and analyze the effects of immunization with different doses of live R. anatipestifer $YM\Delta phoP$ strain in ducks. Our findings elucidate the safety and efficacy of live R. anatipestifer $YM\Delta phoP$ strain and demonstrate its potential clinical application for the protection of ducks against R. anatipestifer infection.

MATERIALS AND METHODS

Animals

Five-day-old healthy Cherry Valley ducks were purchased from Yongsheng Duck Company (Wuhan, China) and housed in isolated animal rooms at 28 to 30° C. The ducks were housed in cages with a 12-h light/ duck per day with free access to food and water. All animal experiments and procedures were approved by the Research Ethics Committee of Huazhong Agricultural University (approval no. HZAUSW-2018-011).

Bacterial Strains, Plasmids, and Culture Conditions

Both the wild-type R. anatipestifer YM (serotype 1) and R. anatipestifer $YM\Delta phoP$ strains were grown in tryptic soy broth (TSB; Becton Dickinson, Sparks, MD), whereas E. coli X7213 cells were grown in Luria Broth. The incubation temperature was 37°C. The following antibiotics were added as needed: spectinomycin (Sigma-Aldrich, St. Louis, MO; 100 μ g/mL), ampicillin (Sigma-Aldrich; 100 μ g/mL), and chloramphenicol (Sigma-Aldrich; 50 μ g/mL). For the cultivation of E. coli X7213, 50 μ g/mL diaminopimelic acid (Sigma-Aldrich) was added to the medium. The pRE112 suicide plasmid was used to construct the gene deletion strain. The pIC333 plasmid was used to amplify the spectinomycin resistance gene (Spec). All strains and plasmids were retrieved from the repository of our laboratory. The primers used in this study are listed in Table 1.

Construction and Identification of the R. anatipestifer YM∆phoP Strain

The left and right homologous arms (L, R) were amplified using PCR with primer pairs phoPL-F/phoPL-R and phoPR-F/phoPR-R. Spec was amplified using primers phoP Spec-F and phoP Spec-R. The 3

 Table 1. Primers used in this study.

Name	Sequence $(5'-3')$	Use	Reference or Designed
phoPL-F	CTGGTACCCACTATTGCTGATGAGGTTTACCTTGAAAA TCAACTAAAG	Amplification of the left arm of $phoP$	Designed
phoPL-R	AACGTGAGTTTTCGTTCCACTGCTTTTGGTCATCTTCT ACTAATAATATCCTGTTGCTCAT		
phoP-F	ATGAGCAACAGGATATTATTAGTAGAAGATGACCAAAG	Identification of mutant $phoP$	Designed
phoP-R	ATTTTTAACTAGAAGCCTAAACCCTTCCCCGTGTAC ATT		-
phoPR-F	CAGGTGCTTACTTTTAAAACTACTGTTCGGGGAAGGG TTTAGGCTTCTAGTTAAAAATTAA	Amplification of the right arm of $phoP$	Designed
phoPR-R	AGAGCTCGCACCACTCATTATGATTTTCTTTTGTATTT ATTGTTAGAG		
$phoP \ Spec-F$	ATGAĞCAACAĞGATATTATTAGTAGAAGATGACCAAAG CAGTGGAACGAAAACTCACGTT	Amplification of Spec	Designed
$phoP \ Spec-R$	TTAATTTTTAACTAGAAGCCTAAACCCTTCCCCGCAGT AGTTTTAAAAGTAAGCACCTG		
Spec-F	AAGAAAAAAAAAAAATCATGAGTAGAGCAGTGGAACG AA AACTCACGTT	Identification mutant of $phoP$	Designed
Spec-R	GCCCTTAAACCACATTTATAAAAGCCAGTAGTTTTAAA AGTAAGCACCTG		

gene fragments were concatenated using overlap extension PCR and digested with KpnI and SacI. The LSR fragment (spectinomycin resistance marker flanked by *phoP* homologous arms) was ligated into the pRE112 plasmid, resulting in the successful construction of the suicide plasmid pRE112-LSR (Zhao et al., 2016; Guo et al., 2017a). Transformation with *E. coli* X7213 as the donor strain and wild-type *R. anatipestifer* YM as the recipient strain was conducted to construct the *R. anatipestifer* YM Δ *phoP* strain (Figure 1A). The combined and transferred bacterial solution was spread on a TSA plate containing spectinomycin, and a single colony was selected after 5 consecutive passages for identification (Guo et al., 2017b; Gong et al., 2020), using primers Spec-F Spec-R and phoP-F phoP-R.

*LD*₅₀ Determination of Wild-Type R. anatipestifer YM and R. anatipestifer YM∆phoP Strains

The wild-type *R. anatipestifer* YM and *R. anatipestifer* YM $\Delta phoP$ strains were centrifuged at 1,600 × *g* for 3 min and resuspended in PBS. The bacterial solution for each strain was diluted to five different concentrations, including 10⁹, 10⁸, 10⁷, 10⁶, and 10⁵ CFU/mL. Seven-day-old

Cherry Valley ducks were divided into 11 groups (10 ducks per group), with ducks in each group receiving 1 of the 5 concentrations of wild-type R. anatipestifer YM strain, R. anatipestifer YM $\Delta phoP$ strain, or no treatment (control). Duck feet were injected with 0.2 mL bacterial solution. Phenotypic changes were noted daily after injection, deaths were recorded, and LD₅₀ values were calculated (Hu et al., 2010). The ratio of the LD₅₀ of the deletion strain to that of the wild strain is the fold reduction of the virulence of the deletion strain.

Recovery, Culture, and Preparation of R. anatipestifer YMAphoP Strain

The *R. anatipestifer* YM $\Delta phoP$ strain was inoculated on TSA plates and placed in an incubator at 37°C and 5% CO₂ for 48 to 72 h. A single colony of the *R. anatipestifer* YM $\Delta phoP$ strain was selected, inoculated into TSB medium, and cultured at 37°C with shaking (180 r/ min) until the logarithmic growth phase was reached [optical density at 600 nm (OD₆₀₀) = 0.8]. Subsequently, the bacterial suspension was centrifuged at 4,200 × g for 10 min at 18 to 25°C, and the pellet was washed 3 times with PBS. The OD₆₀₀ value of the bacterial solution was then adjusted to 1.0 using PBS.

Figure 1. Construction of the *R. anatipestifer* $YM\Delta phoP$ strain. (A) Diagram of the designed *R. anatipestifer* $YM\Delta phoP$ mutant strain. (B) PCR amplification of the left and right homologous arms of the *phoP* and *Spec* genes. Lanes 1–3: PCR products of the left homologous arm. Lanes 4–6: PCR products of the right homologous arm. Lanes 7–9: PCR products of the *Spec* gene. (C) Overlap extension PCR amplification of the left and right homologous arms of the *phoP* and *Spec* genes. Lanes 1 and 2: PCR amplification using the left arm, right arm, and *Spec* gene as templates. (D) Identification of the *R. anatipestifer* $YM\Delta phoP$ strain. Lane 1: Identification of deletion strain with *phoP* primers. Lane 2: Identification of deletion strain with *Spec* primers. Lane 3: Identification of deletion strain with *phoP* primers. Lane 4: Identification of deletion strain with *Spec* primers. RA, *Riemerella anatipestifer*.

Assessment of Safety of R. anatipestifer YMAphoP Strain

Seven-day-old Cherry Valley ducks were randomly divided into 2 groups (10 ducks per group), including a negative control group and an immunized group subcutaneously inoculated with the *R. anatipestifer* YM Δ -*phoP* strain (10⁸ CFU per duck). The growth, behavior, diet intake, and water consumption of the ducks were observed for 7 consecutive days.

Assessment of the Protective Effects of R. anatipestifer YM\[]phoP Strain

Seven-day-old Cherry Valley ducks were randomly divided into the following 4 groups (10 ducks per group): groups 1 and 2 were subcutaneously inoculated with the *R. anatipestifer* YM $\Delta phoP$ strain at a dose of 10⁶ to 10⁷ CFU; group 3 was the *R. anatipestifer* YM challenge control group; and group 4 was the negative control group. Blood was collected on d 7 and 14 after immunization, the serum was separated, and the antibody titer was determined by IgY ELISA. Fourteen days after immunization, ducks in groups 1, 2, and 3 were infected with the wild-type *R. anatipestifer* YM strain at an infection dose of 10 LD₅₀ and observed for 7 consecutive days to determine the protection rate (Chu et al., 2015).

Determination of Serum IgY Antibody Levels in Immunized Ducks

The *R. anatipestifer* YM $\Delta phoP$ strain was collected, washed 3 times with PBS, and sonicated. Microplates were then coated to prepare detection plates, and the sera from 14-day-old ducks were added as the primary antibody for 1 h at 37°C. Horseradish peroxidase-labeled goat anti-duck IgY (Luoyang Bai Aotong Experimental Materials Center, Henan, China) was used as a secondary antibody to measure serum IgY antibody levels in immunized ducks. Incubation with the secondary antibody was performed for 1 h at 37°C (Huang et al., 2002; Lobbedey and Schlatterer, 2003; Jia et al., 2009; Huang et al., 2011).

Detection of Serum Cytokine Levels in Immunized Ducks

Blood was collected 72 h after immunization, left to stand at 37°C for 30 min, and centrifuged at 1,600 × g for 10 min to obtain the serum. The expression levels of duck IL-2, IL-4, IL-10, and interferon (IFN)- γ were assessed using specific ELISA kits (BIOSAMITE, Shanghai, China). Serum cytokine levels were calculated from standard curves constructed using the concentration of the standard product as the abscissa and corresponding OD value as the ordinate.

Observation and Pathological Examinations

Ducks inoculated with *R. anatipestifer* YM $\Delta phoP$ and wild-type *R. anatipestifer* YM strains were autopsied to observe pathological changes focusing on changes detected in the heart, liver, spleen, and brain. Additionally, the presence of bleeding, necrosis, and surface cellulose coverage was noted. The corresponding tissues were fixed in formalin, embedded in paraffin, and cut into $4-\mu$ m-thick sections for hematoxylin and eosin staining. The sections were observed under a microscope (Gao et al., 2021).

Statistical Analysis

Data are presented as the mean \pm SEM. Differences among groups were determined using one-way analysis of variance with GraphPad Prism software (GraphPad Software Inc., San Diego, CA). Results with *P*-values < 0.05 were considered statistically significant.

RESULTS

Construction and Identification of *R*. anatipestifer YM∆phoP Strain

The genome of the wild-type R. anatipestifer YM strain was used as the template to amplify the left and right homologous arms of the phoP gene, and agarose gel electrophoresis showed that both bands were detected at approximately 800 bp (Figure 1B). The pIC333 plasmid was used as the template to amplify the Spec gene, and agarose gel electrophoresis revealed a band of approximately 1,100 bp (Figure 1B), which was consistent with our expectations. The Spec gene flanked by the left and right homologous arms of phoP was connected by overlap extension PCR, yielding a band size of 3,000 bp via agarose gel electrophoresis (Figure 1C), as expected. The overlapping fragment was ligated to the pRE112 plasmid for deletion of the phoP gene. The putative phoP deletion and wild-type R. anatipestifer YM strain DNA was amplified with *phoP* and *Spec* primers. Electrophoresis of the PCR products demonstrated no amplification of the phoP fragments for the putative *phoP* deletion strain, but *Spec* amplification was detected. Conversely, phoP amplification was demonstrated in the wild-type R. anatipestifer YM strain, whereas *Spec* amplification was not detected. These results demonstrated that the R. anatipestifer $YM\Delta$ *phoP* strain was successfully generated (Figure 1D).

*LD*₅₀ Determination Using Wild-Type R. anatipestifer YM and R. anatipestifer YMAphoP Strains

The ducks began to die on day 1 after inoculation with the wild-type R. anatipestifer YM strain. The number of deaths peaked on d 2 to 3 and decreased on d 4 to 5, with no deaths observed on d 6 to 7. The surviving ducks

Table 2. LD₅₀ values for wild-type R. anatipestifer YM and R. anatipestifer YM $\Delta phoP$ strains.

Strains	Dose	Survived/Total	LD_{50} (CFU)
Wild-type R. anatipestifer	1.0×10^{5}	2/10	3.98×10^{4}
	1.0×10^{6}	1/10	
	1.0×10^{7}	0/10	
	1.0×10^{8}	0/10	
	1.0×10^{9}	0/10	
$R. anatipestifer YM\Delta phoP$	1.0×10^{5}	10/10	1.88×10^{9}
	1.0×10^{6}	10/10	
	1.0×10^{7}	10/10	
	1.0×10^{8}	9/10	
	1.0×10^{9}	7/10	
Negative control group	n/a	10/10	n/a

CFU, colony-forming units; LD_{50} , 50% lethal dose; n/a, not applicable; R. anatipestifer, Riemerella anatipestifer.

did not move, preferring instead to rest in their nests. In contrast, ducks inoculated with the *R. anatipestifer* YM Δ phoP strain showed normal behavior after inoculation, with no changes in diet or water consumption. Deaths were observed only on d 3 and 4. The LD₅₀ of the wild-type *R. anatipestifer* YM strain was 3.98 × 10⁴ CFU, compared to 1.88 × 10⁹ CFU for the *R. anatipestifer* YM Δ phoP strain. The virulence of the phoP deleted strain was reduced by approximately 47,000 times compared to that of the wild-type *R. anatipestifer* YM strain (Table 2).

Safety of R. anatipestifer YMAphoP Strain

Ducks inoculated with R. anatipestifer YM $\Delta phoP$ bacterial suspension were observed for 7 consecutive days, revealing no abnormalities in their appearance, behavior, or inoculation site, and no changes in the amount of water or food consumed.

Protective Effects of R. anatipestifer YM∆phoP Strain

All ducks in the immunized groups survived, regardless of the dose, whereas those in the R. anatipestifer YM challenge group died within 1 to 7 d (Table 3, Figure 2). The ducks grew normally and had no clinical symptoms caused by R. anatipestifer YM inoculation. The indirect ELISA results revealed that the serum from the immunized groups contained higher levels of antibodies than that from the negative control and R. anatipestifer YM challenge groups. Additionally, serum levels of all tested cytokines in the immunized groups were significantly increased at 72 h compared to those in the negative control and R. anatipestifer YM challenge groups (Figure 3).

Observation and Pathological Examination

Ducks in the immunized and negative control groups exhibited normal tissues (Figure 4A, B), whereas those in the R. anatipestifer YM challenge group showed enlarged liver tissue, symptoms of fibrinous pericarditis, perihepatitis, and meningitis, as well as cerebral hemorrhage. Pathological examinations revealed large amounts of inflammatory substances in the epicardium, extensive fatty degeneration of liver cells, necrosis of some spleen cells, and small amounts of a red homochromatic substance in the splenic nodules. Additionally, some neurons exhibited pyknotic pyknosis, deep staining, and appeared neurotropic (Figure 4C).

DISCUSSION

R. anatipestifer is a major bacterial pathogen that causes economic losses in duck farming worldwide. Drugs offer a highly effective means by which to control this disease; however, drug resistance can develop with long-term drug use. Thus, few effective drugs target R. anatipestifer in many geographic areas, resulting in increased healthcare costs, deficits in food safety, and increased risk to human health. Vaccination is an effective strategy for preventing and controlling infectious serositis in ducks (Rubbenstroth et al., 2009; Tomida et al., 2019). Higgins et al. (2000) studied the cellular immune response mechanism of formalin-inactivated and live attenuated serotype 2 R. anatipestifer vaccines, reporting that the isolated wild-type strain was less pathogenic after being passaged 62 times in liquid and solid medium. After immunization of young ducks using drinking water, aerosol, or subcutaneous inoculation, analysis of serum titers using ELISA demonstrated that the attenuated vaccine induced high levels of immune antibodies that persisted for a long time compared to inoculation with the inactivated vaccine. Lymphocyte transfer tests also indicated that the attenuated vaccine induced a strong cellular immune response (Dou et al., 2018). Compared with the above study, The *R. anati*pestifer $YM\Delta phoP$ strain was constructed by homologous recombination, which mainly has a protective effect on ducks infected with serotype 1. Since the experimental animals were vaccinated with the R. anatipestifer $YM\Delta phoP$ live vaccine, they were capable of exhibiting humoral immunity and cellular immunity,

Table 3. Protective effects of the *R. anatipestifer* $YM\Delta phoP$ gene deletion strain.

Group	Immune dose (CFU)	Infectious dose (CFU)	Survived/Total	Survival%
Low dose	1.0×10^{6}	1.0×10^{6}	10/10	100
High dose	1.0×10^{7}	1.0×10^{6}	$10^{\prime}/10$	100
YM challenge	n/a	1.0×10^{6}	0/10	0
Negative control	n/a	n/a	10/10	100

R. anatipestifer, Riemerella anatipestifer; cfu, colony forming units; n/a, not applicable.

Figure 2. Protection and antibody levels for different groups. IgY antibody levels in ducks on days 7 and 14. All data are expressed as the mean \pm SEM of 3 independent experiments. **** P < 0.0001.

which protected the ducks from R. anatipestifer infection. This is supported by our result of significantly increased serum levels of all tested cytokines. The cytokines produced after immunization include IL-2 and IFN- γ secreted by Th1 cells that mediate cellular immunity and IL-4 and IL-10 secreted by Th2 cells that mediate humoral immunity. The research indicates that the R. anatipestifer YM $\Delta phoP$ strain can effectively enhance humoral immunity and cellular immune response.

Researchers have developed a live vaccine for the prevention of R. anatipestifer serotypes 1 and 2 (Kang et al., 2018). However, the vaccine requires 2 oral doses for immunization, which is costly for farmers. Wang et al. (2014, 2016) used a strain with pncA gene deletion as a vaccine candidate and obtained 90% protection after 2 vaccinations. Liu et al. (2016, 2018) employed homologous recombination to produce a virulence gene deletion strain. After knocking out the $\Delta B739_1343$ gene, the virulence of the live vaccine candidate strain was decreased by approximately 10,000 times and the

Figure 3. Determination of serum cytokine levels in different groups, as measured by ELISA. (A) IFN- γ , (B): IL-2, (C): IL-4, (D): IL-10. All data are expressed as the mean \pm SEM of 3 independent experiments. $^{****}P < 0.0001$; $^*P < 0.05$.

Figure 4. Staining results for histopathological sections from the ducks. (\mathbf{A}, \mathbf{B}) Left to right, Observations from tissue sections from the immunized and negative control groups. (\mathbf{C}) Abnormal myocardial structure with large amounts of viscous material in the epicardial membrane. Abnormal liver tissue structures, with extensive steatosis of the liver cells. Some spleen cells were necrotic, and a small amount of red homogeneous material was detected in the splenic nodules. Some neurons were pyknotic and hyperchromatic, showing neurotropic effects. The tissues were stained with hematoxylin and eosin (200 ×).

protection rate was 83.3%. Moreover, we previously generated a Cas9 gene deletion strain by homologous recombination that demonstrated protective effects and a 317-fold reduction in virulence. Although the protection rate of the Cas9 gene deletion strain reached 80%through intranasal inoculation, subcutaneous inoculation only achieved a protection rate of 30% (Wang et al., 2019b). In the current study, the virulence of the phoP strain was reduced by approximately deletion 47,000 times, and ducks were immunized with the live R. anatipestifer YM Δ phoP strain by subcutaneous inoculation. The live R. anatipestifer $YM\Delta phoP$ strain only requires one dosage for immunization, and the rate of protection to ducks could reach 100%. Compared to the existing methods, the vaccine described herein provides better protection, requires fewer immunizations, and uses lower immunization dosages.

Several inactivated vaccine products are commercially available in China. The production process for inactivated vaccines utilizes inactivated bacteria, resulting in suitable safety profiles. Xu et al. (2020) reported that prokaryotic ompA protein, as a predominant immunogenic protein of *R. anatipestifer*, was an immunizing antigen but only provided partial protection against challenge with *R. anatipestifer*. Studies with deletion strains of *R. anatipestifer* have shown that the main biochemical characteristics of the $\Delta phoP/phoR$ double gene deletion strain are similar to those of the wild-type *R. anatipestifer* YM strain, albeit with significantly reduced virulence and host tissue invasion capacity. Indeed, the double gene deletion strain showed an LD₅₀ > 10¹⁰ CFU, suggesting that the strain was avirulent. However, no effective protection was achieved after ducks were immunized with the $\Delta phoP/phoR$ double gene deletion strain, suggesting that the double-component deletion strain lost both virulence and immunogenicity (Lu. T, unpublished). The $\Delta phoP$ gene deletion strain obtained in this study showed 100% protection against serotype 1 R. anatipestifer infection in ducks, while the virulence was reduced by 47,000 times. The reason that the protection effect of the phoP deletion strain was 100% and $\Delta phoP/phoR$ deletion strain had less protection effect needs further study. The *phoP* gene of RA is a virulence gene that has been identified using in vivo antigen technology. In the current study, homologous recombination and combined transfer were used to replace the phoP target gene with the Spec gene, yielding the R. anatipestifer $YM\Delta phoP$ strain. This strain showed greatly reduced virulence and resulted in high antibody production after inoculation in ducks. Furthermore, ducks immunized with this strain were protected against infection by the wild-type strain. Overall, these findings suggest that R. anatipestifer $YM\Delta phoP$ could be used as a vaccine candidate strain, thereby establishing a basis for further studies on gene deletion live vaccines for duck infectious serositis. The R. anatipestifer $YM\Delta phoP$ strain exhibited a suitable level of safety and protective effects against the epidemic strain. Future studies will explore the protective effects of different vaccination doses on ducks. Additionally, the cross-protection effect of the R. anatipestifer $YM\Delta$ phoP strain against other R. anatipestifer services needs to be further verified owing to the large number of pathogenic serotypes. Thus, future research should

employ proteomics to screen ectoproteins with cross-protection against various pathogenic RA serotypes and investigate aspects related to subunit vaccines.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (No. 31872498 to Z.L.) and the Wuhan Science and Technology Bureau (grant no. 2015020101010070 to Z.L.).

DISCLOSURES

The authors declare that they have no conflicts of interest.

REFERENCES

- Bickey, S. M., W. Liu, X. Zhang, M. F. Duggan, and F. M. Hulett. 1998. *Pho* signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: *Bacillus Subtilis PhoP* directly regulates production of ResD. Mol. Microbiol. 30:943–953.
- Chu, C.-Y., C.-H. Liu, J.-J. Liou, J.-W. Lee, and L.-T. Cheng. 2015. Development of a subunit vaccine containing recombinant *Riemerella Anatipestifer* outer membrane protein a and CpG ODN adjuvant. Vaccine 33:92–99.
- Cimino, M., C. Thomas, A. Namouchi, S. Dubrac, B. Gicquel, and D. N. Gopaul. 2012. Identification of DNA binding motifs of the *Mycobacterium tuberculosis* PhoP/PhoR two-component signal transduction system. PLoS One 7:e42876.
- Cobb, S. P., and H. Smith. 2015. The spread of non-OIE-listed avian diseases through international trade of chicken meat: an assessment of the risks to New Zealand. Rev. Sci. Tech. 34:795–812.
- Dou, Y., G. Yu, X. Wang, S. Wang, T. Li, M. Tian, J. Qi, C. Ding, and S. Yu. 2018. The *Riemerella Anatipestifer M949_RS01035* gene is involved in bacterial lipopolysaccharide biosynthesis. Vet. Res. 49:93.
- Fernandez, C. P., F. Afrin, R. A. Flores, W. H. Kim, J. Jeong, S. Kim, H. S. Lillehoj, and W. Min. 2018. Identification of duck IL-4 and its inhibitory effect on IL-17A expression in *R. Anatipestifer*-stimulated splenic lymphocytes. Mol. Immunol. 95:20–29.
- Fernandez, C. P., W. H. Kim, J. A. R. Diaz, J. Jeong, F. Afrin, S. Kim, H.-K. Jang, B.-H. Lee, D. Yim, H. S. Lillehoj, and W. Min. 2016. Upregulation of duck interleukin-17A during *Riemerella Anatipestifer* infection. Dev. Comp. Immunol. 63:36–46.
- Gao, J., C. Ye, L. Zhu, Z. Tian, and Z. Yang. 2014. A homolog of glyceraldehyde-3-phosphate dehydrogenase from *Riemerella Anatipestifer* is an extracellular protein and exhibits biological activity. J. Zhejiang Univ. Sci. B 15:776–787.
- Gao, Q., S. Lu, M. Wang, R. Jia, S. Chen, D. Zhu, M. Liu, X. Zhao, Q. Yang, Y. Wu, S. Zhang, J. Huang, S. Mao, X. Ou, D. Sun, B. Tian, and A. Cheng. 2021. Putative *Riemerella Anatipestifer* outer membrane protein H affects virulence. Front. Microbiol. 12:708225.
- Gong, Y., Y. Yang, Y. Chen, B. Sun, Y. Xue, X. Xu, X. Wang, N. Islam, X. Du, and Q. Hu. 2020. Characterization of the hemolytic activity of *Riemerella Anatipestifer*. Microbiology 166: 436–439.
- Guo, Q., S. Li, X. Lu, B. Li, and P. Ma. 2010. PhoR/PhoP two component regulatory system affects biocontrol capability of *Bacillus subtilis* NCD-2. Genet. Mol. Biol. 33:333–340.
- Guo, Y., D. Hu, J. Guo, X. Li, J. Guo, X. Wang, Y. Xiao, H. Jin, M. Liu, Z. Li, D. Bi, and Z. Zhou. 2017a. The role of the regulator *Fur* in gene regulation and virulence of *Riemerella Anatipestifer* assessed using an unmarked gene deletion system. Front. Cell. Infect. Microbiol. 7:382.
- Guo, Y., D. Hu, J. Guo, T. Wang, Y. Xiao, X. Wang, S. Li, M. Liu, Z. Li, D. Bi, and Z. Zhou. 2017b. *Riemerella Anatipestifer* type IX

secretion system is required for virulence and gelatinase secretion. Front. Microbiol. 8:2553.

- Hendrickson, J. M., and K. F. Hilbert. 1932. A new and serious septicaemic disease of young ducks with a description of the causative organism *Pfeifferella Anatipestifer*. Cornell Vet. 22:239–252.
- Higgins, D., R. R. Henry, and Z. V. Zounev. 2000. Duck immune responses to *Riemerella Anatipestifer* vaccines. Dev. Comp. Immunol. 24:153–167.
- Hu, Q., X. Han, X. Zhou, C. Ding, Y. Zhu, and S. Yu. 2011. OmpA is a virulence factor of *Riemerella Anatipestifer*. Vet. Microbiol. 150:278–283.
- Hu, Q., X. Han, X. Zhou, S. Ding, C. Ding, and S. Yu. 2010. Characterization of biofilm formation by *Riemerella Anatipestifer*. Vet. Microbiol. 144:429–436.
- Huang, B., J. Kwang, H. Loh, J. Frey, H.-M. Tan, and K.-L. Chua. 2002. Development of an ELISA using a recombinant 41 kDa partial protein (P45N') for the detection of *Riemerella Anatipestifer* infections in ducks. Vet. Microbiol. 88:339–349.
- Huang, Z., J. Fang, J. Gu, Y. Yan, and J. Zhou. 2011. Development of a capture ELISA to determine kinetics of soluble CD25 following in vitro and in vivo stimulation of duck peripheral blood monocytes. Vet. Immunol. Immunopathol. 140:102–109.
- Jia, R., A. Cheng, M. Wang, X. Qi, D. Zhu, H. Ge, Q. Luo, F. Liu, Y. Guo, and X. Chen. 2009. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J. Virol. Methods 161:38–43.
- Kang, M., H.-S. Seo, S.-H. Soh, and H.-K. Jang. 2018. Immunogenicity and safety of a live *Riemerella Anatipestifer* vaccine and the contribution of IgA to protective efficacy in Pekin Ducks. Vet. Microbiol. 222:132–138.
- Liu, J., H. Qiu, Z. Zhu, and T. Zou. 2015. Antibacterial, anti-inflammatory, and antioxidant effects of Yinzhihuang injection. Biomed. Mater. Eng. 26:S2123–S2132.
- Liu, M., M. Huang, Y. Shui, F. Biville, D. Zhu, M. Wang, R. Jia, S. Chen, K. Sun, X. Zhao, Q. Yang, Y. Wu, X. Chen, and A. Cheng. 2018. Roles of *B739_1343* in iron acquisition and pathogenesis in *Riemerella Anatipestifer* CH-1 and evaluation of the RA-CH-1Δ*B739_1343* mutant as an attenuated vaccine. PLoS One 13:e0197310.
- Liu, M., M. Wang, D. Zhu, M. Wang, R. Jia, S. Chen, K. Sun, Q. Yang, Y. Wu, X. Chen, F. Biville, and A. Cheng. 2016. Investigation of TbfA in *Riemerella Anatipestifer* using plasmid-based methods for gene over-expression and knockdown. Sci. Rep. 6:37159.
- Liu, W., and F. M. Hulett. 1997. *Bacillus Subtilis* PhoP binds to the PhoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J. Bacteriol. 179:6302–6310.
- Lobbedey, L., and B. Schlatterer. 2003. Development and application of an ELISA for the detection of duck antibodies against *Riemerella Anatipestifer* antigens in egg yolk of vaccines and in serum of their offspring. J. Vet. Med. Ser. B 50:81–85.
- Lu, F., S. Miao, J. Tu, X. Ni, L. Xing, H. Yu, L. Pan, and Q. Hu. 2013. The role of TonB-dependent receptor TbdR1 in *Riemerella Anatipestifer* in iron acquisition and virulence. Vet. Microbiol. 167:713– 718.
- Luo, H., M. Liu, L. Wang, W. Zhou, M. Wang, A. Cheng, R. Jia, S. Chen, K. Sun, Q. Yang, X. Chen, and D. Zhu. 2015. Identification of ribosomal RNA methyltransferase gene *ErmF* in *Riemerella Anatipestifer*. Avian Pathol. 44:162–168.
- Pathanasophon, P., T. Sawada, and T. Tanticharoenyos. 1995. New serotypes of *Riemerella Anatipestifer* isolated from ducks in Thailand. Avian Pathol. 24:195–199.
- Rubbenstroth, D., M. Ryll, K.-P. Behr, and S. Rautenschlein. 2009. Pathogenesis of *Riemerella Anatipestifer* in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus. Avian Pathol. 38:497– 507.
- Sandhu, T., and E. G. Harry. 1981. Serotypes of *Pasteurella Anatipes*tifer isolated from commercial White Pekin ducks in the United States. Avian Dis. 25:497–502.
- Sandhu, T. S., and H. W. Layton. 1985. Laboratory and field trials with formalin-inactivated *Escherichia Coli* (O78)-*Pasteurella Anatipestifer* bacterin in White Pekin ducks. Avian Dis. 29:128– 135.

- Segers, P., W. Mannheim, M. Vancanneyt, K. De Brandt, K. H. Hinz, K. Kersters, and P. Vandamme. 1993. *Riemerella Anatipestifer* Gen. Nov., Comb. Nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the *Flavobacterium-Cytophaga* RRNA homology group. Int. J. Syst. Bacteriol. 43:768–776.
- Sieberi, B. M., G. I. Omwenga, R. K. Wambua, J. C. Samoei, and M. P. Ngugi. 2020. Screening of the dichloromethane: methanolic extract of *Centella Asiatica* for antibacterial activities against *Salmonella Typhi, Escherichia Coli, Shigella Sonnei, Bacillus Subtilis,* and *Staphylococcus Aureus*. Sci. World J. 2020:6378712.
- Singh, P. R., A. K. Vijjamarri, and D. Sarkar. 2020. Metabolic switching of *Mycobacterium tuberculosis* during hypoxia is controlled by the virulence regulator *phoP*. J. Bacteriol. 202:e00705–e00719.
- Tang, T., Y. Wu, H. Lin, Y. Li, H. Zuo, Q. Gao, C. Wang, and X. Pei. 2018. The drug tolerant persisters of *Riemerella Anatipestifer* can be eradicated by a combination of two or three antibiotics. BMC Microbiol. 18:137.
- Tomida, J., N. Fujiwara, T. Naka, Y. Morita, E. Sawabe, N. Tojo, K. Kikuchi, and Y. Kawamura. 2019. Spodiobacter Cordis Gen. Nov. Sp. Nov., a member of the family *Flavobacteriaceae* isolated from patients with infective endocarditis. Microbiol. Immunol. 63:111–118.
- Wang, X., C. Ding, S. Wang, X. Han, W. Hou, J. Yue, J. Zou, and S. Yu. 2014. The AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and pathogenicity of *Riemerella Ana*tipestifer. PLoS One 9:e109962.
- Wang, X., B. Liu, Y. Dou, H. Fan, S. Wang, T. Li, C. Ding, and S. Yu. 2016. The *Riemerella Anatipestifer AS87_01735* gene encodes nicotinamidase pncA, an important virulence factor. Appl. Environ. Microbiol. 82:5815–5823.

- Wang, Y., T. Lu, X. Yin, Z. Zhou, S. Li, M. Liu, S. Hu, D. Bi, and Z. Li. 2017. A novel RAYM_RS09735/RAYM_RS09740 Twocomponent signaling system regulates gene expression and virulence in Riemerella Anatipestifer. Front. Microbiol. 8:688.
- Wang, Y., X. Yin, Z. Zhou, S. Hu, S. Li, M. Liu, X. Wang, Y. Xiao, D. Shi, D. Bi, and Z. Li. 2019a. Cas9 regulated gene expression and pathogenicity in *Riemerella Anatipestifer*. Microb. Pathog. 136:103706.
- Wang, Y., Y. Zhang, Y. Cui, Z. Sun, Z. Zhou, S. Hu, S. Li, M. Liu, X. Meng, Y. Xiao, D. Shi, D. Bi, and Z. Li. 2019b. Identification of an integrase that responsible for precise integration and excision of *Riemerella Anatipestifer* genomic island. Front. Microbiol. 10:2099.
- Xu, X., Y. Xu, S. Miao, P. Jiang, J. Cui, Y. Gong, P. Tan, X. Du, N. Islam, and Q. Hu. 2020. Evaluation of the protective immunity of Riemerella Anatipestifer OmpA. Appl. Microbiol. Biotechnol. 104:1273–1281.
- Yang, D., K. Mai, Q. Zhou, Y. Zhu, J. Xing, C. Luo, S. Liu, Q. Zhou, W. Huang, J. Luo, and J. Liu. 2020. The protective efficacy of specific egg yolk immunoglobulin Y(IgY) against Riemerella Anatipestifer infections. Vet. Microbiol. 243:108642.
- Yang, S., W. Dong, G. Li, Z. Zhao, M. Song, Z. Huang, J. Fu, F. Jia, and S. Lin. 2019. A recombinant vaccine of Riemerella Anatipestifer OmpA fused with duck IgY Fc and Schisandra Chinensis polysaccharide adjuvant enhance protective immune response. Microb. Pathog. 136:103707.
- Zhao, X., Q. Liu, J. Zhang, Y. Luo, Y. Luo, Q. Liu, P. Li, and Q. Kong. 2016. Identification of a gene in Riemerella Anatipestifer CH-1 (B739-2187) that contributes to resistance to polymyxin b and evaluation of its mutant as a live attenuated vaccine. Microb. Pathog. 91:99–106.