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ABSTRACT
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envel
ope components are lamins that associate with a panoply of factors, including the LEM domain 
proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled 
and associated with chromatin at the end of mitosis when telomeres tether to the nuclear 
periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the 
reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a 
machinery operating in multiple membrane assembly pathways, including nuclear envelope 
reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear 
envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during 
interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are 
giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as 
laminopathies and cancer. 

Abbreviations: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2- 
emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton 
complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, 
inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic 
Reticulum; SPB, spindle pole body.
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Elements of the nuclear envelope

The nuclear envelope (NE) compartmentalizes chro
matin in eukaryotic cells. It is composed of two 
phospholipid bilayers, the inner and outer mem
branes (INM and ONM), separated by 
a perinuclear space of approximately 30–50 nm [1– 
3]. The ONM is an extension of the endoplasmic 
reticulum (ER) and is directly connected with the 
INM at the nuclear pore sites [1,4] (Figure 1). Both 
the ONM and INM contain NE transmembrane 
proteins, synthesized in the ER, and successively 
distributed in the two compartments [4–6]. Below 
and interconnected with the INM, there is the 
nuclear lamina, which in mammalian cells includes 
A- and B-type lamins. Principal A-type lamins are 
lamin A and C, while the B-type are B1 and B2. The 
LMNA gene encodes the A-type lamins, whereas 
LMNB1 and LMNB2 genes encode lamins B1 and 
B2, respectively. The super-molecular organization 

of lamins into a meshwork interconnected with the 
INM has been dissected biochemically [7,8], and 
more recently detailed with refined technologies for 
imaging studies as 3D-SIM (structured illumination 
microscopy), PALM (photoactivated localization 
microscopy) and dSTORM (direct stochastic optical 
reconstruction microscopy) [9–12]. 3D-SIM delivers 
~120 nm XY resolution images of mammalian cell 
nuclei [13]. This analysis showed that each of the 
lamins, A, C, B1, and B2, forms distinctive separate 
meshwork [9]. PALM and dSTORM, which allow 
scaling XY resolution to 20–100 nm, confirmed this 
meshwork organization [10,11,13,14]. Cryo-electron 
tomography has shown, besides, that A- and B-type 
lamins assemble into tetrameric filaments of 3.5 nm 
thickness [10]. Single molecule tracking has demon
strated the dynamic nature of lamins in the native 
cellular environment [12].

In situ cryo-electron microscopic imaging com
bined with biochemistry has provided, on the other 
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end, the pseudo-atomic dissection of the nuclear 
pore complexes (NPCs) [15]. These are megadalton 
proteinaceous channels composed of more than 30 
different nucleoporins [16]. NPCs allow import and 
export and diffusion of proteins, RNAs, and ions 
between the nucleus and the cytoplasm [15].

The INM hosts a set of proteins, including the 
LEM domain proteins, as LAP, emerin, and 
MAN1 [4,17,18]. The LINC complex puts in con
tact the lumen of the NE with the cytoskeleton. 
This complex is formed by the SUN and KASH 
proteins, which cross the ONM and the INM [19]. 
SUN (Sad1, Unc-84) domain proteins are asso
ciated with the INM, and KASH (Klarsicht, 
ANC- 1, Syne Homology) domain proteins reside 
in the ONM [19]. There are at least six SUN 
domain proteins in humans, SUN1 and SUN2 
are the best characterized [20], while KASH 
domain proteins include nesprins 1 and 2 in mam
mals, which bind F-actin [21].

Altogether the different elements of the NE are 
implicated in nuclear properties, including chro
matin organization and function.

Association of chromatin with the nuclear 
envelope

A spatially defined organization of chromatin that 
includes the association of specific domains with 

the nuclear periphery was historically hypothe
sized by Carl Rabl and Theodor Boveri [22] and 
successively observed by in situ hybridization by 
Cremer and Cremer in 2010 [23]. The genome- 
wide characteristics of the spatial architecture of 
chromatin were dissected successively by chroma
tin conformation capture (3 C)-based techniques. 
These studies identified topologically associating 
domains (TADs) [24] and chromatin domains 
linked with the lamina (LADs) [25]. In human 
cells, LADs are ~1,000 to 1,500. They possess 
features of heterochromatin [25] and are tran
scribed and replicated depending on their attach
ment status to the lamina [26]. Lamins also 
associate with euchromatic regions, in the nucleo
plasm [27]. This association involves A-type 
lamins, while B-type lamins link the heterochro
matin [27].

The NE associates with the chromatin via multi
ple factors. LEM domain proteins as LAP2ß, 
MAN1, and emerin bridge with the chromatin 
via BAF [28–30]. LBR, on the other hand, estab
lishes contacts with heterochromatin via HP1 
[30,31] (Figure 1). In accordance with the concept 
that the organization of the chromatin intertwines 
with the NE, modifications of lamins and NE 
factors cause its redistribution. The mutation of 
LBR and A-type lamins, for example, produces the 
relocalization of heterochromatin from the 

Figure 1. Schematic representation of the NE and of its components. The NE is composed of two phospholipid bilayers (INM and 
ONM), separated by a perinuclear space. The ONM is an extension of the ER and is directly connected with the INM at NPCs. Both the 
ONM and INM contain a set of proteins, including the LEM domain proteins, as LAP2, emerin, and MAN1. The LINC complex puts in 
contact the lumen of the NE with the cytoskeleton and is formed by the SUN and KASH proteins as nesprin. Chromatin is at the 
nuclear periphery via bridging elements as BAF.
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periphery to the nuclear interior. This phenotype 
recalls the one of mouse retinal rod cells, which 
lack both A-type lamins and LBR [30].

Centromeres and telomeres play a relevant role 
in the organization of the chromatin at the NE. 
Carl Rabl first described a nonrandom organiza
tion of centromeres often associated with the NE 
[22]. This so-called Rabl configuration was 
observed in salamander larvae and successively 
found in other organisms, including yeast, where 
centromeres are clustered and attached to the NE 
[32]. In Saccharomyces pombe, centromere attach
ment to the NE depends on the centromere-bound 
protein Csi1 that bridges the centromeres through 
interactions with the SUN domain protein Sad1 
[33]. Disruption in this interaction causes chromo
some missegregation [33,34]. Julie Cooper and 
coworkers extensively studied the bouquet of telo
meres and centromeres at the NE [35], demon
strating that the association of centromeres with 
the LINC complex controls spindle assembly in 
fission yeast [34]. These studies also point to the 
functional redundancy between centromeres and 
telomeres in enabling the formation of the meiotic 
spindles [36]. In addition to chromosome segrega
tion, centromere tethering at the NE mediates 
peri-centromeric heterochromatin and subsequent 
gene silencing, through molecular association with 
Lem2 as shown in fission yeast [37]. The advent of 
3 C-based technologies showed that this attach
ment to the NE limits topological entanglement 
of the budding yeast genome and facilitates chro
mosome segregation [38]. Importantly, recent evi
dence shows that centromeres influence genome 
organization and chromosome architecture, espe
cially in yeast [39]. Advanced centromere labeling 
and 3D superresolution have demonstrated that 
alterations of human centromeres cause an appar
ent increase in the chromatin volume occupied 
with alpha-satellites in cancer cells [40,41]. Yet, 
in human cells, centromeres are not typically 
located at the periphery, except for specific cell 
types such as neutrophils where they are often 
associated with the NE [42]. Nonetheless, similar 
to finding in yeast, distribution at the NE and 
movements of mouse and human centromeres 
are required to form a chromosome bouquet 
structure that promotes homologs pairing during 
meiosis [43]. However, this nonrandom 

positioning of repetitive sequences tends to be 
transient, occurring just before or during meiotic 
recombination, potentially to enable the synapto
nemal complex formation and shuffling of mater
nal and paternal genetic material through 
recombination.

Telomere tethering at the NE has been 
described in yeast and dissected in mammalian 
cells in meiosis [36,44–46]. In meiotic cells, the 
nuclear periphery organizes telomeres into the 
bouquet at the centrosomal pole of the nucleus 
to facilitate homolog pairing. This process is 
mediated by cytoplasmic dynein, SUN1, and 
KASH5, in the ONM [47]. SUN1 associates with 
telomeres at the INM, while KASH5 mediates 
dynein connection at the ONM.

Although the full picture is not yet defined, in 
mammalian somatic cells too, there is evidence 
that the NE affects the intra-nuclear topology 
and dynamics of telomeres [48,49], along with 
their homeostasis and epigenetics [50]. A-type 
lamins contribute to repair dysfunctional telo
meres by stabilizing 53BP1 protein levels [51]. 
Advanced time-lapse imaging has shown the con
nection between DNA repair occurring at 
uncapped telomeres, and the proteins 53BP1 and 
SUN1 and SUN2, along with microtubules [52]. 
The nuclear factor LAP2α interacts with telomeres 
and lamin C in telophase, and with nucleoplasmic 
lamin A/C foci and with the lamina in interphase 
[53]. Lamins also interconnect with interstitial tel
omere sequences via the telomeric factor TRF2 
[54]. This link could be critical for the formation 
of chromosome loops between telomeres and 
interstitial telomeric sequences [54].

Dynamics of chromatin and nuclear envelope 
in open mitosis

When higher eukaryotes enter mitosis, the nucleus 
opens up to let chromosome association with the 
spindle microtubule arrays and segregation into 
daughter nuclei [55]. A post-translational phos
phorylation scheme of NE components triggered 
at the onset of mitosis controls NE disassembly 
[56]. The kinases involved in NE dismantling 
include cyclin-dependent kinase 1, Aurora kinases, 
Polo-like kinase 1, and Never in mitosis kinase 
[56]. NE disassembly also involves phosphatases, 
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namely protein phosphatase 1 and protein phos
phatase 2A [56].

The process of NE disassembly requires the 
phosphorylation of nucleoporins in NPCs [57,58], 
and the phosphorylation of NE associated factors 
that induces their dissociation from lamins and 
chromatin. If this dissociation process does not 
occur, proper segregation of chromosomes is 
impaired [59]. The mitotic phosphorylation of 
the protein BAF reduces its affinity for chromatin, 
which contributes to NE disassembly [60]. Upon 
NE breakdown and NPC disassembly, INM and 
ONM elements go into the ER or the cytoplasm 
[61]. At this stage, cells enter prometaphase, mito
tic spindle assemblies, chromosomes are organized 
at the metaphase plate and successively separated 
during anaphase [62]. At late anaphase, the NE 
starts to be reformed by ER fragment assembly 
and membrane resealing to recreate the compart
mentalization between the nucleus and the cyto
plasm [63,64]. The inactivation of the cyclin- 
dependent kinases and dephosphorylation of pro
teins as BAF allows recreating the connection of 
the NE with chromatin [65]. The compact struc
ture of anaphase chromosomes favors the correct 
reorganization of the NE by preventing an inva
sion of membranes into chromatin [55].

In human cells, it is during the postmitotic 
phase of nuclear reassembly that telomeres enrich 
at the NE via an interaction between SUN1 and 

the telomeric protein RAP1 [49] (Figure 2). 
Telomere tethering at the nuclear rim drives chro
matin domain reorganization, which at the steady- 
state includes the juxtaposition of heterochromatin 
at the nuclear lamina and LAD distribution [49]. 
At the end of telophase, NE reassembles and 
includes NPCs. NPC inclusion in the NE may 
happen either via the insertion of immature pre- 
NPCs or by direct assembly of the complexes at 
the NE [66].

During NE formation the endosomal sorting 
complex required for transport (ESCRT) ensures 
the continuity of the nuclear membrane [67,68] 
(Figures 2 and 3). The ESCRT machinery includes 
three protein families, the ESCRT I, II, and III. 
ESCRTs play a role in also in endosome trafficking 
[69,70] and in cell division [71,72], and a striking 
conceptual aspect is that they use common ele
ments in the different pathways [73]. At the NE, 
the ESCRT CHMP4B recruits CHMP2A. 
CHMP4B is brought into the complex by the 
ESCRT CHMP7 and by UFD1 [74]. CCD21B, 
VPS4 and Spastin participate to ESCRT activity 
at the NE by regulating the spatio-temporal dis
tribution of the macro-complexes and finalizing 
the membrane sealing process [73,75]. The 
ESCRT associated factor ALIX contributes to 
INM properties [76].

Mechanistically, CHMP7 acts as a membrane- 
binding module; it interacts with the ER and 

Figure 2. ESCRTs act in multiple cellular pathways including NE assembly. The ESCRT machinery works in telophase to contribute to 
the abscission process at the microtubule-rich structure known as the midbody (in orange). In early G1, ESCRTs participate to NE 
reformation. Here, ESCRTs, lamins, NE transmembrane proteins, and chromatin-associated factors work together determining spatial 
reorganization of chromatin. In interphase, ESCRTs play a pivotal function in endosomal trafficking. NETs, NE transmembrane 
proteins.

208 R. BURLA ET AL.



provides a platform to direct NE recruitment of 
ESCRT factors [74]. The INM LEM family mem
ber LEM2 (Lem2p in yeast) works with CHMP7 in 
fission yeast and human cells [77]. The recruit
ment at the NE of ESCRTs depends on LEM2. 
LEM2 enriches with CHMP7 at the same regions 
of the chromatin disk periphery. In yeast, it has 
been shown that telomere maintenance depends 
on ESCRT activity [78]. A new set of data impli
cates liquid-liquid phase separation of LEM2 in 
the polymerization of ESCRT CHMP7 around 
residual spindle microtubule bundles (Figure 3). 
These phase separation studies give a dynamic 
molecular picture bridging LEMs, ESCRTs, and 
the chromatin binding factor BAF [79].

Nuclear envelope defects and chromatin 
dysfunction in disease

Defects of the NE coupled with chromatin dys
function characterize a panoply of human diseases. 
The fact that elements of the NE and chromatin 
are intimately linked is supported by the knowl
edge that mutations of diverse factors impinging 
on the NE as LEM domain proteins, ESCRTs or 
lamins, converge into common disease phenotypes 
of chromatin disorganization and dysfunction 
(Table 1 and Figure 4).

A paradigmatic example of NE disease asso
ciated with chromatin dysfunction is the 
Hutchinson Gilford Progeria Syndrome (HGPS). 
HGPS is a rare genetic disease due to a de novo 
C ≤ T transition in the LMNA gene that exposes 
a cryptic splice site, which generates the perma
nently farnesylated Δ50 variant of lamin A, known 
as progerin [80,81]. Although the full understand
ing of the in vivo pathological pathways that even
tually lead to the HGPS clinical pattern is still 
under investigation, some aspects of the disease 
have been clarified. Importantly, as in other 
genetic diseases, the HGPS mutation impinges on 
mesenchymal stem cell properties [82,83] and 
causes autocrine and paracrine dysfunction of 
cells and tissues [84]. At the nuclear level, the 
expression of progerin causes dysmorphism, 
abnormal intra-nuclear chromatin distribution, 
DNA damage, and telomere attrition [85–89]. 
The HGPS mutation creates new associations as 
compared to wild type lamin A, abolishes existing 
interactions, or causes the delocalization or dys
function of lamin A partners. Loss of lamin 
A interaction with 53BP1, for example, appears 
to account for the DNA repair defects observed 
in lamin mutants [90]. The chromatin defects 
found in HGPS patient cells likely reflect the asso
ciation of lamins with the NURD chromatin remo
deling complex [91]. Loss of another lamin 
interacting-protein, the Suv39h1 methyltransfer
ase, improves DNA repair and extends the lifespan 
of a progeroid mouse model with impaired pre
lamin A maturation, suggesting that HGPS causes 
Suv39h1-mediated epigenetic alterations in the 
chromatin [92]. A-type lamin interaction with 
the telomeric factor TRF2 and the association of 
the LAP2α with telomeres provide evidence for the 
role of A-type lamins and progerin in telomere 
homeostasis [54]. Intriguingly, while the complete 
picture of centromere positioning at the NE 
remains elusive, data show that the HGPS LMNA 
mutation disrupts the peripheral clustering of cen
tromeres in dermal fibroblasts from affected 
patients [93].

A further element fueling the concept that NE 
fragility and chromatin are interlinked in pathology 
derives from two paradigmatic papers on ESCRT 
proteins [68,147]. These studies have shown how 
ESCRT CHMP7 contributes not only to NE 

Figure 3. LEM2 condensation at the NE mechanistically links 
the ESCRT machinery to NE reassembly. A sealing process 
finalizes NE reassembly at the end of mitosis. This process starts 
with the condensation of the lamin associated factor LEM2 on 
mitotic spindle residual microtubules fibers (in orange). LEM2 
condensation activates ESCRTs (in blue) that disassemble micro
tubules and allow membrane sealing. LEM2 binds BAF, associat
ing chromatin to the macromolecular complex. MT, 
microtubules.
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reassembly in the final stages of cytokinesis but also to 
repair NE rupture during interphase (NERDI) 
[68,147]. Mechanistically, the repair sequence of 
NERDI involves a predominantly non- 
phosphorylated cytoplasmic population of BAF, that 
binds DNA and concentrates at nuclear ruptures, 
where it recruits LEM-domain proteins, driving the 
assembly of the ESCRT complex [148]. In HGPS cells, 
NERDI is observed and associates with ESCRT 
expression [149–151].

Cancer is a second example in which defects of 
the NE are coupled with chromatin dysfunction 
and linked to the disease phenotype [152,153]. 
Nuclear deformation and chromatin alterations 
are in fact in use for diagnosis and tumor classifi
cation since many years [154]. The evolution of 
imaging and computer science has then brought to 
next-generation cancer nucleotyping based on 
parametric machine-learning techniques that use 
quantitative data, as nuclear size, shape, and chro
matin organization for classifying histopathology 
images. This approach, in its most recent interpre
tation, is based on nonparametric methods, 
including deep learning and digital performance 
optimization [155].

The cause-effect sequence of NE fragility in 
cancer is intricate since tumors are at the same 

time associated with mutations in lamin expres
sion, with chromatin alterations and with extra- 
nuclear and extracellular mechanical impinge
ments that converge into a NERDI phenotype 
[152–155]. NERDI exposes chromatin to 
nucleases, creates further genome instability 
[152], including the formation of micronuclei 
[156]. Elements that are part of the NE, or asso
ciated with it, are implicated in this phenotype. 
BAF, for instance, has been recently demonstrated 
to contribute to the repair of the NE by recruiting 
lamins and lamin-interacting factors [157]. The 
reduction of ESCRTs contributes to NE fragility 
and tumorigenesis [68] and impinges on the 
intrinsic properties of micronuclei [158].

Telomere association with the NE can be part of 
a NE fragility loop contributing to cancer aggres
siveness. Cell over-replication causes telomere cri
sis, dicentric chromosomes, chromatin bridges, 
that produces NE defects, which, in turn, can 
generate further telomere dysfunction [159–161].

Along with this, NE fragility in cancer is further 
exasperated during metastatic invasion by the exo
genous mechanical pressure generated on the NE 
by cell migration in confined spaces [147]. By this 
line of reasoning, the depletion of AKTIP, a factor 
associated with the NE and with telomeres, 

Figure 4. Disease-induced fragility of the NE Genetic diseases caused by mutations of ESCRTs or NE components (a), as HGPS, are 
characterized by NERDI and by the disorganization of macro-complexes needed for NE repair and reassembly. Therefore, cells from 
patients with HGPS (or with other similar diseases) are subject to a negative NE fragility loop. This trait is characteristic of cancer too, 
and further exasperated during metastatic invasion (b) by the exogenous mechanical pressure generated on the NE by cell migration 
in confined spaces.
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produces nuclear alterations, telomere fragility, 
and cancer aggressiveness [162–166].

Given all these data together, drugs that can act 
in NE assembly, targeting BAF or LEM containing 
factors [167], along with ESCRTs, could be inves
tigated for their ability to rescue cell homeostasis 
in laminopathies and cancer.

Concluding remarks

Physical proximity of the NE to chromatin, along 
with the importance of the NE in separating and 
protecting the chromatin from the cytoplasm, 
make it logical to presume an intimate interplay 
between chromatin and the NE. The physical 
nonrandom proximity of portions of chromatin 
to the nuclear periphery was observed more than 
a century ago [22]. The molecular dissection of 
the elements contributing to these interactions 
has been an ongoing field of research, identifying, 
for example, the positioning of telomeres and 
centromeres at the NE [22,32,48–50]. The area 
has had an acceleration in the resolution- 
revolution era. Imaging and 3 C-based technol
ogy have delivered the picture of single-molecule 
super-organization, as for lamin meshworks, and 
for intramolecular interactions, as in TADs [24] 
and LADs [25]. The possibility of observing the 
dynamics of postmitotic NE assembly around 
chromatin have contributed to a new vision of 
cell biology, namely a seamless succession of 
processes that are intertwined, rather than 
a stepwise sequence of independent events. 
These high-resolution techniques have also been 
instrumental for the dissection of a new and 
particularly exciting area of study focusing on 
NERDI and thereof players, as the ESCRT 
CHMP7 [68,74,147]. This field, in particular, is 
in rapid evolution. Many questions are open, as 
the full characterization of the ESCRT complex at 
the NE, and the dissection of the elements 
involved in the interplay between NE reorganiza
tion and the dynamics of chromatin assembly, 
but this field has given new or revised sugges
tions for experimental medicine.
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