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ABSTRACT

Motivation: Biochemical reaction networks in the form of coupled

ordinary differential equations (ODEs) provide a powerful modeling

tool for understanding the dynamics of biochemical processes.

During the early phase of modeling, scientists have to deal with a

large pool of competing nonlinear models. At this point, discrimination

experiments can be designed and conducted to obtain optimal data

for selecting the most plausible model. Since biological ODE models

have widely distributed parameters due to, e.g. biologic variability or

experimental variations, model responses become distributed.

Therefore, a robust optimal experimental design (OED) for model dis-

crimination can be used to discriminate models based on their re-

sponse probability distribution functions (PDFs).

Results: In this work, we present an optimal control-based method-

ology for designing optimal stimulus experiments aimed at robust

model discrimination. For estimating the time-varying model response

PDF, which results from the nonlinear propagation of the parameter

PDF under the ODE dynamics, we suggest using the sigma-point ap-

proach. Using the model overlap (expected likelihood) as a robust

discrimination criterion to measure dissimilarities between expected

model response PDFs, we benchmark the proposed nonlinear design

approach against linearization with respect to prediction accuracy and

design quality for two nonlinear biological reaction networks. As

shown, the sigma-point outperforms the linearization approach in

the case of widely distributed parameter sets and/or existing multiple

steady states. Since the sigma-point approach scales linearly with the

number of model parameter, it can be applied to large systems for

robust experimental planning.

Availability: An implementation of the method in MATLAB/AMPL is

available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html.
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1 INTRODUCTION

Mathematical models of complex biological processes provide

the basis for systems understanding. They are of vital importance

for generating predictions of systems behavior based on hypothe-

sized mechanisms. In the case of limited experimental access to

biological systems, models can help to find missing links and

provide a tool to aggregate existing knowledge and data. In

this work, we focus on mathematical models in the form of

coupled ordinary differential equations (ODEs), which are

being used to describe dynamics of biochemical reaction net-

works, e.g. signal transduction, metabolic or genetic regulation,

on a deterministic, (semi-)mechanistic basis. Here, scientists are

often facing limited or even contradicting knowledge about the

underlying mechanisms, confined experimental possibilities,

large biological variability as well as measurement noise. This

leads to largely distributed model parameter sets, which in com-

bination with several plausible alternative model structures ren-

ders model-based prediction highly uncertain. Therefore,

model-based experimental design (e.g. optimal stimulus or add-

itional experimental readout selection) is used to generate experi-

ments that yield optimal experimental data to (i) reduce the

spread in the model parameters (¼optimal parameter identifica-

tion) and/or (ii) reduce the pool of plausible models (¼optimal

model discrimination).

Much work on optimal experimental stimulus design (OESD)

for biological systems focuses on information maximization with

respect to parameter identification (Balsa-Canto et al., 2008;

Bandara et al., 2009; Heine et al., 2008; Raue et al., 2010;

Schenkendorf et al., 2009a). Here, for a given pool of plausible

ODE models, OESD is used to find experimental conditions that

reduce the parameter uncertainties and thus model response vari-

abilities. The methods used to quantify parameter uncertainties

and model response variabilities include linearization,

sigma-points (Julier et al., 2000), profile likelihood (Raue et al.,

2009) and Markov chain Monte Carlo (MCMC, Geyer, 1992;

Vanlier et al., 2012). An OESD aiming at model discrimination

for biological systems has been addressed by few authors (Apgar

et al., 2008; Melykuti et al., 2010; Skanda and Lebiedz, 2010).

Although measurement noise has been included, a rigorous con-

sideration of model response variabilities due to distributed par-

ameters has been missing so far. For chemical reaction kinetics

and biotechnology, there exists some work on designing dynamic

stimuli for the purpose of model discrimination (Asprey and

Macchietto, 2002; Box and Hill, 1967; Kremling et al., 2004).

As has been illustrated, the consideration of model response

variabilities strongly improves the designed experiments and ex-

perimental data quality (Chen and Asprey, 2003; Donckels,

2012; Michalik et al., 2010). Therefore, linearization of the sys-

tem’s parameter mapping has been used. However, by using the

so-called Sigma-Point method (Julier et al., 2000), (Heine et al.,

2008), (Schenkendorf et al., 2009a) showed that the performance*To whom correspondence should be addressed.
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of a linear OED for best parameter estimation is rather poor for

nonlinear systems having widely distributed parameters.
An experimental design aimed at model discrimination is typ-

ically generated at a point where existing data do not provide

further discriminative information for a pool of competing, vali-

dated and identifiable models. With these models, robust experi-

mental designs can be generated, which presumably yield data

with optimal discrimination information. Since predictions with

ODE models depend on the model parameters, identifiability is

important as it ensures the existence of a unique solution to the

parameter estimation problem and, consequently, unique model

predictions (Raue et al., 2009). A non-identifiable model would

yield non-unique model predictions under altered experimental

design conditions, as there exists a set of several solutions to the

parameter estimation problem. Robustness of the experimental

design is achieved by considering (i) pure uncertainty about the

model itself, (ii) distributed model predictions that arise from

distributed model parameters and (iii) design variabilities (e.g.

variations of the applied stimulus) during the conduction of

the experiment.
In this work, part (ii) of design robustification for nonlinear

models is considered, focusing on computational efficient and

accurate estimation of the nonlinear propagated parameter prob-

ability distribution function (PDF) in an optimal control frame-

work. We suggest using the sigma-point method as an alternative

to the classical linearization approach. Therefore, both

approaches are presented, applied and compared in the light of

OESD for robust model discrimination, assuming perfect experi-

mental conduction. In the following section, we describe the es-

sential parts of our design approach, including (i) ODE modeling

of biological reaction networks with and extended interpretation

of distributed determinism, (ii) the model overlap as a PDF-

based discrimination criterion, (iii) linearization and sigma-point

methods and (iv) two numerical approaches to solve optimal

control problems. Then, using two numerical examples, we for-

mulate the optimization problem and benchmark the lineariza-

tion approach against the sigma-point approach (Section 3).

2 METHODS

2.1 Dynamic modeling of biochemical reaction systems

ODEs provide the modeling basis to describe the dynamics of biochem-

ical reaction networks. The dynamics of the internal states

xðt, uðtÞ, hxÞ 2 Ax � R
nx , e.g. protein concentrations, is determined by

the solution of an initial value problem of the form

d

dt
xðtÞ ¼ fðxðtÞ, uðtÞ, hxÞ ð1Þ

with initial system states xðt0Þ ¼ x0 and right-hand side function

fðxðtÞ, uðtÞ, hxÞ describing biologic interaction mechanisms, which depends

on the system states x(t), (multiple) inputs u(t) (¼stimulus) and kinetic

parameter set hx. Assuming f to be Lipschitz in x(t), u(t) and continuous

in t, the readout variables are determined by

ysimðt, hÞ ¼ gðxðt, hxÞ, hyÞ, ð2Þ

where the function g—assumed to be sufficiently smooth—relates

the internal system states to the readouts of the experiment with corres-

ponding readout parameters hy, which together with dynamic parameters

and initial conditions are merged into the model parameter vector

h ¼ ½hx, hy�
T, with redefined dynamic parameter vector hx � ½hx, x0�

T.

The dynamic model defined by Equations (1) and (2) can be understood

as a time-dependent mapping from the model parameter space

Ahx �Ahy ¼ Ah � R
nh to the model output space Ay � R

ny ,

h : R�Ah ! Ay ð3Þ

ðt, hÞ�hðt, hÞ ¼ ysimðt, hÞ: ð4Þ

2.2 Distributed determinism

Although biological systems might follow deterministic rules, repeated

measurements, even though with very accurate measurement techniques,

will yield different results. The reasons for that are manyfold.

Additionally to unavoidable measurement errors, biologic variability,

i.e. systems with intrinsically distributed parameters, can induce a large

spread in the transient dynamics and stationary behavior. In the case of

the existence of multiple steady states, this spreading effect might even be

more pronounced. Varying parameters during the measuring procedure

and local parameter perturbations by non-stationary noise also contrib-

ute to a distributed measurement signal (Lorenz et al., 2007). Complex,

nonlinear models of biological systems might also behave chaotic, further

contributing to distributed response measurements. Thus, the conven-

tional sharp, deterministic system representation needs to be extended

by the notion of distributed determinism, i.e. although the system

might completely be deterministic, its perceived signals are distributed

realizations of the underlying deterministic mechanisms. This can be

done by considering the parameters, and hence, the model responses as

random variables � and Y, respectively, each characterized by a PDF.

We point out that, within this interpretation, the system and hence the

model is assumed to naturally possess distributed parameters.

Consequently, a distributed response is not solely explained by additive

measurement noise but also by other sources of variations, which may be

represented as distributed parameter sets.

Let the model parameters be distributed according to some well-

defined PDF ��ðhÞ, with h 2 Ah being a realization of �. The PDF of

the random model response Y at time t can be derived from the normal-

ized integral over all possible parameter and corresponding response real-

izations, weighted with the parameter PDF, i.e.

�Yðy, tÞ ¼
%Yðy, tÞ

jj%Yðy, tÞjj1
, ð5Þ

with

%Yðy, tÞ ¼

Z
Ah

1y½hðt, hÞ���ðhÞdh, ð6Þ

where 1y½hðt, hÞ� represents the indicator function

1y½hðt, hÞ� ¼
1, if y ¼ hðt, hÞ
0, else:

�
ð7Þ

The normalization employs the L1-norm with respect to y 2 Ay. Note

that y represents an arbitrary possible realization of Y in Ay, whereas

hðt, hÞ describes the model response at time t for a fixed stimulus time

course uðt0 ! tÞ given parameter realization h. Consequently, for every

single point in time, the shape of Equation (5) is determined by the par-

ameter PDF, the choice of model [Equations (1) and (2)] and stimulus

time course (¼experimental design). Consequently, the discrimination

process can be robustified by discriminating competing models based

on their model response PDFs [Equation (5)], accounting for variabilities

in the parameters and model-specific mapping to the response space.

2.3 Robust design criteria for model discrimination

Here, we present the model overlap as a robust discrimination criterion,

measuring dissimilarities of model response PDFs used to rate the dis-

criminative power of a design during optimization. We define the general
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model overlap as the probability product kernel used in vector machine

learning to measure statistical distances for the sake of discriminative

learning (Jebara et al., 2004). Following Jebara et al., (2004), the prob-

ability product kernel of two multivariate PDFs �pYjA, �
p
YjB 2 L2ðAyÞ is

defined as the scalar product

�ðt, uðtÞÞ ¼

Z
Ay

�YjAðy, t, uðtÞÞ
p�YjBðy, t, uðtÞÞ

pdy ð8Þ

with the densities being raised to some power p 2 R
þnf0g. It provides a

bounded, positive-definite measure (Jebara et al., 2004) of similarity be-

tween distributions on the set Ay, whereas the parameter p controls the

weighting of regions with small versus large densities.

From this, the average overlap of the time course is

h�ðDÞit ¼
1

nt

Xnt
k¼1

�ðtk, uðtkÞÞ, ð9Þ

where D 2 D ¼ T�U�Y represents the experimental design within the

feasible design region D, encompassing for instance selection of discrete

measurement time points tk 2 T, stimulus design uðtÞ 2 U and readout

design g 2 Y. Using the model response PDFs �Yjmðy, t, uðtÞÞ from

Equation (5) for two competing models, m 2 fA,Bg in Equation (9) pro-

vides us with a measure of average model dissimilarities. For p¼ 1, the

overlap is the expected model response probability of model A under

model B and vice versa [Equation (8)]. In this case, assuming one of

the models to be true, the overlap yields the expected likelihood of the

other model depending on the experimental design D. Consequently, an

optimal model discrimination design Dy minimizes Equation (9).

Singh (1998) proposed to use Equation (8) with p¼ 1/2—known as

Bhattacharyya’s affinity between distributions—for discriminating non-

linear regression models. It is closely related to Hellinger’s distance, which

represents a symmetrized approximation to the Kullback–Leibler diver-

gence (Topsoe, 2000). In this work, we use the overlap as defined in

Equation (9) with p¼ 1, which we refer to as model overlap, as this dir-

ectly represent the time-averaged, expected likelihood of one model under

the other. In this form, it has been applied by Lorenz et al., (2007) to

discriminate dynamic models based on the distributional fit performance.

In Schenkendorf et al., (2009b), it is used to optimize an initial condition

for a substrate uptake model to discriminate two competing kinetic

approaches.

2.4 Estimation of nonlinear PDF mapping

If the solution hðt, hÞ can be obtained in closed form, it is straightforward

to derive the model response PDF for a given parameter PDF using

Equation (5). However, in most of the cases, the model response hðt, hÞ

for a specific parameter realization is obtained by numerical integration.

Here, besides random sampling techniques based on Monte-Carlo

simulations, the approximate model response PDF may also be obtained

by deterministic sampling, e.g. by simple enumeration, optimized Latin

hypercubes of the parameter space and application of Equation (5).

For an infinite number of samples, the true model response PDF

can be constructed from these samples, which can be used for a

subsequent evaluation of Equation (9) to judge the quality of a given

design. Such procedures become computational inefficient for

increasing number of model parameters and cannot be used in an opti-

mization framework. Therefore, an approximation has to be made.

From initial data, one may obtain accurate estimates for the true

parameter PDF, e.g. by MCMC sampling, which can be approxim-

ated by unimodal normal PDFs ��ðhÞ ’ N ð��,��Þ, possibly

multivariate. The model response PDF can also be approximated by

�Yjmðy, t, uðtÞÞ ’ N �Yjmðt, uðtÞÞ,�Yjmðt, uðtÞÞ
� �

. Then, the integration in

Equation (8) can be performed to yield the approximate overlap

�N ðt, uðtÞÞ ¼ �YjA

�� �� �YjB

�� �� ��1YjAB

��� ���eIYjAþIYjB� ��1=2
, ð10Þ

where

IYjm ¼ �
T
Yjm��1Yjm�Yjm � �

T
Yjm��1Yjm�YjAB��1Yjm�Yjm,

�YjAB ¼ ��1YjA þ��1YjB

h i�1
; j�Yjmj ¼ ð2�Þ

nYdet �Yjm

� �
=2:

Here, m¼ {A, B} represents the model index, �Yjm � �Yjmðt, uðtÞÞ the nY-

dimensional true mean and �Yjm � �Yjmðt, uðtÞÞ the true variance-

covariance matrix of the corresponding model response PDFs, which

both depend on the model structure m, measurement time point t, stimu-

lus u(t) and readout selection. For details about the derivation, see for

instance, Jebara et al. (2004). For nt discrete measurement time points tk,

the approximate mean overlap is then

h�N ðDÞit ¼
1

nt

Xnt
k¼1

�N ðtk, uðtkÞÞ: ð11Þ

This approximation dramatically reduces the computational costs as

only the two first statistical moments (i.e. expectation and variance-

covariance) need to be estimated. The task of solving Equation (5) to

obtain model-response PDFs and subsequent integration of Equation

(11) to evaluate the discriminative power of a given design in an opti-

mization framework is then reduced to estimate the time course of mean

vector �Yjmðt, uðtÞÞ and variance–covariance matrix �Yjmðt, uðtÞÞ of two

model response PDFs for given parameter expectation ��jm and vari-

ance–covariance ��jm (Fig. 1). As true mean and variance–covariance of

the parameters are unknown, these are replaced by their estimates, i.e.

�� ! E½�� and �� ! C½��, which we will do in the following. Note

that for skewed PDFs one should apply a transformation, e.g. Box–Cox

or inverse hyperbolic sine transformation to achieve normality of the

PDF (Box, 1964; Johnson, 1949). In this way, our presented robust

OESD method is not restricted to normal PDFs only.

Estimates of response expectation and variance–covariance can be ob-

tained by linearizing the system at additional computational costs that

scale linear with the number of parameters using forward-sensitivity ana-

lysis. But this approach can become suboptimal or yield even misleading

designs (Section 3.2). On the additional expense of Oðn2hÞ estimates may

be improved by a quadratic approximation of the system, which may

become infeasible for larger systems, as do Monte Carlo-based

approaches. Worst-case approaches yielding a minimax design have

also been proposed to take model response variabilities into account

(Walter and Pronzato, 1997; Skanda and Lebiedz, 2012). However,

these are in general NP-hard (Du and Pardalos, 1995). The sigma-point

method has an additional computational expense of OðnhÞ, which com-

pares to linearization.

2.4.1 Estimation based on linearization The classical approach to

estimate model response variabilities is linearization of the nonlinear

model mapping hðt, hÞ with respect to the parameters. The linearization

of the model response is given by applying the chain rule to Equation (2)

yLðt, hÞ ¼ hðt,E½��Þ þ Sðt, yÞT
��
h¼E½��

ðh� E½��Þ, ð12Þ

with response sensitivity matrix Sðt, yÞ ¼ @hðt, hÞ
@x Sxðt,xÞ þ

@hðt, hÞ
@h and state-

sensitivity matrix Sxðt,xÞ ¼
@x
@h, which can be obtained by solving

d

dt
Sxðt, xÞ

����
h¼E½��

¼
@f

@x
Sxðt, xÞ

����
h¼E½��

þ
@f

@h

����
h¼E½��

ð13Þ

with initial condition Sxðt0, x0Þ along the systems dynamics, which is

known as the forward-sensitivity matrix equation. The additional com-

putational effort is of order Oðnhx Þ, as only nhx additional ODEs have to

be solved in Equation (13), since @x
@hy
¼ 0nx�nhy . One may also formulate an

adjoint system to derive the state sensitivities in a backward manner or

use numerical differentiation.
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Having determined the parameter sensitivities of the system, the linear

estimates of expectation and variance–covariances of the model response

PDF can be calculated to yield

ELt ½Y� ¼ h t,E½��ð Þ ð14Þ

CLt ½Y� ¼ Sðt, yÞC½��Sðt, yÞT: ð15Þ

For nonlinear models, the estimate of the expectation is typically

biased, i.e. Bi ¼ ELt ½Y� � �Y 6¼ 0, and errors are introduced at second

and higher orders. The quality of the predicted variance–covariance

cannot readily be judged as the errors are of fourth and higher order,

whereas the contributions depend on the system. Notice that the linear

design approach yields a local estimate in the parameter space, i.e. par-

ameter-dependent coexisting stable states will be missed, resulting in sig-

nificant estimation errors in both moments (Section 3.2). The estimators

are exact for linear systems, as higher-order terms vanish.

2.4.2 Estimation based on sigma-points Julier et al. (2000) intro-

duced the sigma-point method for advanced Kalman filtering and state

estimation. It is based on the idea that with a fixed set of parameters

(sigma-points), it is easier to approximate a nonlinearly transformed PDF

by a Gaussian distribution than the nonlinear transformation itself. Julier

et al. (2000) show that expectation and variance–covariance of a random

variable Y, given by a transformation Y ¼ hðt,�Þ, possibly nonlinear, of

a random variable � with expectation E½h� and variance–covariance C½h�

can be estimated according to the following procedure:

(1) Select 2nh þ 1 sigma-points in the original domain according to

hð0Þ ¼ E½��; hðiÞ ¼ hð0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nh þ �

p ffiffiffiffiffiffiffiffiffi
C½h�

p ðiÞ
,

where
ffiffiffiffiffiffiffiffiffiffi
C½��
p ðiÞ

is the ith column of the square root of the vari-

ance–covariance matrix.

(2) Propagate these points through the model

y
ðiÞ
t ¼ hðt, hðiÞÞ:

(3) Estimated expectation and variance–covariance of the transformed

variable based on the sigma-points are given by the linearly

weighted sums

ESt ½Y� ¼
Xnh

i¼�nh

wðiÞy
ðiÞ
t ð16Þ

CSt ½Y� ¼ ð1� �
2 þ �Þ yð0Þt � Et½Y�

� �
y
ð0Þ
t � Et½Y�

� �T
þ ð17Þ

þ
Xnh

i¼�nh

wðiÞ y
ðiÞ
t � Et½Y�

� �
y
ðiÞ
t � Et½Y�

� �T

with weights wð0Þ ¼ �
nhþ�

,wð�iÞ ¼ 1
2ðnhþ�Þ

and � ¼ �2ðnh þ �Þ � nh:

According to Julier et al. (2000), the errors of the expectation estimate

is of fourth and higher order, whereas the variance–covariance estimates

have an error of fourth and higher order. This, however, only holds for

scalars, i.e. nh ¼ 1, as pointed out by Gustafsson and Hendeby (2008).

For nh41, the sigma-point parameters (�,�, �) can be used to tune the

estimated moments by including a priori knowledge about the PDFs, i.e.

� and � allow to account for higher-order moments of the parameter

PDF and should be set to � ¼ 2 for an initial Gaussian, whereas for

nh43 one should choose � ¼ 0. Further, � controls the sigma-point

spread and should lie within 05� � 1 (Julier et al., 2000). The

sigma-point has several advantages:

	 no need to calculate derivative information (neither Jacobian nor

Hessian have to be available or need to exist), which makes this

method numerically robust and applicable to a wide range of

system classes,

	 use of curvature information of the system,

	 deterministic sampling method with computational effort that scales

linearly with the number of distributed variables, i.e. OðnhÞ,

	 since each sigma-point is independently propagated, parallelization

can easily be applied to speed up estimate calculation of the trans-

formed expectation and variance–covariance.

2.5 Robust optimal stimulus design

The problem of finding an optimal stimulus design can be stated as an

optimal control problem. Given a nonlinear dynamic system of the form

Equations (1) and(2) and corresponding parameter set (expectation and

variance–covariance), an optimal stimulus is an admissible control

defined over an interval ½t0, tf�, say experimental time window, at which

a cost function assumes its infimum (or supremum) with the set of all

admissible controls. Robustness of such a control with respect to distrib-

uted model responses can be achieved by incorporating expectation and

variance–covariance into a robust design criterion (e.g. model overlap).

Within the sigma-point approach, variabilities in the stimulus conduc-

tions can also be accounted by interpreting a design u(t) as a time-de-

pendent mean of a distributed variable U. Then, for a design u(t), the

spread in the model response PDF is determined by the propagation of

sigma-points given by mean and variance–covariances of (i) model par-

ameters and (ii) stimulus. The problem of finding an optimal control may

be solved by (i) Hamilton-Jacobi-Bellman, (ii) variational or (iii) NLP-

based approaches (Nevistic nonlinear programming, 1997). We use the

following two direct NLP-based approaches (Biegler, 2007), which can

easily be combined with the methods discussed in Sections 2.4 and 2.4.1

for mapping distributed parameters onto the design criterion:

	 Direct sequential approach: A control vector parameterization in

combination with numerical integration of the model equations.

This approach is suited for design problems without nonlinear

Fig. 1. Approximation of nonlinear PDF mapping
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path constraints and stable behavior with respect to variations in the

control and parameters.

	 Direct simultaneous: A full discretization of the problem, e.g. control

vector and state/response vector parameterization, is based on or-

thogonal collocation on finite elements. If the design problem in-

cludes nonlinear path constraints, this solution approach can be

beneficial, because feasibility of the solution is ensured at the collo-

cation points of each finite element.

Both NLP approaches are typically non-convex, i.e. there exist several

local and possibly one global optimal design solution. Therefore, resulting

solutions to the NLP problem are local optima. Global optimality of the

design can be achieved—but is not ensured—by (i) performing local op-

timizations from different initial starting points and/or (ii) deterministic/

stochastic/heuristic global optimizers (Floudas and Gounaris, 2009;

Horst et al., 2000; Zabinsky, 2003). We point out that optimal design

solutions need not necessarily be global in real-life applications. Local

optimal solutions can be very close to the global solution with respect to

the design criterion. Therefore, non-convexity allows to account for fur-

ther experimental constraints—restricting the degrees of freedom in the

design space—without losing, e.g. discriminative power. In the applica-

tions, we use global stochastic and multistart optimizations to avoid a

biased comparison between linearization and sigma-point approach.

3 APPLICATION

3.1 Application I: signaling cascade

The highly conserved mitogen-activated protein kinase signaling

cascade (Pearson et al., 2001) with two different hypothesized

negative feedbacks is used as a nonlinear test system for bench-

marking the two design approaches with respect to estimation

accuracy and design quality. Multistep signaling cascades are

enrolled in many signal-transduction processes of cells to sense

and react to external signals. Upon an external stimulus, e.g.

growth factor, hormones or stress signals, cascades transduce

the signal from the cell membrane to the nucleus to start different

cell programs. The respective ODE systems—adapted from

Behar et al. (2007)—of two model candidates m 2 fA,Bg that

describe the change in protein concentration of the phosphory-

lated forms are

d

dt
x
1mðtÞ ¼

k1muðtÞx1mðtÞ

K1m þ x1mðtÞ
�

v2mx


1mðtÞ

K2m þ x
1m
� r1m

d

dt
x
2mðtÞ ¼

k3mx


1mðtÞx2mðtÞ

K3m þ x2mðtÞ
�

v4mx


2mðtÞ

K4m þ x
2mðtÞ
� r2m

d

dt
x
3mðtÞ ¼

k5mx


2mðtÞx3mðtÞ

K5m þ x3mðtÞ
�

v6mx


3mðtÞ

K6m þ x
3mðtÞ

with model A:

r1A ¼ k9Ax


4ðtÞx



1AðtÞ ; r2A ¼ k10Ax



3AðtÞx



2AðtÞ

d

dt
x
4AðtÞ ¼

k7Ax


3AðtÞx4AðtÞ

K7A þ x3AðtÞ
�

v8Ax


4AðtÞ

K8A þ x
4AðtÞ

and model B:

r1B ¼
k9Bx



3BðtÞx



1BðtÞ

K9B þ x
1BðtÞ
; r2B ¼

k10Bx


3BðtÞx



2BðtÞ

K10B þ x
2BðtÞ

no x4BðtÞ, x


4BðtÞ:

For both models, we assume

xtotim ðtÞ ¼ ximðtÞ þ x
imðtÞ

x
imðt0Þ ¼ 0

with the total concentration of each species xtotim as an additional

model parameter and i 2 f1, 2, 3, ð4ÞBg.

The measurement response signals are defined as

y1mðtÞ ¼ x
2mðtÞ þ h	 and y2mðtÞ ¼ x
3mðtÞ þ h	, ð18Þ

where h	 represents additive measurement noise, which we

assume to be normally distributed with zero mean and variance


2	 . We assume that the response signals can be measured at nt
specific time points. Based on an initial stimulus design, we

adjust the model parameters so that both model responses

match up to a small error, which does not allow to prefer one

over the other model, to mimic the starting point of an OESD for

model discrimination. Identifiability of the models has been

checked with the software tool DAISY in combination with

global sensitivity analysis (see Supplementary Material, Bellu

et al., 2007; Sobol’, 1993). Because biological systems often

follow a log-normal distribution, we apply a log-normal trans-

formation to the response to improve the normal approximation

used in the estimation approaches for the response PDF

(Sections 2.4 and 2.4.1). Therefore, we redefine the response

signal Equation (18) used for the overlap calculation as

~yimðtÞ ¼ logðyimðtÞ þ �Þ, ð19Þ

with i¼ 1, 2, �40. For each model, we assume that all dynamic

parameters are log-normally distributed, with nominal value

being the expectation Elog½��¼h and diagonal covariance

matrix
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Clog½��

p
¼ diagð�ELog½��Þ, with scaling parameter �.

The measurement noise is typically independent on the stimulus

design and thus held constant at 
	 ¼ 0:01. The sigma-points for

the log-normal parameter PDF are obtained in the following

way: In the parameter space, we derive the normal equivalents

of log-normal expectation and covariance to calculate the normal

sigma-points, which we then exponentiate (see Supplementary

Material). The log-normal sigma-points are propagated through

the model, including Equation (19), to obtain the normal esti-

mates via Equations (16) and (17). In the following, we drop the

tilde from the redefined response signal in Equation (19).

Following the direct sequential approach, the stimulus (single

input) is parameterized as

uðU, tÞ ¼ uk for tk � t � tkþ1,

with ½U�k ¼ ðuk, dtkÞ
T, k 2 f0, . . . , nug, whereas dtnu � 0. Here,

uk represents the amount of stimulus between the time point tk
and tkþ1 ¼ dtk þ

Pk
j¼0 tj. If for the last time point, we have

tnu5tf, we put uðU, tnu5t � tfÞ ¼ unu . On the other hand, if

tnu4tf, the design is given a penalty. Depending on the estima-

tion method E 2 fL,Sg, the resulting optimization problem for

discriminating between models A and B is formulated as an NLP

problem (see Supplementary Material for details), i.e.

UE
y
¼ arg min

U2U�D

OEðUÞ � fN EEtAjB ½Y�,C
E
tAjB
½Y�,U

� �D E
t
ð20Þ
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subject to systems dynamic, additional constraints and method

to estimate EEtAjB ½Y� and CEtAjB ½Y�.

The number of optimization parameters is nutot ¼ 39, which

allows 20 stimulations uk with 19 stimulus durations dtk.

Because the problem is non-convex, we use a hybrid optimization

strategy, consisting of the evolutionary-based CMA-ES algo-

rithm (Covariance Matrix Adaptation Evolution Strategy

Hansen and Ostermeier, 2001), in combination with a subsequent

gradient-based optimizer. Because of the stochastic nature, the

hybrid optimization is performed 40 times for each parameter

variance level, which we derive from the scaling parameter �. The
benchmark is based on a Monte Carlo verification of the result-

ing optimal stimulus designs. For each optimal design, the over-

lap, including expectation and variance–covariance of the model

responses, is calculated based on sampling the parameter space

104 times for each model and corresponding optimal stimulus

design (see Supplementary Material for details). The relative

mean-squared error (MSE) of the moment estimates are given by

heMi
E ¼

1

2ntny

X
m¼A,B

Xny
i

Xnt
t

ME�MM

MM

	 
2

with ME being the moment estimates of the best designs (expect-

ation EEtAjB ½Yi�, variance–covariance split into variance

VAREtAjB ½Yi� and covariance terms COVEtAjB ½Yi�). The Monte

Carlo reference is represented by MM.
In Table 1, we see that for all parameter variance levels, both

methods have negligible relative MSE in the mean response es-

timates (maximal MSE: heEi
L510�7; heEi

S510�9). In contrast,

the relative MSEs for linearization increases with parameter

variance levels up to 0.03 for the variance and 0.18 for the co-

variance estimates. Here, the sigma-point approach performs

better with maximal relative MSE of the variance 0.007 and co-

variance 0.096. In this application, both approaches estimate

mean responses of the models very well, although the maximal

MSE of the sigma-points is still two orders of magnitudes smaller

than the maximal MSE for linearization. For the (co)variance

estimates, the sigma-point approach consistently outperforms

linearization approach for increasing parameter variance level.

In the lower part of Table 1, we compare the discriminative

power of the resulting designs for different parameter variance

levels. Comparing the Monte Carlo verifications, we see that,

for small variances, both methods yield designs that have

the same discriminative power (OLM
y
� OMðUL

y
Þ versus

OSM
y
� OMðUL

y
Þ). However, for widely distributed parameters

(starting at � ¼ 0:3) sigma-point based designs perform up to

1.3 times better than linearization-based designs and their esti-

mates coincide with the MC validation, which is not the case for

linearization. For both methods, optimization time for one

design is 1:3� 0:1h on a standard desktop computer (4 GB

RAM, 3GHz quad core processor) and mainly determined by

the optimizer itself, whereas the validation time (104 MC sam-

ples) of a single optimal design is 0:4� 0:1h.

In Figure 2, we show the best designs based on the estimates

for two levels of parameter variances and the first response com-

ponent. For small parameter variances, both designs yield the

same discriminative power. For widely distributed parameters,

we see that both methods tend to minimize the amount of stimu-

lation, as this results into little response variances at maximal

distances between expected model responses. Although the linear

design is characterized by a strong stimulation right at the be-

ginning, with a subsequent plateau of little stimulation, the

sigma-point design starts with an even stronger initial pulse, fol-

lowed by two small pulses.

3.2 Application II: Schlögl model

In this section, we compare the performance of the nonlinear

design based on the sigma-point approach to the linear design

in the presence of multiple steady states. The Schlögl model is a

canonical example of a biochemical reaction system exhibiting

bistability (Schlögl, 1972). It describes an autocatalytic,

Table 1. Relative MSEs of moment estimates and overlap (scaled 105) of the best designs based on linearization/sigma-point estimation and corres-

ponding Monte Carlo verification

� ¼ 
i=E½�i� 0.01 0.1 0.2 0.3 0.4

heEi
L heEi

S 0 0 0 0 0 0 0 0 0 0

heVARi
L heVARi

S 0 0 0.002 0 0.001 0 0.01 0.007 0.03 0.007

heCOVi
L heCOVi

S 0 0 0.02 0.002 0.059 0.015 0.106 0.046 0.181 0.096

OL
y

OS
y

0.2 0.2 2 2 2 2 2 3 3 3

OLM
y

OSM
y

0.2 0.2 2 2 2 2 3 3 4 3

Fig. 2. Expected responses of models A (crossed square), B (crossed circle)

on log-scale for optimized stimuli uE
y
ðtÞ (crossed triangle) and correspondingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VARtjm½Y1�
p

bands [first component only, (a)/(b) � ¼ 0:01, (c)/(d) � ¼ 0:4]
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trimolecular reaction that, for instance, occurs in post-

translational modifications of signaling proteins. Two model

alternatives for the rate of concentration change of species x

are given by

d

dt
xmðtÞ ¼ k1 a smðuðtÞÞx

2
mðtÞ � k2x

3
mðtÞ � k4xmðtÞ þ k3b,

sAðuðtÞÞ ¼ uðtÞ or sBðuðtÞÞ ¼
1

2
ðuðtÞ þ u2ðtÞÞ

where we assume the four kinetic parameters k1 � k4 as well as
the system parameters a and b to be distributed � / N ðE½��,

diag(�E[�])2), the initial condition as X0 / NðE½X0�, ð�E½X0�Þ
2
Þ.

The mean parameter values are taken from Vellela and Qian

(2009), which also discuss the consequences of bi-(multi)stability
for biological modeling in the light of non-equilibrium thermo-

and stochastic dynamics. The model alternatives simply differ in

the input layer smðuðtÞÞ. Parameters a and b represent the con-

centration of two reaction partners a and b of species x, which

both are in constant exchange with a material reservoir. For an
initial, suboptimal experiment with stimulus uðtÞ ¼ 1, models A

and B cannot be distinguished, given ymðtÞ ¼ xmðtÞ þ h	 to be the

response signal, where h	 represents additive measurement noise

with zero mean and 
2	 . The stimulus is thought to control the

concentration in the reservoir of species a to find an optimal
discriminative stimulus, whereas subsequent stimulations can

only be applied after a minimal time period has passed to ac-

count for possible control limitations (see Supplementary

Material for details). Such nonlinear constraint optimization

can efficiently be solved within the direct simultaneous approach,
which we apply using orthogonal collocation on 100 finite elem-

ents (each with three collocation points) to discretize control and

system states. The objective of the resulting non-convex NLP

problem is the same as in Equation (20), however, subjected to

different constraints, i.e. system dynamics in form of a nonlinear
algebraic equation system and additional constraints (details see

Supplementary Material). For the linear design strategy, we im-

plement the sensitivity Equation (13) and corresponding con-

straints. For the sigma-point design, the constraints have to

simultaneously hold for all ð2nh þ 1Þ sigma–points. The solver

AMPL in combination with the optimizer CONOPT is used to

solve the aforementioned NLP problem (Drud, 1994). For a

given optimization setup (� and estimation method), the solution

takes about 2 min on a standard desktop computer. Because

CONOPT yields local solutions, the optimization is performed

for 1000 different randomized initial designs for a given opti-

mization setup, from which the best solution is selected.
In Figure 3, we show the resulting stimuli designs for � ¼ 0:35

based on linearization and sigma-point estimation.

Reexamination of the optimized linear design with MC simula-

tions reveals a large underestimation of the estimated overlap:

O
L
ðUL
y
Þ ¼ 0:004 versus OMðUL

y
Þ ¼ 0:17, i.e. misleading discrim-

inative power by two orders of magnitude. The local estimation

property of the linear approach yields a highly biased expectation

and underestimation of the variance with relative MSE of 0.44

for the expected response and 6.66 for the variance [see Fig. 3,

estimated response of model B, (b) versus (c)]. The sigma-point

based design (d) in Figure 3 has a relative MSE of 0.15 for the

expected response and 0.38 for the variance. The overlap esti-

mate of the sigma-point design closely matches the MC valid-

ation [OSðUS
y
Þ ¼ 0:04 versus OMðUS

y
Þ ¼ 0:03]. Further, the

sigma-point design performs 5.7 better than the linear design

ðO
M
ðUS
y
Þ ¼ 0:03 versus OMðUL

y
Þ ¼ 0:17). As can be seen in

Figure 3 (e,f), the non-local propagation property of the

sigma-points enables the optimizer to find a stimulus that

mostly drives model B to the upper steady state.

4 CONCLUSION

Biological variability in combination with experimental measure-

ment noise results into widely distributed response signals, which

is one of the main challenges when modeling biological system

deterministically with nonlinear ODEs. The parameter set needs

to be extended to a parameter distribution. In this way, natural

variability in the dynamic parameters as well as measurement

noise can be readily accounted for. However, an exact quantifi-

cation is computationally expensive and infeasible in an

Fig. 3. Upper part: (a) Optimal stimulus uL
y
ðtÞ (bold line) and corresponding

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARtjm½Y�

p
bands based on linearization and corresponding linear (b) and

MC (c) estimates of expected responses of models A (crossed square) and B (crossed circle) for � ¼ 0:35. Lower part (d)-(f): sigma-point based results
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optimization framework for large systems. Therefore, approxi-

mate descriptions of the PDFs and nonlinear mapping process

between parameter and model response space have to be used.

Here, we have presented a nonlinear design approach based on

the sigma-points within the application of model-based OESD

aimed at model discrimination. We illustrate the application and

performance in combination with two numerical approaches

from optimal control for two nonlinear model examples. Using

the overlap as a robust design criterion based on the model re-

sponse PDFs, we show that in the case of nonlinear models with

widely distributed parameter PDFs, the sigma-point predictions

and designs consistently outperform a linear design approach. In

the case of bi-(multi)stability, we further illustrate the benefit of

the nonlocal propagation property. Finally, the sigma-points

come with several numerical advantages, including linear scaling

of the numerical costs with respect to distributed parameters and

derivative free estimation of nonlinearly mapped expectation and

variance–covariance. The latter property allows applying a

robust OESD to dynamic models that have non-smooth

right-hand side functions, e.g. cybernetic models of cellular me-

tabolism (Ramkrishna, 1982).
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Interface, 6, 925–940.

Vanlier,J. et al. (2012) A Bayesian approach to targeted experiment design.

Bioinformatics, 28, 1136–1142.

Walter,E. and Pronzato,L. (1997) Identification of Parametric Models from

Experimental Data. Communications and Control Engineering. Springer, Berlin.

Zabinsky,Z.B. (2003) Stochastic Adaptive Search for Global Optimization.

Nonconvex Optimization and Its Applications. Kluwer Academic Publishers.

3096

R.J.Flassig and K.Sundmacher


