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Single cell T cell landscape and T cell receptor
repertoire profiling of AML in context of PD-1
blockade therapy
Hussein A. Abbas 1,2,13, Dapeng Hao 1,3,13, Katarzyna Tomczak3,13, Praveen Barrodia 3, Jin Seon Im4,5,

Patrick K. Reville1, Zoe Alaniz 2, Wei Wang6, Ruiping Wang3, Feng Wang3, Gheath Al-Atrash4,5,

Koichi Takahashi 2,3, Jing Ning7, Maomao Ding7,8, Hannah C. Beird 3, Jairo T. Mathews2, Latasha Little3,

Jianhua Zhang 3, Sreyashi Basu 9, Marina Konopleva 2, Mario L. Marques-Piubelli 10, Luisa M. Solis 10,

Edwin Roger Parra 10, Wei Lu10, Auriole Tamegnon10, Guillermo Garcia-Manero 2, Michael R. Green 3,11,

Padmanee Sharma 9,12, James P. Allison9, Steven M. Kornblau 2, Kunal Rai 3✉, Linghua Wang 3,5✉,

Naval Daver2✉ & Andrew Futreal 3,5✉

In contrast to the curative effect of allogenic stem cell transplantation in acute myeloid

leukemia via T cell activity, only modest responses are achieved with checkpoint-blockade

therapy, which might be explained by T cell phenotypes and T cell receptor (TCR) reper-

toires. Here, we show by paired single-cell RNA analysis and TCR repertoire profiling of bone

marrow cells in relapsed/refractory acute myeloid leukemia patients pre/post azacytidine

+nivolumab treatment that the disease-related T cell subsets are highly heterogeneous, and

their abundance changes following PD-1 blockade-based treatment. TCR repertoires expand

and primarily emerge from CD8+ cells in patients responding to treatment or having a stable

disease, while TCR repertoires contract in therapy-resistant patients. Trajectory analysis

reveals a continuum of CD8+ T cell phenotypes, characterized by differential expression of

granzyme B and a bone marrow-residing memory CD8+ T cell subset, in which a population

with stem-like properties expressing granzyme K is enriched in responders. Chromosome 7/

7q loss, on the other hand, is a cancer-intrinsic genomic marker of PD-1 blockade resistance

in AML. In summary, our study reveals that adaptive T cell plasticity and genomic alterations

determine responses to PD-1 blockade in acute myeloid leukemia.
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Despite originating in an immune rich bone marrow (BM)
environment, AML cells disrupt normal hematopoiesis
and evade immune surveillance1,2. However, leukemic

cells are susceptible to immune-mediated eradication. Specifically,
alloSCT remains the only curative option for patients with AML,
largely achieved via the grafted T cells versus leukemia effect3.
AlloSCT is not a viable option for many AML patients who have
comorbidities or lack matched donors. Leveraging the patient’s
own immune T cells is an attractive alternative for augmenting
AML therapeutic strategies.

Immune checkpoint inhibition therapy have transformed
outcomes of solid cancer patients4–7. Judging by the efficacy of
alloSCT, AML would be hypothesized to be an ideal immune
responsive tumor. Yet, CTLA4-blockade with ipilimumab fol-
lowing alloSCT8, and combining the hypomethylating agent
azacitidine with the PD-1 inhibitor nivolumab (hereafter referred
to as ICB-based therapy) in R/R AML9 demonstrated modest and
variable efficacies in patients. This underscores a compelling need
to decipher the T cell landscape of AML in the context of PD-1
blockade therapy, similar to previous work in solid cancers10–13.

Single cell RNA (scRNA) profiling is a powerful tool to guide
our interpretation of cellular diversity and T cell states1,11–14.
Applying scRNA to dissect the solid cancers landscape following
immune checkpoint therapy informed cellular mechanisms of
therapeutic response. For instance, melanoma resident CD8+

TCF7+ cells, abundance of dysfunctional CD8+ T cells, and
accumulation of exhausted T cells in melanoma correlated with
improved responses to immunotherapies15–18. However, T cell
functionality is effective if the intratumoral T cell receptor (TCR)
repertoire is intrinsically tumor reactive19. Thus, paired analysis
with scRNA and scTCR adds an orthogonal dimension to further
characterize T cell states and responses to therapy. In solid can-
cers, TCR repertoire profiling is used to examine the intratumoral
T cell responses and as a biomarker of response to immune
checkpoint therapy19–28, and revealed the expansion of novel
clones in skin cancers following PD-1 blockade28. While gen-
eralizing these observations is tempered by small patient num-
bers, the depth of the analysis allows for high resolution
dissection of T cells and their repertoires. In AML and other
hematologic malignancies, the dynamics of TCR repertoires in
context of immune checkpoint blockade therapy are largely
unexplored. It is yet to be demonstrated that degree of responses
to immune therapies in AML are indeed related to an adaptive T
cell repertoire.

Here, we show that responses to ICB-based therapy in R/R
AML are associated with expansions and novel emergence of
CD8+ T-cell clonotypes while resistance to this therapy is
associated with contracted T-cell clonotypes. Further,
CD8+ T cells in AML are on continuum with GZMK expression
being enriched in a memory subset of CD8+ T cells. Our work
reveals that deletion in chromosome 7/7q is an intrinsic AML
biomarker of resistance to ICB-therapy. Findings from this ana-
lysis afford a deep characterization of AML T-cell landscape and
can be extrapolated to interpret the T cell dynamics in response to
PD-1 blockade-therapy in other hematologic malignancies by
identifying BM residing T cell subsets and tumor intrinsic factors
that could be leveraged therapeutically.

Results
Patient cohort and characteristics. We conducted paired scRNA
and scTCR profiling on 22 (8 pre- and 14 post-treatment) BM
aspirates from 8 R/R AML treated with ICB-based therapy on
NCT02397720 (Fig. 1A). Clinical and demographic character-
istics are shown in Supplementary Fig. 1A and Supplementary
Table 1. Briefly, prior to receiving ICB-based therapy, 7 of 8

patients progressed on hypomethylating agents. While on ICB-
based treatment, 3/8 patients (PT1-3) responded, while 3/8 (PT4-
6) were non-responders (NR) and 2/8 patients had stable disease
(SD) (Fig. 1A). Six out of 8 patients had at least one cytogenetic
abnormality prior to ICB-based therapy initiation, including 3/3
patients (non-responders) harboring chromosome 7/7q (chr7/7q)
deletion (Supplementary Table 1). Targeted DNA sequencing in
at least 1 timepoint per patient (total evaluated 17/22) revealed
mutations in ASXL1 (4/8 patients), TET2 (3/8 patients), SRSF2 (3/
8 patients) and FLT3 (2/8 patients) (Supplementary Fig. 1B).

Cluster definitions in healthy and AML BMs. To guide cluster
annotation in AML BMs, we generated a BM cell reference from
13,633 cells from 2 healthy BM donors and utilized canonical
immune gene markers29–33, as previously done28,34–36 (Fig. 1B).
UMAP and trajectory analysis37–39 demonstrated a differentia-
tion spectrum originating from hematopoietic stem/progenitor
cells (Fig. 1C and Supplementary Fig. 2A), consistent with pre-
vious reports29,40. To further refine our analysis, we then mapped
healthy BM cells to an independent reference dataset of 30,672
healthy BM cells41 and found 91% concordance for cell annota-
tions (Supplementary Fig. 2B–E), confirming accurate cluster
definitions.

To distinguish AML cells from other cellular constituents of
the BM environment, we removed cells that are doublets, have
low read-depth, or high mitochondrial gene expression as
previously recommended29,36,42,43, then applied canonical mar-
kers to define AML clusters. We further verified our quality
control measures of doublets by applying DoubletFinder44.
Consistent with our quality control analysis, the doublet score
distribution did not demonstrate doublet clustering, suggesting
that doublet cells were appropriately removed in our initial
quality control analysis (Supplementary Fig. 2F, G). We used
expression pattern of multiparametric flow cytometry and
immunohistochemistry markers of same timepoint, when avail-
able, for confirming AML clusters (Supplementary Fig. 3A–D).
To further refine our approach, we computationally combined
each AML BM with healthy donor BMs, and demonstrated
distinct cluster formation for AML cells away from healthy cells
(Fig. 1D). We further validated putative AML cells by inferring
aneuploidy status using inferCNV tool45 from scRNAseq and
demonstrated concordance with clinical cytogenetics profile
(Supplementary Table 1) (Fig. 1E).

A total of 60,753 AML and 52,641 tumor microenvironment
(TME) cells from the 22 R/R AML BM aspirates of 8 patients
passed quality assessment and were included in downstream
analysis. The AML cells proportion identified using scRNAseq
closely correlated with blast proportion measured via clinical flow
cytometry (r= 0.87, p= 1.5×10−7) and histopathology (r= 0.73,
p= 0.0001) (Fig.1F). Pre- and post-treatment AML cells clustered
by patient (Fig. 1G), while TME components from different patients
clustered together and had different distributions (Fig. 1H, I). The
clustering patterns of AML and TME cells were similar to other
cancers displaying intertumoral heterogeneity28,29,35,46,47.

Variable capacity for TCR clonotype expansions following
treatment. TCR profiling can reflect T cell activities in response
to checkpoint-blockade therapies19–28. We performed α and β
scTCR profiling in 26,095 T cells from 22 BM aspirates of 8 AML
patients before and after ICB-based treatment, and in 4742 T cells
from healthy BMs. Only 7.2% (345/4742) of TCR clonotypes in
healthy BMs were shared in 2 or more T cells, compared to 51%
of TCR clonotypes in all AML BMs. The clonotype size, repre-
sented by number of cells expressing the same TCR sequence,
ranged from 1 to 16 in healthy donors, compared to 1 to 1200 in
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AML (Fig. 2A), indicating higher clonality in AML bone
marrows.

At pretreatment timepoints, there was marked variation in
frequency of T cells contributing to the most abundant clonotype
in AML patients. Following treatment, 4 patients (2 responders
and 2 SD) had expansion of their most abundant clonotypes
(Fig. 2B). Conversely, NR (3/3) patients had contraction of their
most abundant clonotypes (Fig. 2B). As expected, healthy BM
T-cell repertoire had few dominant clones (Fig. 2B). Compared to
pre-treatment (timepoint A), the 3 responders had an increase in
their clonality following treatment (timepoint B) that persisted
(timepoint C), except for PT3 (responder) who initially had an
increase in clonality (timepoint B), followed by a subsequent
decrease in clonality (timepoint C) prior to morphologic AML

progression. Three NR and 1 SD patients had relative reduction
in their TCR clonality following treatment, while 1 SD patient
(PT7) had a persistent increase in TCR clonality (Fig. 2C).

T cells are adaptable and the capacity for TCR repertoire
treatment reactivity is variable19. To investigate how the
clonotype abundance changed following treatment, we compared
frequencies of each clone and identified significantly changed
ones following treatment (Fisher’s exact p < 0.05) (Fig. 2D). Novel
clones (not detected at pre-treatment) constituted 43% of
significantly expanded clonotypes (Fisher’s exact p < 0.05)
(Fig. 2D, E). Association with clinical response revealed different
patterns of clonotype change in abundance. Specifically, the
majority (77%) of significantly expanded clones were found in
responders (77%) and patients with SD (18%), whereas the
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majority (70%) of significantly contracted clones were found in
NR and SD patients (Fisher’s exact p < 0.05) (Fig. 2F). These
findings suggested that the capacity of TCR repertoire reactivity
to treatment is variable, similar to what is seen in solid cancers19.

Heterogeneity in T cell populations of AML patients. We next
profiled the T-cell landscape to delineate distinct phenotypic
groups contributing to the clonotypes. We identified 5 (2 con-
ventional and 3 unconventional)48 T-cell phenotypes in 25,798
T cells from 22 BM aspirates before and after treatment in AML
patients (Fig. 3A). The 2 conventional phenotypes were CD4+

and CD8+ cells, constituting 53% and 35% of BM T cells at
pretreatment, and 30.9% and 37.4% of BM T cells at posttreat-
ment, respectively. The CD4:CD8 ratio of 1.51 in pretreatment
BMs was lower than that in healthy BMs (1.88) and decreased
further to 0.82 following treatment. The 3 unconventional T-cell
phenotypes were gamma-delta (γδ) cells, mucosal associated
invariant T-cells (MAIT) cells and all other (unconv T) cells,
constituted 2.3%, 2.1% and 7% of T cells in pretreatment BMs,
versus 8.5%, 14.4% and 8.5% of T cells in posttreatment BMs,
respectively. Thus, proportion of CD8+, γδ and MAIT cells
increase, while that of CD4+ cells decreased following treatment
on aggregate across all patients (Fig. 3A). Further, there were
marked variations in the distribution of the five T cell phenotypes
among the 8 patients and at different timepoints of treatment
indicating patient-specific T cell distributions, although some
similar trends were also noted (Fig. 3B). For instance, at pre-
treatment, CD4+ cells were the most common cell type in
responders (64.3%) and NR (42.48%) patients, whereas CD8+

cells were the most common in SD (53.48%) patients

(Supplementary Fig. 4A). Following treatment, CD8+ cells were
the most common cell type in responders (30.28%) and SD
patients (57.5%), whereas NR patients had persistently elevated
CD4+ cells (52.91%) (Supplementary Fig. 4A). Further, γδ and
MAIT cells increased in responders following treatment (Sup-
plementary Fig. 4A), although this effect was primarily driven by
PT1. These findings revealed heterogeneous T cell phenotypes
across patients and between response groups, and reveal dynamic
changes occurring longitudinally following treatment.

Subclassification of T cells reveals distinct cellular phenotypes.
We then used multiparametric flow cytometry on pretreatment
bone marrow samples in 33 patients (13 responders and 20 non-
responders) conducted at time of enrollment in the azacitidine/
nivolumab clinical trial and demonstrated significantly higher
CD3+ (p= 0.027) and CD3+ CD8+ (p= 0.044) cells in respon-
ders (Supplementary Fig. 4A, B), consistent with a possible
adaptive T-cell infiltration in responders. However, our clinical
flow cytometry panel precluded the in-depth T-cell phenotyping
that can be alternatively derived from scRNA analysis. We
therefore further classified T cells from our scRNA profiling based
on the expression of canonical genes (Fig. 3C and Supplementary
Fig. 4C). CD4+ cells clustered into CD4+ naïve and CD4+

effector subsets including FOXP3+ (Treg), T helper 1 cells (TH1),
TH17 cells, and CD4+ cytotoxic (CTL) cells, while one cluster had
no distinct expression profile (CD4NOS) (Fig. 3D). CD8+ clusters
included CD8+ naïve, CD8+ STAT1 (enriched for STAT1 and
expressed IFNγ pathway genes), CD8+ GZMK (enriched for
GZMK expression), and CD8+ CTL (enriched for cytotoxic
markers GZMB, GNLY and PRF1) (Fig. 3E). When examined
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across response groups, CD8+ GZMK constituted the majority of
CD8+ cells in the 3 responders at pre-treatment and were sig-
nificantly more abundant in responders compared to NR (mean
of 53.2% in responders versus 18.8% in NR, p= 0.03) (Supple-
mentary Fig. 4E, F). However, pretreatment CD8+ CTL cells were
the least abundant cells in the 3 responders and were lower
compared to the 3 non-responders (mean of 13.9% in responders
vs 59.9% in NR, p= 0.06) (Supplementary Fig. 4C, D). Differ-
ential gene expression of CD8+ GZMK from responders com-
pared to non-responders revealed significantly upregulated 137
genes which were enriched for tumor necrosis factor (TNF) α
signaling pathway (Supplementary Fig. 4G and Supplementary
Data 1), consistent an activated cell state in responders49,50. There
were no discernible patterns for the changes in the CD4+ subsets
at pre- or post-treatment across response groups in our single cell
analysis (Supplementary Fig. 4H).

We next measured the cytotoxic and exhaustion scores of these
cells by utilizing single cell gene set variation analysis (GSVA) for
curated genes associated with these cell states17,51,52. Exhaustion
scores in CD4+ and CD8+ cells increased with increasing
cytotoxic scores, while pre- and post-treatment cells clustered
together by cell phenotype (Fig. 3D, E). At pretreatment,
exhaustion scores of CD4+ and CD8+ cells were lowest in the
3 responders compared to the 2 SD and 3 NR patients

(p < 0.0001) (Fig. 3F). Following treatment, exhaustion scores of
CD4+ were unchanged, while those of CD8+ significantly
increased in the 3 responders (p < 0.001) (Fig. 3G). In non-
responders, exhaustion scores decreased significantly (p= 0.0005)
consistent with lower CD8+ CTL proportion following treatment
(Supplementary Fig. 5A). These data suggested more dynamic
changes in the CD8+ than CD4+ subsets following ICB-based
treatment in AML especially in responders, with the most notable
differences occurring in the pretreatment CD8+ GZMK and
CD8+ CTL components.

Interpretation of these differences in CD8+ subsets among
response groups should be tempered by the small sample size.
However, the identification of GZMK as CD8+ cluster marker
enriched in responders yet found in all patients warranted further
investigation. GZMK expression was absent in AML cells
(Supplementary Fig. 5B), while its expression in TME was
distinctively in a subset of CD8+ cells, and less frequently in some
NK, CD4+ and MAIT cells (Supplementary Fig. 5C, D). We thus
investigated whether GZMK expression correlated with outcomes
and found that AML patients in the TCGA cohort53 with higher
GZMK (p= 0.0017) expression had improved overall survival,
suggesting that inherent immunity with elevated GZMK can elicit
improved outcomes in AML (Fig. 3H). These findings warranted
further characterization of CD8+ cells expressing GZMK.
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Pseudotemporal trajectory analysis revealed a CD8+ con-
tinuum. There are 5 human granzyme genes (GZMA, GZMB,
GZMH, GZMM, and GZMK) with the function of only GZMA
and GZMB well described54. To investigate whether the expres-
sion of granzymes could reflect a distinctive marker for cell state
program, we conducted pseudotemporal trajectory analysis and
revealed a CD8+ continuum whereby CD8+ GZMK cells are
intermediary to CD8+ naïve and CD8+ CTL cells (Fig. 4A, B).
We also observed distinctive granzymes A, B, and K expression
among the pseudotemporal axis of CD8+ cells. Specifically,
GZMA was expressed ubiquitously in non-naïve CD8+ cells,
whereas GZMB and GZMK expression profiles were expressed in
different pseudotemporal trajectories (Fig. 4C–E). Specifically,
GZMB was expressed at a later pseudotime in the cytotoxic
T cells, while GZMK expression was prominent at an earlier
pseudotime (Fig. 4C–E). The expression levels of the cytotoxic
gene GNLY (delivers granzyme proteins into target cells for
effector functions54) was diminished in GZMK-expressing CD8+

cells compared to CD8+ CTL cells (Fig. 4F). Further, there was
negative correlation between GZMK and GZMB, GNLY, PRF1,
GZMH and PRF1 expression, as well as with cytotoxicity scores
(Fig. 4G). Interestingly, the co-stimulatory genes LTB and CD27,
the stem-like T cell transcription factor TCF710,28,51,55, and the
T-cell memory transcription factor EOMES11 were highly
expressed in CD8+ GZMK cells, but not CD8+ CTL cells
(Fig. 4H). To further explore the expression of GZMK in
hematopoietic cells, we evaluated 3 different datasets from the
Human Protein Atlas56. In 3 independent datasets from human
blood cells57–59, the highest expression of GZMK was noted to be
in memory T-cells providing an independent validation of GZMK
expression in memory T cells (Supplementary Fig. 5E–G). Based
on the Human Protein Atlas56, tonsillar tissue have the highest

expression of GZMK among lymphoid tissues. We therefore
evaluated the expression of GZMK with the memory marker
CD45RO and CD8 and found it to be co-expressed in subset of
memory CD8 cells (Supplementary Fig. 5H–K). Further, recent
studies demonstrated that GZMK distinguishes different subsets
of memory T cells60–62. These findings, supported by the pseu-
dotemporal trajectory analysis, suggested a continuum of CD8+

cells with an intermediary, distinctive, CD8+ GZMK population
in AML that is characterized by high GZMK expression, and
harbored stem-like and memory T cell markers.

GZMK expression delineates MAIT subsets in PT1. Unbiased
clustering of MAIT cells revealed 2 distinct phenotypes: one
enriched for less exhausted, GZMK-expressing cluster (MAIT
GZMK) and another enriched for GNLY/GZMB cytotoxic genes
(MAIT CTL), similar to CD8+ cells (Fig. 4I). Of note, 89.9% of
MAIT cells in our analysis were contributed by PT1 (responder)
who had a unique clinical course (Supplementary Fig. 6A).
Briefly, PT1 had refractory AML to azacitidine (9/2015-4/2016),
and to salvage with enasidenib (04/2016-07/2016) for IDH2-
mutated refractory AML. At 88 years of age, he started a second
salvage regimen with combined azacitidine/nivolumab with a
partial response attained at 11 months from treatment initiation.
He had sustained clinical benefit while on ICB-based therapy for
32 months until he developed ICB-induced pneumonitis neces-
sitating switching treatment. Since this patient did not have a
response to single agent azacitidine, then demonstrated a durable
partial response to azacitidine/nivolumab, we postulate that the
response was primarily driven by nivolumab. In PT1, the pro-
portion of MAIT GZMK decreased from 11%, to 8.2% then 5.5%,
while MAIT CTL increased from 8.2%, to 22.2% to 23.9% fol-
lowing treatment (Fig. 4J). Conclusions pertaining to MAIT cells
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are heralded by the derivation of MAIT cells from 1 patient only,
however the interesting clinical course of this patient associated
with MAIT cell expansion warranted highlighting these findings.

Similar to CD8+ GZMK cells, MAIT GZMK cells were
enriched for CD27, LTB, TCF7, and EOMES (Fig. 4K). Therefore,
GZMK expression distinctly delineated subsets of CD8+ and
MAIT cells suggesting a unique transcriptional program
correlated with GZMK expression. We therefore conducted gene
expression profiling comparing GZMK and CTL subsets of each
of CD8+ and MAIT cells. Pathway enrichment of the 33
overlapping genes in the CD8+ and MAIT GZMK versus CTL
signatures demonstrated highest enrichment for pathways
involved in leukocyte differentiation, calcium signaling, and
cytokine production (Supplementary Fig. 6B). Importantly,
calcium signaling regulates T cell differentiation and activation,
is required for achieving T cell functional specificity, and
regulates cytokine secretion and cytotoxic pathways63.

Phenotypic characterization of TCR clonotypes. Building on the
TCR profiling that revealed variable clonotype changes among
patients (Fig. 2E–G), we leveraged the paired scTCR and scRNA
profiling to integrate clonotype profiling with T-cell phenotypic
states and then infer phenotypic activities64. Among T cells,
cytotoxic subtypes had higher degree of clonal dominance
(Fig. 5A). We next evaluated the contribution of the different
T-cell subtypes to the clonotype pool following treatment. CD8+

GZMK and CD8+ CTL contributed the most to novel clones,
whereas MAIT CTL had the highest fraction of expanded clones,

and CD8+ CTL had the highest fraction of contracted clones
(Fig. 5B). This suggests that CD8+ cells in AML can indeed be
reinvigorated to elicit clonotypic changes in response to therapy.

We next evaluated the T-cell phenotypes contributing to the
top 3 most abundant clonotypes at pre- and post-treatment for
each patient, similar to previous studies in skin cancers following
PD-1 blockade28. The 3 most abundant clonotypes were largely
contributed by cell types of same or similar phenotypes (Fig. 5C).
For example, CD8+ GZMK and CD8+ CTL contributed to the
most abundant clones of PT2, PT4, PT7 and PT8 (Fig. 5C). Also,
MAIT GZMK and MAIT CTL of PT1 shared 2 of the most
abundant clonotypes prior to treatment. Following treatment, the
most abundant clonotypes expanded in 3/3 of the responders, but
contracted in NR, while remaining unchanged in SD patients
(Fig. 5C). Similar to what was seen in basal and squamous cell
carcinoma following PD-1 treatment28, there was no phenotypic
instability of the dominants clonotypes in response to PD-1
blockade.

Shared clonotypes among T cell lineages. We next explored the
lineage transition by investigating the fraction of clonotypes
within a T-cell lineage (primary cell type) shared with other T-cell
lineages (secondary cell type). We observed overlaps between
CD8+ subtypes, including CD8+ GZMK and CD8+ CTL, pre-
and post-treatment (Fig. 5D). Moreover, the overlaps between
CD8+ subtypes were increased post-treatment, suggesting that
the transitions between different activation states of CD8+ cells
were enhanced by PD-1 blockade (Fig. 5D). Specifically, the
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overlaps with the terminally effector CD8+ CTL were highly
increased following PD-1 blockade, including CD8+ GZMK,
suggesting a favored transition to CD8+ CTL state. However,
fewer overlaps were found for CD4+ cell phenotypes pre- and
post-treatment, suggesting limited transitions between CD4+ cell
states.

To assess clonotype stability, we evaluated the shared clonotype
fraction for each T cell phenotype between pre- and post-
treatment (Fig. 5E). MAIT, CD8+ GZMK, and CD8+ CTL cells
demonstrated relative clonotype stability, whereas CD4+ cells
retained less clones post-treatment (Fig. 5E). Further, 30% of
pretreatment CD8+ GZMK clonotypes were shared with post-
treatment CD8+ CTL. These findings suggested shared clono-
types among closely related T-cell lineages that expanded
following ICB therapy and thus an earlier antigen priming
followed by phenotypic divergence.

Chr7/7q loss is associated with resistance to ICB-based therapy.
While the T-cell landscape modulates responses to PD-1 block-
ade, tumor genomic alterations influence responses to immu-
notherapy in solid cancers65–70. However, AML cells harbor low
tumor mutation burden71, but large genomic alterations and
SCNA that impact treatments and outcomes53,72. Therefore, we
applied inferCNV tool45 to deduce large-scale SCNAs of AML
cells and was consistent with available clinical cytogenetics data
for these patients from around the time of BM sampling (Sup-
plementary Table 1). At pretreatment, 3/3 NR patients (PT4, PT5
and PT6) had inferred loss of chr7/7q in most of their malignant
cells (Fig. 6A). Interestingly, PT3 (responder with CR) had an
emergent inferred chr7q deletion (confirmed in 15/20 cells on
karyotyping), which preceded the clinical and morphologic
relapse (Fig. 6B, C) and was associated with loss of TCR clonal
dominance (Fig. 2C).

To validate chr7/7q loss association with resistance to ICB-
based therapy, we evaluated 57 R/R AML patients treated on

protocol with azacitidine and nivolumab who had evaluable
pretreatment cytogenetic profiling. Interestingly, only 10.5% (2/
19) of patients with chr7/7q deletion responded to treatment
compared with 36.8% (14/38) of patients without deletion
(p= 0.03) (Fig. 6D). To decouple azacitidine from nivolumab
effect, we conducted a similar analysis on an independent cohort
of R/R AML cohort (n= 99) treated on azacitidine-based clinical
trials without ICB therapies. Interestingly, 35% (5/14) of R/R
AML patients with chr7/7q loss achieved a complete or partial
response compared with 17.6% (15/85) without the deletion
(p= 0.11) (Fig. 6E). These data suggest that chr7/7q loss is
associated with resistance to the combination of nivolumab/
azacitidine, but not to azacitidine therapy without ICB.

We next aimed to delineate potential dysregulated molecular
process and biological pathways associated with chr7/7q
resistance to ICB-based therapy. mTORC1 signaling, glycolysis
and interferon γ (IFNγ) Hallmarks pathways were highly
enriched in differentially expressed genes on chr7q between
patients with loss and intact chr7/7q (Supplementary Data 2 and
Supplementary Fig. 7A). Further, IFNγ pathway genes, namely
interferon-related developmental regulator (IFRD1) and the
histone lysine methyltransferases KMT2C and KMT2E were
among the significantly downregulated ones in our analysis. Gene
set enrichment analysis on all chr7q genes that were also detected
in our scRNA profiling also demonstrated significant enrichment
for IFNγ pathway (q < 0.0005). Since IFNγ signaling shapes the
immune BM microenvironment73 and was enriched on genes
from chr7/7q region, we estimated the absolute infiltration of
T cells in AML cohort of TCGA in correlation with chr7/7q loss
via CIBERSORTx74. Treg cells were significantly (p= 0.005)
higher in AML patients with chr7/7q loss (n= 19) compared to
those with intact chr7/7q (n= 152) (Fig. 6F). Of note, CD8+

T cells absolute infiltration was higher in patients with chr7/7q
deletion (Supplementary Fig. 7B), however CIBERSORTx decon-
volution does not allow further phenotypic description of CD8+
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subsets. Additionally, TCGA AML patients with chr7/7q loss had
significantly worse survival than patients without chr7/7q
alteration (p= 0.015) (Supplementary Fig. 7C). Thus, chr7/7q
loss appears to associate with or promote an immunosuppressive
environment enriched in Treg immune cells and confers inferior
outcomes.

Discussion
Disentangling AML cells from their complex, immune-rich
microenvironment can uncover the T-cell phenotypes in the
AML milieu1. Assessing TCR repertoires can infer T-cell reac-
tivity to treatment19,64. Paired analysis of both T-cell subsets and
TCR repertoires provide a more accurate assessment of the
functional properties of T cells in response to PD-1 blockade
therapy19–28. In this study, we leveraged paired scRNA and
scTCR profiling of AML BMs before and after treatment to
understand the dynamics of T cells and their repertoires.

Our paired scRNA and scTCR profiling supported an adaptive
T-cell repertoire that is primarily expanded by cytotoxic T-cell
clonotypes emerging primarily in responders and SD patients
following ICB-based therapy. In one patient (PT3), clonotype
contraction and the loss of chr7/7q preceded relapse. Interest-
ingly, some clonotypes were shared among different T-cell phe-
notypes. This suggests that while clonotypes may arise from same
clone, T cells can become functionally divergent depending on
microenvironment signals64. Also, it is possible that CD8+

GZMK cells undergo functional differentiation into CD8+ CTL
concurrent with loss of GZMK expression and acquisition of
GZMB, which is supported by the trajectory analysis and the 30%
overlap in TCR clonotypes at pre- and post-treatment (Fig. 5E).
Of note, checkpoint blockade can indeed induce repertoire
expansions in solid cancers12,28,75. However, in skin cancer, most
of the expansions occurred in recruited novel clones. We found
that in AML, both expanded and novel clonotypes, potentially
representing locally and recruited clonotypes, respectively, are
involved in the response. The difference compared to solid can-
cers could be related to the BM being a primary site for T-cell
maturation thus affording PD-1 blockade rejuvenation of infil-
trating T cells.

GZMB is well described in mediating apoptosis76–79. However,
GZMK is considered an ‘orphan’ granzyme, with some studies
considering it a cytolytic marker, while others suggesting no
cytotoxic activity35,54. Our data support that GZMK identifies a
CD8+ subset enriched for stem-like and memory properties.
GZMK cells had low expression of cytotoxic genes (PRF1/GNLY/
GZMB) but harbored high expression of both transcription fac-
tors TCF7 and EOMES. TCF7-expressing CD8+ cells mediate and
sustain immune responses via stem-like activities in a melanoma
murine model treated with a PD-1 inhibitor, and following
infection with lymphocytic choriomeningitis virus80–82. Addi-
tionally, CD8+ TCF7+ T cells define stem-like T cells in cancer
patients, have enhanced self-renewal, multipotency, and give rise
to more terminally differentiated effector CD8+ T cells, further
supporting our continuum model55,83. EOMES enables enrich-
ment of memory CD8+ T cells in the BM niche, promotes
memory cell formation, and its expression in CD8+ cells corre-
lates with response to immunotherapy in melanoma11,84,85.
Further, loss of EOMES result in defective memory T-cell
populations, and its expression is associated with long-term
memory-like T cells86. We further validated our findings by
interrogating the human protein atlas datasets57–59 and con-
firmed GZMK expression is highest in memory T cells. More
recently, GZMK was shown to be differentially expressed in dif-
ferent subsets of memory T-cells and crucial for memory T cell
function60–62. Collectively, these findings support that similar to

solid cancers, the T-cell memory subsets can influence responses
to PD-1 blockade therapy in hematologic malignancies.

Our analyses allowed investigating genomic markers associated
with resistance or response to checkpoint-blockade therapy.
Tumor mutation burden and alterations in DNA damage
response genes are associated with improved responses to
checkpoint-blockade therapy in solid cancers65–70. Further,
SCNAs are correlated with reduced response to immunotherapy
in solid cancers67,68,87. However, AML has low mutation
burden71 but high cytogenetic alterations and SCNA53,72, and
thus investigating other genomic mechanisms that could influ-
ence the immune milieu is of value. AML patients with adverse
cytogenetics have an immunosuppressive niche2. Here, we
demonstrated that the loss in chr7/7q associated with resistance
to ICB-therapy. While the underlying mechanisms are yet to be
fully understood, these findings are important as they suggest that
cytogenetic profiling, which is part of routine pathologic assess-
ment for AML patients prior to treatment initiation, should be
evaluated as a potential predictive biomarker for patient selection
for ICB-based therapy trials in AML.

Currently, AML patients are only being treated with PD-1
therapy in the relapsed/refractory on clinal trials. There is a gap of
knowledge in understanding T cell biology, subsets and TCR
repertoires in response to treatment in this relevant treatment
context. Our analyses, although conducted on a relatively small
number of patients provides an in-depth look at T cell archi-
tecture and the adaptive T cell repertoire profiles in response to
therapy. These data build a framework for deeper understanding
of the molecular dynamics of T cells and AML cells, and can
hopefully drive strategies to develop optimal personalized com-
binatorial approaches to improve efficacy and outcomes for these
patients.

Methods
Human participants and treatment regimen. Patients ≥18 years of age who had
failed prior therapy for AML were eligible to participate on combined azacitidine
and nivolumab trial (ClinalTrials.gov identifier: NCT02397720; full protocol is
included in Supplementary Note 1). Bone marrows from 8 patients on
NCT02397720 protocol and 2 healthy donors were characterized in this study. All
patients had histologically proved relapsed or refractory acute myeloid leukemia.
Treatment consisted of azacitidine 75 mg/m2 days 1 to 7 administered intrave-
nously (i.v.) over 60 to 90 min or subcutaneously, and nivolumab 3 mg/kg admi-
nistered as a 60 to 90 min i.v. infusion on days 1 and 14 of each cycle. Each cycle
consisted of 28 days and were repeated every 4 to 6 weeks, depending on count
recovery. Patients continued on therapy as long as they had evidence of clinical
benefit. Response assessment was conducted using European Leukemia Network
(ELN) response criteria72. A written informed consent for enrollment on the
protocol and for all uses of human material was approved by the internal review
board of University of Texas M D Anderson Cancer Center was obtained. The
study was conducted in accordance with the Declaration of Helsinki.

Sample collection and processing. Bone marrow (BM) biopsies were routinely
collected prior to treatment initiation and at different timepoints for response
assessments. BM samples were freshly frozen with freezing medium containing
20% fetal calf serum (FCS) and 10% DMSO in Dulbecco’s Modified Eagle Medium
(DMEM), and stored in liquid nitrogen.

Cells preparation for single cell profiling. All BM samples stored in liquid
nitrogen were retrieved right before sample processing. To maximize the cellular
viability recovery, samples were processed in batches according to in house
developed protocol and 10x Genomics Demonstrated Protocol Cell Preparation
Guide (Document CG00053). Briefly, cells were gently thawed in water bath at
37 °C until partially thawed and immediately placed on ice. Next, cells were gently
transferred to a 10 ml media (10 ml alphaMEM + 20%FCS) and centrifuged (453 g
for 5 min). After removal of supernatant, the cell pellet was carefully resuspended
in 10 ml enriched media (alphaMEM+ 20% FCS supplemented with 500 μl
Heparine (Cat# 9041-08-1; Alfa Aesar), 15 μl DNase (Cat# 89835, thermo Fischer
Scientifc) and 500 μl MgSO4), followed by incubation in 37 °C for 15 min. After
incubation, cells were centrifuged and gently washed twice in 1.5–3 ml of 0.04%
BSA in PBS. Additionally, cells were passed through 35μm strainer (BD Falcon®
5 ml Round-Bottom Tubes with Cell Strainer Cap, Corning, NY, USA) to eliminate
cell clumps. Next, cells were stained with 0.4% Trypan blue and quantified and
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assessed for viability using the cell automated counting machine Cellometer Mini
(Nexcelom, Lawrence, MA, US), as well as using standard hemocytometer and light
microscopy.

Library preparation for 10x Genomics 5′ single cell RNA and V(D)J sequen-
cing. The 5’ gene expression libraries (5′GEX) and scTCR enriched libraries were
prepared using the 10x Single Cell Immune Profiling Solution (https://www.10
xgenomics.com/products/single-cell-immune-profiling/), according to the manu-
facturer’s protocol CG000086 Chromium Single Cell V(D)J Reagent Kits User
Guide Rev G (v1 Chemistry), (10x Genomics, Pleasanton, CA, USA). This method
did not require any custom primers, and all primers necessary for cDNA gen-
eration and preparation of 5’ GEX libraries and scTCR libraries were supplied
within 10x Genomics reagents. The brief description of the key steps conducted for
libraries generation are summarized below.

cDNA generation from single cell. the single cell suspensions with a targeted cell
recovery of 10,000 cells per sample were mixed with Master Mix and loaded into
the Chromium Chip A along with the barcoded Single Cell VDJ 5’ Gel Beads v1
and Partitioning Oil. The nanoliter-scale Gel Beads-in-emulsion (GEMs) were
generated using 10x Chromium Controller. Next, GEMs were captured and
incubated (Step 1: 53 °C for 45 min, Step 2: 85 °C for 5 min) to produce 10x
Barcoded with unique molecular index (UMI), full-length cDNA from poly-
adenylated mRNA in reverse transcription reaction. Following steps included
breaking the GEMs, Post GEM-RT Cleanup and PCR amplification of released
cDNA with primers against common 5’ and 3’ ends added during GEM- RT (Step
1: 98 °C for 45 s, Step 2: 98 °C for 20 s, Step 3: 67 °C for 30 s, Step 4: 72 °C for 1 min,
Step 5: 72 °C for 1 min, Hold: 4 °C; Steps 2–4 were performed in total of 13 cycles).
The obtained cDNA was cleaned-up using SPRIselect Reagent Kit (Beckman
Coulter, Brea, CA, USA) and quantified using an Agilent 4200 Tape Station HS
D5000 Assay (Agilent Technologies, Santa Clara, CA, USA). Such prepared cDNA
was further used to generate 5’GEX libraries and TCR-enriched libraries.

Construction of 5′GEX libraries. 50 ng mass of cDNA of each sample was used.
The main steps of 5’GEX library preparation included: (1) fragmentation, end
repair and A-tailing followed by double sided size selection (2) adapter ligation
with post-ligation cleanup, and 3) sample index PCR followed by the double-sided
cleanup and QC. The enzymatic fragmentation and size selection (SPRIselect
Reagent Kit, Beckman Coulter, Brea, CA, USA) were used to optimize the cDNA
amplicon size followed by adding P5 and P7 sample indexes (used in Illumina
sequencers), and Illumina R2 sequence via processes of end repair, A-tailing (Hold:
4 °C, Step 1: 32 °C for 5 min, Step 2: 65 °C for 30 min, Hold: 4 °C), adapter ligation
(20 °C for 15 min, Hold: 4 °C) and Sample Index PCR (Step 1: 98 °C for 45 sec, Step
2: 98 °C for 20 sec, Step 3: 54 °C for 30 s, Step 4: 72 °C for 20 s, Step 5: 72 °C for
1 min, Hold: 4 °C; Steps 2–4 were performed in total of 14 cycles) using Chromium
i7 Sample Index (PN-220103, 10x Genomics, Pleasanton, CA, USA).

TCR enrichment step. 5 μl of cDNA of each sample was used. The TCR transcripts
were enriched by two rounds of PCR amplification (Step 1: 98 °C for 45 sec, Step 2:
98 °C for 20 s, Step 3: 67 °C for 30 s, Step 4: 72 °C for 1 min, Step 5: 72 °C for 1 min,
Hold: 4 °C; Steps 2–4 were performed in total of 10 cycles) with primers specific to
the TCR, with sample cleanup between each run of PCR. Noteworthy, the P5 was
also added during enrichment. The double-sided size selection was performed on
enriched target followed by QC step.

Construction of TCR enriched libraries. 50 ng mass of TCR enriched samples
were used. The main steps of the process included: (1) fragmentation, end repair
and A-tailing (Hold: 4 °C, Step 1: 32 °C for 2 min, Step 2: 65 °C for 30 min, Hold:
4 °C), (2) adapter ligation (20 °C for 15 min, Hold: 4 °C) with post-ligation cleanup,
(3) sample index PCR amplification (Step 1: 98 °C for 45 s, Step 2: 98 °C for 20 s,
Step 3: 54 °C for 30 s, Step 4: 72 °C for 20 s, Step 5: 72 °C for 1 min, Hold: 4 °C;
Steps 2–4 were performed in total of 9 cycles) using Chromium i7 Sample Index
(PN-220103, 10x Genomics, Pleasanton, CA, USA), followed by the double-sided
cleanup and QC step.

Sequencing. All libraries were checked for the fragment size distribution using
Agilent 4200 Tape Station HS D5000 Assay (Agilent Technologies, Santa Clara,
CA, USA) and quantified with Qubit Fluorometric dsDNA Quantification kit
(Thermo Fisher Scientific, Waltham, MA, US). Each of 5’GEX and TCR enriched
libraries were prepared with unique indexes allowing for multiplexing. The 5’GEX
libraries were sequenced each of on a separate lane of HiSeq4000 flow cell (Illu-
mina, San Diego, CA, USA) to target sequencing depth of 50,000 read pairs per
sample, in total of four batches. All TCR enriched libraries were equimolarly
pooled and sequenced in one sequencing run using NovaSeq6000 S2-Xp 100
(Illumina, San Diego, CA, USA) as required lower sequencing depth of 5,000 read
pairs per sample. All libraries were sequenced at the MDACC Advanced Tech-
nology Genomics Core (ATGC, Houston, TX, USA) facility under 10x Genomics
recommended cycling parameters for 5’GEX libraries (Read 1–26 cycles, Read 2–98

cycles; with few exceptions for samples sequenced on the same flow cell along with
scATAC libraries: Read 1–100 cycles, Read 2–100 cycles) and for scTCR enriched
libraries (Read 1–26 cycles, Read 2–91 cycles), with sequencing format of 100nt.

Raw sequencing data processing, quality check, data filtering, doublets removal,
batch effect evaluation and data normalization: The raw scRNA-seq data were pre-
processed (demultiplex cellular barcodes, read alignment, and generation of gene
read count matrix) using Cell Ranger Single Cell Software Suite provided by 10x
Genomics. Detailed QC metrics were generated and evaluated. Genes detected in
fewer than 3 cells and cells with low complexity libraries (less than 200 genes were
detected) were filtered out and excluded from subsequent analysis. Low-quality
cells where >15% of transcripts derived from the mitochondria were considered
apoptotic and also excluded. Following the initial clustering, we removed likely cell
doublets from all clusters. Doublets were identified by the following methods88 (1)
library complexity-cells are outliers in terms of library complexity. (2) Cluster
distribution- doublets or multiplets likely form distinct clusters with hybrid
expression features and exhibit an aberrantly high gene count; (3) cluster marker
gene expression–cells of a cluster express markers from distinct lineages (e.g., cells
in the T-cell cluster showed expression of epithelial cell markers; 4) Non-T cells
expressing TCR or Non-B cells expressing BCR. After these steps, we evaluated the
doublet score using DoubletFinder44 and confirmed that most doublets should
have been appropriately removed (Supplementary Fig. 2F, G).

Unsupervised cell clustering, dimensionality reduction using t-SNE and UMAP,
and cluster relationship analysis: Library size normalization was performed in
Seurat89 on the filtered gene-cell matrix to obtain the normalized UMI count as
previously described36. Then, the normalized gene-cell matrix was used to identify
highly variable genes for unsupervised cell clustering in Seurat. The elbow plot was
generated with the ElbowPlot function of Seurat and based on which, the number
of significant principal components (PCs) were determined. Different resolution
parameters for unsupervised clustering were then examined in order to determine
the optimal number of clusters. For visualization, the dimensionality was further
reduced using Uniform Manifold Approximation and Projection (UMAP)90

methods with Seurat function RunUMAP. In addition, Monocle 3 alpha (http://
cole-trapnell-lab.github.io/monocle-release/monocle3/)91 was applied as an
independent tool for unsupervised clustering analysis (function cluster_cells) and
UMAP was used by default with the Monocle functions reduce_dimension and
plot_cells for dimensionality reduction and visualization of the Monocle clustering
results. Monocle 3 alpha was also used to construct the single-cell trajectories. The
function learn_graph was run with default parameters. Batch effects was corrected
using the R package HARMONY before clustering analysis in Seurat and using the
Alignment function in Monocle3 before trajectory analysis.

Determination of major cell types and cell states. To define the major cell type
of each single cell, differentially expressed genes (DEGs) were identified for each
cell cluster using the FindAllMarkers analysis in the Seurat89 package and the top
50 most significant DEGs were carefully reviewed. In parallel, feature plots were
generated for top DEGs and a suggested set of canonical immune and stromal cell
markers, a similar approach as previously described10,14, followed by a manual
review process. Enrichment of these markers (e.g., PTPRC for immune cells;
CD3D/E for T cells; CD8A/B for CD8 T cells, IL7R/CD4/CD40LG for CD4 T cells;
CD19/MS4A1/CD79A for B cells, etc.) in certain clusters was considered a strong
indication of the clusters representing the corresponding cell types. The two
approaches are combined to infer major cell types for each cell cluster according to
the enrichment of marker genes and top-ranked DEGs in each cell cluster, as
previously described10. In further confirm our cell type annotation, data from the
two normal bone marrow samples were also mapped to multimodal human BMNC
reference dataset provided by Seurat v4. Cell types of both reference mapping and
inhouse annotation were reduced to 11 general cell type groups (B, Monocytes,
CD4, CD8, DC, NK, Unconventional T, Progenitors, HSC, Erythroid and Plasma).
Concordance rate was calculated by dividing the number of cells with consistent
cell type group annotation between reference mapping and inhouse annotation by
the total number of cells tested. Concordance rates were also calculated for patients’
data after cell type assignment.

Infer large-scale copy number variations (CNVs). The tool inferCNV (https://
github.com/broadinstitute/inferCNV) was applied to infer the large-scale CNVs
from scRNA-seq data and monocytes from normal bone marrow of this dataset
were used as a control for CNV analysis. Initial CNVs were estimated by sorting
the analyzed genes by their chromosomal locations and applying a moving average
to the relative expression values, with a sliding window of 100 genes within each
chromosome, as previously described46. Finally, malignant cells were distinguished
from normal cells based on information integrated from multiple sources including
marker genes expression, inferred large-scale CNVs, and their cluster distribution
per patient with cells from normal bone marrow.

Pathway enrichment analysis. For pathway analysis, the curated gene sets
(including Hallmark and KEGG gene sets) were downloaded from the Molecular
Signature Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/
index.jsp), single-sample GSVA (ssGSVA) was applied to the scRNA-seq data and
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pathway scores were calculated for each cell using gsva function in GSVA software
package52. Heatmaps were generated using the heatmap function in pheatmap R
package for filtered DEGs.

TCR V(D)J sequence assembly, clonotype calling, TCR diversity and clonality
analysis and integration with scRNA-seq data: Cell Ranger v3.0.2 for V(D)J
sequence assembly was applied for TCR/BCR reconstruction and paired clonotype
calling. The CDR3 motif was located and the productivity was determined for each
single cell. The clonotype landscape was then assessed and the clonal fraction of
each identified clonotype was calculated. The TCR clonotype diversity matrix was
calculated using the tcR R package92. The clonotype data was then integrated with
the T-cell phenotype data inferred from single cell gene expression analysis based
on the shared cell barcodes.

Immune cell deconvolution of TCGA sample. CIBERSORTx74 was applied to the
normalized bulk RNA-seq data with the LM22 gene signature to estimate the
absolute level of immune infiltrations.

Statistical analysis. Statistical differences were calculated with an unpaired Stu-
dent’s t-test for 2-tails. Spearman’s correlation coefficient was used. A value of
p < 0.05 was considered statistically significant. For multiple t-tests, false discovery
rate with q < 0.05 was used for statistical significance. All statistical analysis were
performed using packages in R (R Foundation for Statistical Computing) and in
GraphPad Prism Software version 8.

Multiplex immunofluorescence. Chromogen-based immunohistochemistry and
multiplex immunofluorescence using CD8, Granzyme K (GZMK), and CD45RO
were previously optimized and validated. Each antibody was assessed by a
uniplex IF assay to generate spectral libraries required for multiplex IF image
analysis. Uniplex IF staining was performed using the Opal 7 kit (catalog
#NEL797001KT; Akoya Biosciences, Marlborough, MA), which an individual
tyramide signal amplification (TSA)-conjugated fluorophores is used to detect
various targets within an IF assay. The process consists in an automatized
process in an autostainer (Leica Bond RX, Leica Biosystems, Vista, CA), which
performs the following process: deparaffinization, thermoregulation (boiling and
cooling), protein stabilization, incubation, antigen retrieval, and counterstaining
with DAPI. For each antibody, a previous determined specification was used
according the validation: CD8 (clone c8/144B, Thermo Scientific, 1:25), GZMK
(polyclonal, Sigma Aldrich, 1:100), and CD45RO (clone UCHL1, Leica Bond,
ready to use). The slides were imaged using the Vectra Polaris spectral imaging
system (Akoya Biosciences, Marlborough, MA) using the fluorescence protocol
at 10 nm λ from 420 nm to 720 nm, to extract fluorescent intensity information
from the images. A similar approach was used to build the spectral library using
the InForm 2.4.8 image analysis software (Akoya Biosciences, Marlborough,
MA). In the multiplex IF slides, each batch was scanned with the Vectra Polaris
imaging system using a reactive human tonsils as controls to calibrate the
spectral image protocol. After low magnification scanning at ×10 using Phe-
nochart 1.0.9, we selected the whole regions of interest (interfollicular areas).
The high magnification areas were acquired using high resolution (× 20) and
accessed by InForm 2.4.8 software.

Flow cytometry. Fresh bone marrow aspirate is collected in EDTA tubes. Flow
cytometry is performed within 24 h using CD45-V500 (BD Biosciences Cat #
560777, Clone HI30) and CD34-PE-Cy7 (BD Biosciences Cat # 348791, Clone
8G12). 5 ul (1:1 dilution) of each antibody was added to each tube which contains
about 200,000 cells then flow cytometry analysis was run on BD FACSCanto
8-color and 10-color instruments and analyzed on FCEXPRESSION V6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data can be accessed from European Genome-phenome Archive (EGA)
database (https://ega-archive.org/studies/EGAS00001004894) with EGA ID number for
5’ scRNA-seq (EGAD00001007672), scTCR-seq (EGAD00001007674) and DNA-seq
(EGAD00001007671) data. All other data including the source data for main and
supplementary figures are also available in the Source File. Source data are provided with
this paper.

Code availability
All codes used in this manuscript are based on public library packages that are listed in
the Methods section.
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