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ABSTRACT
It is essential to assess the cancer risk for patients with chronic obstructive pulmonary disease
(COPD). Comparing gene expression data from patients with lung cancer (a total of 506 sam-
ples) and those with cancer-adjacent normal lung tissues (a total of 370 samples), we generated
a qualitative transcriptional signature consisting of 2046 gene pairs. The signature was verified
in an evaluation dataset comprising 18 subjects with severe disease and 52 subjects with mod-
erate disease (Wilcoxon rank-sum test; p¼ 7.33� 10�5). Similar results were obtained in other
independent datasets. Among the gene pairs in the signature, 326 COPD stage-related gene
pairs were identified based on Spearman’s rank correlation tests and those gene pairs com-
prised 368 unique genes. Of these 368 genes, 16 genes were significantly dysregulated in COPD
rat model data compared with control data. Some of these genes (Dhx16, Upf2, Notch3, Sec61a1,
Dyrk2, and Hmmr) were altered when the COPD rat model was treated with traditional Chinese
medicines (TCM), including Bufei Yishen formula, Bufei Jianpi formula, and Yiqi Zishen formula.
Overall, the signature could predict the cancer incidence-risk of COPD and the identified key
genes might provide guidance regarding both the treatment of COPD using TCM and the pre-
vention of cancer in patients with COPD.

KEY MESSAGES

� A cancer risk assessment signature was identified in patients with COPD.
� The signature is insensitive to batch effects and is well verified.
� COPD key genes identified in this study might play a crucial role in TCM treatment and can-
cer prevention.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a
common respiratory disease, characterized by airflow
limitation and is incompletely reversible [1,2]. Patients
with COPD suffer decline in lung function resulting in
a severe compromise in the quality of life and impos-
ing heavy economic burdens on patients, families, and
society [3,4]. The overall incidence of COPD was
reported to be 8.6% in China, and was as high as
13.7% for individuals aged 40 years or older [5]. In
2019, the global prevalence of COPD among people
aged 30–79 years was 10.3% (95% CI 8.2–12.8) using

the GOLD case definition, which translates to 391.9
million people (95% CI 312.6–487.9) [6]. Moreover,
COPD is an independent high-risk factor for the occur-
rence of lung cancer [7,8]. Lung cancer could develop
from COPD through a continuous, multi-step process
whereby normal lungs advance to moderate and then
severe COPD, and eventually develop into cancer [9].
However, to the best of our knowledge, there is cur-
rently no molecular signature to accurately assess the
risk of cancer incidence among patients with COPD.
Thus, there is significant clinical value in developing a
molecular signature for assessing the incidence of
COPD converting to lung cancer. Traditional Chinese
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medicines (TCM) have unique merits, exhibiting high
efficacy and fewer adverse reactions, and some TCM
have been successfully applied for the treatment of
COPD in clinical settings [10–12]. For example, clinical
studies have revealed Tiaobu Feishen formulae (TBFS),
including Bufei Yishen formula (BYF), Bufei Jianpi for-
mula (BJF), and Yiqi Zishen formula (YZF), had desir-
able pharmacological effects on COPD, such as
alleviating the clinical symptoms of patients with sta-
ble COPD, reducing the exacerbation frequency, delay-
ing acute exacerbation, and improving pulmonary
function and exercise capacity [13]. Moreover, these
three formulae have demonstrated beneficial effects in
COPD rat model, inhibiting expression of inflammatory
cytokines, protease–antiprotease imbalance, and colla-
gen deposition [10,14–17]. Among the genes consti-
tuting the cancer risk signature, it will also be of
significance to identify potential key genes that are
reversed when the COPD rat model is treated with
those TCMs, which might guide COPD treatment using
TCM and aid in the prevention of lung cancer occur-
rence from COPD.

High-throughput gene detection technology has
become widely applied, and various quantitative tran-
scriptional signatures have been used in subtyping
diseases and early diagnosis [8,18–21]. Nevertheless,
due to batch effects, these types of signatures are not
suitable for the analysis of individuals and are there-
fore difficult to apply them in clinical practice. Several
disease signatures based on quantitative transcrip-
tional feature, such as AlloMapVR [22], have already
been approved by the US Food and Drug
Administration (FDA). However, because of batch
effects, those samples must be measured in specific
laboratories, which also limits their clinical application.
Qualitative transcriptional characteristics, also called
within individual sample relative expression orderings
(REOs) of genes, are robust solutions to the batch
effect problem and suitable for individualized analysis
in clinical practice [22,23]. Using the robust perform-
ance of qualitative transcriptional characteristics,
researchers can merge data detected by the same or
similar platforms from multiple sources to train classi-
fier models or signatures, which would easily obtain
robust signatures [2,24,25]. Furthermore, the technique
is suitable for samples detected using differ-
ent platforms.

Based on the unique merits of qualitative transcrip-
tional characteristics, this study identified a cancer
incidence-risk signature for patients with COPD with-
out cancer, and the performance of the signature was
verified in multiple independent datasets.

Furthermore, among the genes constituting the cancer
risk signature, COPD key genes that could be regu-
lated by TCM were identified, and the value of these
COPD key genes in drug treatment and cancer preven-
tion warrants further exploration.

2. Materials and methods

2.1. Public data and preprocessing

Gene expression profiles of lung cancer and normal
lung tissue samples from multiple sources were down-
loaded from the GEO database (Table 1). For data
detected by the Affymetrix platform, the raw mRNA
expression data (.CEL files) was downloaded and the
Robust Multi-array Average (RMA) algorithm was
applied for preprocessing. For data detected by
Illumina or Agilent platforms, the processed data were
directly downloaded. All cancer samples were from
surgical resection in patients with non-small cell lung
carcinoma (NSCLC), while the normal samples were
obtained from adjacent normal tissues of patients
with lung cancer.

For the downloaded data, when multiple probes
mapped to an identical gene, the measurement of the
gene was calculated as the arithmetic mean value of
the multiple probe values. When a probe mapped to
none or more than one gene, the probe data
were discarded.

2.2. COPD rat data and drug treatment

The rat data analysed in this study were obtained
from our previous study [10–12,26] and a COPD model
generated using Sprague–Dawley rats was prepared as
previously described [27]. Briefly, the rats were
exposed to cigarette smoke and repeated Klebsiella
pneumoniae infections. In the ninth week, COPD
model rats were randomly divided into five groups as
shown in Supplementary Table S1. The groups of rats
were intragastrically treated with normal saline (model

Table 1. Data analysed in this study.

GEO No. Genea Platform
Normal

sample size
Cancer

sample size

GSE19804 20486 Affymetrix GPL570 60 60
GSE18842 20486 Affymetrix GPL570 45 46
GSE27262 20486 Affymetrix GPL570 25 25
GSE31210 20486 Affymetrix GPL570 20 226
GSE19188 20486 Affymetrix GPL570 65 91
GSE32863 25186 Illumina GPL6884 58 58
GSE31267 24384 Illumina GPL6947 24 –
GSE15197 18615 Agilent GPL6480 13 –
GSE40588 19595 Agilent GPL6480 60 –
aThe number of genes detected in the corresponding dataset.
–: there is no sample in the corresponding category.
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group, 2mL/animal), aminophylline (APL, 2.3mg/kg),
BYF, BJF, or YZF each day from weeks 9 to 20,
respectively; the drug concentrations and dose of
the three TCMs are shown in Supplementary Table
S2. Dosages of the TCM formulae were calculated
according to the clinically used dosages of adult
patients and the body surface area conversion equa-
tion between human and rat: Drat¼Dhuman�(Irat/
Ihuman)�(Wrat/Whuman)

2/3, where D is dose, I is body
shape index, and W is body weight. The control
group rats were fed with normal saline intragastri-
cally (2mL). Each group included six replicates and
the rats in each group were separately given the
corresponding drug or normal saline treatment. All
animals were handled humanely during the process
of the experiment and were anaesthetized and sacri-
ficed to obtain lung tissues on week 32. The com-
ponents of BYF, BJF, YZF, and APL were described
in previous studies [10–12]. Mass spectrometry and
high-performance liquid chromatography fingerprint
were respectively performed in previous studies to
identify the main chemical constituents of BYF and
BJF [28,29].

Briefly, BYF (patent: ZL.201110117578.1) is com-
posed of 12 Chinese medicinal herbs, including Panax
ginseng C.A.Mey. 9 g, Astragalus mongholicus
Bunge 15 g, Cornus officinalis Siebold & Zucc. 12 g,
Lycium barbarum L. 12 g, Schisandra chinensis (Turcz.)
Baill. 9 g, Epimedium sagittatum (Siebold & Zucc.)
Maxim. 9 g, Fritillaria thunbergii Miq. 9 g, Paeonia lacti-
flora Pall. 9 g, Pheretima 12 g, Perilla frutescens (L.)
Britton 9 g, Ardisia japonica (Thunb.) Blume 15 g, and
Citrus� aurantium L 9 g, which were also reported in
our previous studies [11,30]. Similarly, the components
of BJF also included 12 Chinese medicines: Astragalus
mongholicus Bunge 15 g, Polygonatum sibiricum
Redout�e 15 g, Codonopsis pilosula (Franch.) Nannf. 15 g,
Atractylodes macrocephala Koidz. 12 g, Poria cocos
(Schw.) wolf 12 g, Fritillaria thunbergii Miq. 9 g,
Pheretima 12 g, Magnolia officinalis Rehder & E.H.Wilson
9 g, Citrus� aurantium L. 9 g, Aster tataricus L.f. 9 g,
Ardisia japonica (Thunb.) Blume 15 g, and Epimedium
sagittatum (Siebold & Zucc.) Maxim 6 g, as also shown
in one of our previous studies [10]. YZF is composed
of 13 Chinese medicines, including Panax ginseng
C.A.Mey. 9 g, Polygonatum sibiricum Redout�e 15 g,
Ophiopogon japonicus (Thunb.) Ker Gawl. 15 g,
Schisandra chinensis (Turcz.) Baill. 9 g, Lycium barbarum
L. 12 g, Rehmannia glutinosa (Gaertn.) DC. 15 g,
Neolitsea cassia (L.) Kosterm. 3 g, Fritillaria thunbergii
Miq. 9 g, Pheretima 12 g, Paeonia� suffruticosa Andrews
12 g, Perilla frutescens (L.) Britton 9 g, Stemona tuberosa

Lour. 9 g, and Citrus� aurantium L 9 g [12]. Plant
names were verified according to the Kew search tool.
However, due to Pheretima and Poria cocos (Schw.)
wolf not belonging to the scope of botanical medi-
cinal materials, they were verified by searching litera-
ture and “Chinese Pharmacopoeia”. APL was obtained
from Shandong Xinhua Pharmaceutical Co., Ltd.
(Shandong, China). K. pneumoniae (strain ID: 46114)
was purchased from the National Centre for Medical
Culture Collection (CMCC, Beijing, China). The herbs
were identified and prepared in fluid extract [10–12].
This study was approved by the Experimental Animal
Care and Ethics Committee of the First Affiliated
Hospital, Henan University of Chinese Medicine
(2012HLD-0001).

For the six replicate samples from each group, RNA
was extracted and purified from lung tissues using
TRIzol reagent and Qiagen RNeasy Micro Kit, and then
was measured by Agilent Whole Rat Genome Oligo
Microarray. Raw data obtained in the above process
were preprocessed with Agilent GeneSpring GX soft-
ware (version 11.0). Differential expression analysis
between two of these groups was performed using
Student’s t-tests. In this present study, a cancer risk
assessment signature for patients with COPD was
firstly identified, and its reliability was verified in inde-
pendent data. Among the genes constituting the can-
cer risk signature, the previously produced gene
expression data of rat were applied to identify COPD
key genes and further identify the genes that were
reversed after drug treatment. The resulting informa-
tion could potentially provide some guidance regard-
ing the treatment of COPD and the prevention
of cancer.

2.3. Identification of the qualitative
transcriptional signature

Between the gene expression data of lung cancer and
normal lung tissues from the training set (as shown in
Table 1), highly stable gene pairs with opposite REOs
were identified as the signature to predict the cancer
incidence-risk in patients with COPD (with a threshold
of 90%).

For the genes detected in a specific type of tissue
sample from training datasets, all genes were pairwise
compared to select stable gene pairs. For two genes,
such as gene A and gene B, in one sample, their REO
pattern was identified as A> B (or A< B) if the meas-
urement of gene A was larger (or smaller) compared
with that of gene B. In this study, a gene pair was
considered highly stable when the gene pair (A, B)
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had an identical REO pattern in at least 90% of sam-
ples. Among the samples from two groups, if one
gene pair was stable in both of groups but with rever-
sal REO pattern, this gene pair was considered a rever-
sal gene pair. Finally, from all gene pair combinations,
the reversal gene pairs were selected and this was
considered the signature for predicting the cancer
incidence-risk.

For the gene pairs contained in the identified sig-
nature, the REO pattern of gene pairs representing
lung cancer was used to calculate the cancer risk score
in patients with COPD. For each patient, the cancer
incidence-risk score was defined as the percentage of
gene pairs characterizing lung cancer among the gene
pairs of the signature. Supposing the number of gene
pairs of the signature was m, among which n gene
pairs had REO patterns characterizing lung cancer in
this particular sample, then the incidence-risk score is
given by n/m. The property of the identified signature
was then verified in samples of non-cancer patients
with COPD at different disease courses from sev-
eral datasets.

2.4. KEGG pathway enrichment

A total of 330 KEGG pathways consisting of 7838
genes were obtained from Kyoto Encyclopaedia of
Genes and Genomes (KEGG) database [31]. The signifi-
cance of the pathways was determined by hypergeo-
metric distribution model, calculated as the following:

p ¼ 1�
Xk�1

i¼0

m
i

� �
N�m
n�i

� �

N
n

� �

where m indicates the number of genes annotated in
one given pathway, n indicates the number of inter-
ested genes, N indicates the number of genes
detected by the high-throughput platform, and k indi-
cates the number of interested genes in the
given pathway.

3. Results

3.1. Identification of a molecular signature to
build the cancer incidence-risk score

The flowchart of this study is shown in Figure 1.
Considering that lung cancer develops in a continu-
ous, multistep process from normal lung tissues, with
the threshold of 90%, stable gene pairs with opposite
REOs between lung cancer and normal lung tissue
samples were identified (see Materials and Methods).

For the 448 lung cancer and 215 normal lung tissue
samples obtained from the five datasets detected by
Affymetrix platform (as shown in Table 1), with the
threshold of 90%, 21,612 stable gene pairs in both
lung cancer and normal lung tissues but with reversed
REO patterns were obtained; these gene pairs were
considered stable reversal gene pairs. For the 58 lung
cancer and 82 normal lung tissue samples obtained
from the two datasets detected by Illumina platform
(as shown in Table 1), 337,728 stable reversal gene
pairs were obtained with the same threshold (90%).
Among the two lists of stable reversal gene pairs
obtained above, 3716 gene pairs were consistently
identified. Based on those 3716 gene pairs, there were
2046 gene pairs with same REO patterns in more than
90% of the 73 normal lung tissues data detected by
the Agilent platform. These 2046 gene pairs
(Supplementary Table S3), including 1700 unique
genes (Supplementary Table S4), were identified as
the molecular signature and the percentage of the
gene pairs characterizing lung cancer tissues were
applied to predict the cancer incidence-risk score of
non-cancer patients with COPD (see Materials and
Methods). For a total of 506 lung cancer and 370 nor-
mal lung tissue samples in the training data, based on
our signature consisting of 2046 gene pairs, the area
under the receiver operating characteristic curve (AUC)
value was 0.9929 (95% CI, 0.9634–1) (Supplementary
Figure S1). The performance of the signature was then
evaluated among patients with COPD from multiple
datasets by comparing cancer risk scores of patients
with COPD at different disease courses.

Additionally, measurements of the genes BIRC5 and
ASPA, BARD1 and PTPRB, CCNA2 and ACKR4 in lung
cancer and normal lung tissue samples from datasets
GSE18842 and GSE27262 were taken as an example to
show that the qualitative transcriptional characteristics
are robust in normal tissue samples (the expression
value of ASPA (PTPRB, ACKR4) is higher compared
with that of BIRC5 (BARD1, CCNA2)) but reversed in
cancer tissues (Figure 2). This would provide a basis
for the selection of the cancer risk signature for non-
cancer patients with COPD.

3.2. Performance of the signature in COPD
samples at different disease courses

The pathophysiological process of lung cancer
involves transforming normal lung to lungs affected
by COPD, culminating in outright malignant transform-
ation [9]. The performance of the signature (whose
score ranges from 0 to 1) was therefore evaluated in
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COPD samples with different disease courses. Higher
risk scores correlated with a greater cancer risk.

In the dataset GSE69818, including 18 severe and
52 moderate COPD samples, the median of cancer
incidence-risk score in severe COPD data was 0.0864,
significantly higher than that in the moderate COPD
samples (Wilcoxon rank-sum test; p¼ 7.33� 10�5). In
the datasets GSE76925, containing 111 severe COPD
samples, and GSE37768, comprising 18 moderate
COPD samples, similar results (Wilcoxon rank-sum test;
p¼ 1.67� 10�8) were obtained (Figure 3 and
Supplementary Table S5). Moreover, the risk scores in
samples from 18 patients with severe COPD that came
from dataset GSE69818 were also significantly higher
compared with those of the 18 moderate COPD sam-
ples from dataset GSE37768 (Wilcoxon rank-sum test;
p¼ 2.39� 10�5). Similar results were obtained in the
analysis of severe and moderate COPD samples from
datasets GSE76925 and GSE69818 (Wilcoxon rank-sum
test; p¼ 5.40� 10�5). These data suggest that our

signature could be applied to various samples from
multiple sources, highlighting the cross-platform per-
formance of the signature.

3.3. KEGG pathway enrichment analysis based on
signature genes

For the 2046 gene pairs in the signature, COPD stage-
related gene pairs were further identified based on
Spearman’s rank correlation tests. For the dataset
GSE69818, consisting of 53 moderate and 18 severe
COPD samples, 33 stage-related gene pairs were iden-
tified with false discovery rate (FDR) < 5%. Similarly,
for the combined data of GSE76925 and GSE37768,
301 stage-related gene pairs were identified. For the
above two lists of gene pairs, eight gene pairs were
commonly identified and this was statistically signifi-
cant (hypergeometric distribution model,
p¼ 9.97� 10�2). The two lists of gene pairs were then
combined as the COPD stage-related gene pairs (a

Figure 1. Analysis flowchart for this study.
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total of 326 gene pairs) for subsequent analysis, and
368 unique genes were included among those gene
pairs. Based on these 368 genes and the hypergeo-
metric distribution model, KEGG pathway analysis was
performed. With FDR < 5%, no significantly correlated
pathway was enriched, which might be ascribed to
insufficient statistical power due to too few genes of
interest. Therefore, pathway enrichment analysis was
also performed under a relatively loose threshold con-
dition. With p< 5%, six significantly related pathways
were enriched (Supplementary Table S6) and these
pathways are related to the progress of COPD. For
instance, studies showed that there was 2.5-fold in
COPD samples compared with the normal control
samples for RNA polymerase II occupancy at the pro-
moter [32]. CoQ10 or ubiquinone levels were
decreased in patients with COPD, probably due to the
defense response of the organism [33,34]. Beta-

adrenoceptor-mediated lipolysis and thermogenesis
are impaired in patients with COPD [35].

3.4. COPD-related genes in the rat model

The 368 human COPD stage-related genes identified
above were ortholog converted to rat genes using the
biological DataBase network [36], and 340 genes were
obtained. Of these, only the measurements of 16
genes were significantly altered in the COPD rat
model compared with control groups (six vs six)
(Table 2).

Among these 16 genes, those genes that were
reversed when undergoing drug treatment (with BYF,
BJF, YZF, and APL) were subsequently identified
(Supplementary Tables S7–S10). The frequency of
genes that were reversed after using this treatment
protocol was then calculated (Table 3). With a

Figure 2. Distribution of gene expression levels for the three gene pairs—BIRC5-ASPA (A), BARD1-PTPRB (B), and CCNA2-ACKR4
(C)—in GSE18842 and GSE27262 datasets. Horizontal coordinates represent cancer and normal lung tissue from datasets
GSE18842 and GSE27262. Vertical coordinates represent the expression level of the corresponding gene.
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relatively loose threshold (p< .2), the genes Dhx16,
Upf2, Denr, Notch3, Dyrk2, Sec61a1, Hmmr, and Noa1
were reversed in at least three treatment protocols
and most of these genes were reported to be related
to COPD or lung cancer [37–41]. The value of these
genes warrants further study in the future.

4. Discussion

Using qualitative transcriptional features, a signature
for the cancer incidence-risk assessment of non-cancer

patients with COPD was identified. The signature was
subsequently validated in patients with COPD at dif-
ferent disease courses from multiple data sources. This
method was successfully applied in a previous study
for assessing colorectal cancer incidence-risk among
patients with precancerous colorectal lesions [42].
Carcinogenesis of lung cancer is a continuous, multi-
step malignant transformation process from normal
lung tissues. One of pathogenic types of lung cancer
arises from normal lung tissues advancing to moder-
ate and then severe COPD, and eventually developing
into cancer. The signature in the current study was
developed based on normal lung and lung cancer tis-
sue samples. Thus, the genes constituting the cancer
risk signature might play vital roles in lung cancer or
COPD pathogenesis. Based on the signature genes,
key genes of COPD were further identified by correl-
ation analysis and further optimized in control rat data
and COPD rat model data with and without TCM treat-
ment, which might guide efforts for cancer prevention
and the treatment of COPD by TCM.

Most of the genes reproduced in the rat model
were reported to be related to lung cancer or/and
COPD. For example, dysregulation of Notch1 and
Notch3 has recently been reported to be correlated
with the pathogenesis of COPD [37]. The Notch3
downstream target HEYL is an important regulator of
airway epithelial cell proliferation and differentiation.
Reduced expression of HEYL correlates with the

Figure 3. Performance of the signature in COPD samples with different disease courses. Horizontal coordinates represent severe
and moderate COPD samples from public database. Vertical coordinates represent the score of our signature in severe and moder-
ate COPD samples. The Wilcoxon rank-sum test was applied to calculate the p values.

Table 2. Differentially expressed genes between COPD rat
model and control group.
Gene symbol FC T p

Dhx16 0.530623 �3.72567 .003938
Upf2 1.039416 3.475603 .005965
Uqcrc2 1.015124 3.212685 .00929
Rhobtb3 0.884189 �3.09422 .011362
Znhit3 1.012759 3.046952 .012316
Denr 1.013586 3.017057 .01296
Notch3 0.975045 �2.97443 .01394
Sdhc 0.984546 �2.5892 .026987
Dyrk2 0.923138 �2.53068 .029836
Sec61a1 1.039209 2.52876 .029934
Hmmr 0.688459 �2.48504 .032263
Exosc7 0.943282 �2.48184 .032441
Sh3gl3 0.718159 �2.42208 .035933
Noa1 0.971469 �2.28776 .045186
Trrap 1.043465 2.252802 .047951
Plk4 0.857672 �2.24158 .048873

FC: fold-change of the COPD rat samples compared with control samples;
T: test statistic value between COPD rat and control samples using the
Student’s t-tests.
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impaired differentiation capacity of COPD primary
human bronchial epithelial cells and overexpression of
HEYL in COPD cells promoted differentiation into club,
goblet, and ciliated cells [43]. Moreover, Sun et al. [1]
found Notch3 was downregulated in patients with
COPD and could be targeted by miR-206. Notch3 was
also reported to be related to lung cancer. In three
NSCLC cell lines (H292, A549, and Calu-3), Shi et al.
[44] proved that overexpression of NOTCH3 was
related to increased cell growth rate, migration, and
invasiveness abilities, as well as decreased apoptosis
rate. Furthermore, si-RNA transfection in these NSCLC
cell lines reversed these cellular biological behaviours
[44]. Notch3 can promote colony formation and sphere
formation of stem-like capacity in lung cancer cells,
and high expression of Notch3 was related to a poor
outcome of patients with NSCLC [45]. The missense
mutation rate of UPF1 or UPF2 was higher in lung can-
cer [46]. UPF2 binds UPF1, one of its family proteins,
with a high affinity [47]. Through interaction with
UPF1 to promote ZFPM2 mRNA decay, ZFPM2-AS1
could promote lung adenocarcinoma (LUAD) cell
growth, migration, and the epithelial-mesenchymal
transition process, thus exerting oncogenic functions
[48]. The single nucleotide polymorphism (SNP) of
rs115420460 in DHX16 was significantly different in
lung cancer samples compared with controls from the
TRICL Consortium, and was demonstrated to be asso-
ciated with lung cancer risk. Moreover, the location of
this SNP was within the previously identified lung-can-
cer-susceptible region Chr6p21.33 and in high linkage
disequilibrium with previously reported lung cancer
SNPs from genome-wide association studies [49].
DYRK2 might play an essential role in NSCLC, and its
expression may predict the chemotherapy response in

patients with NSCLC [38,39]. The expression level of
DYRK2 was significantly increased in lung cancer tis-
sues compared with normal tissues, which might indi-
cate a potential role of DYRK2 in lung cancer
development and/or progression [50]. Moreover,
DYRK2 was also overexpressed among lung cancer
(LUAD and LUSC) in TCGA data [51]. HMMR is involved
in lung cancer progression and is significantly associ-
ated with outcome [40,41]. HMMR is an independent
risk factor for LUAD, and its high expression was sig-
nificantly correlated with poor clinicopathological fea-
tures and adverse outcomes (progression and
metastasis of LAUD), whose expression may affect
tumorigenic progression by altering the tumour micro-
environment and playing a pivotal role in immune
response regulation [52,53]. DENR was reported to be
a risk gene in lung cancer, and its high expression
could inhibit the survival of patients with lung cancer
[54]. Further research on these genes might provide
some valuable guidance for cancer prevention and
TCM treatment of COPD.

On the other hand, our cancer risk signature in
patients with COPD was developed based on normal
lung and lung cancer tissue samples. Thus, the signa-
ture had the potential to discriminate lung cancer
from normal lung tissues, and this ability was subse-
quently verified using independent data. Based on the
majority vote rule, for the 59 normal lung tissues and
594 lung cancer tissues obtained from TCGA, the sig-
nature identified in the current study has excellent dis-
criminating ability, and the values of AUC, sensitivity,
and specificity were 0.9981 (95% CI, 0.6420–1), 93.64%,
and 100.00%, respectively (Supplementary Figure S2).
Similarly, for the 30 normal lung tissues and 36 lung
cancer tissues obtained from GSE7670, the values of

Table 3. Frequency of genes that were reversed between the treatment and model group.

Gene symbol FC (M_vs_C) T (M_vs_C)
p_value
(M_vs_C)

p_value
(BYF_vs_M)

p_value
(BJF_vs_M)

p_value
(YZF_vs_M)

p_value
(APL_vs_M) Num p< .05 Num p< .1 Num p< .2

Dhx16 0.530623 �3.72567 .003938 0.701224 5.52E-09 0.097164 5.50E-05 2 3 3
Upf2 1.039416 3.475603 .005965 .027316 .011337 .058669 .02064 3 4 4
Uqcrc2 1.015124 3.212685 .00929 .022126 .043653 .93704 .822763 2 2 2
Rhobtb3 0.884189 �3.09422 .011362 .78651 .197268 .106184 .211585 0 0 2
Znhit3 1.012759 3.046952 .012316 .560379 .689214 .271842 .713968 0 0 0
Denr 1.013586 3.017057 .01296 .010532 .020327 .118537 .100091 2 2 4
Notch3 0.975045 �2.97443 .01394 .475693 .000212 .088364 .020111 2 3 3
Sdhc 0.984546 �2.5892 .026987 .728516 .001616 .317634 .000346 2 2 2
Dyrk2 0.923138 �2.53068 .029836 .718672 .000155 .19656 .000206 2 2 3
Sec61a1 1.039209 2.52876 .029934 .202428 .056216 .006779 .014547 2 3 3
Hmmr 0.688459 �2.48504 .032263 .994814 .124428 .03643 .016983 2 2 3
Exosc7 0.943282 �2.48184 .032441 .492618 .000315 .509816 .000261 2 2 2
Sh3gl3 0.718159 �2.42208 .035933 .36409 .814336 .458153 .089266 0 1 1
Noa1 0.971469 �2.28776 .045186 .138333 .00598 .351014 .173025 1 1 3
Trrap 1.043465 2.252802 .047951 .656511 .036755 .571989 .012966 2 2 2
Plk4 0.857672 �2.24158 .048873 .547285 .018171 .724516 .011406 2 2 2

FC: fold-change of COPD rat samples compared with control samples; T: test statistic value between COPD rat and control samples using the Student’s t-
tests; p_value: p value between the corresponding two group samples (including Model vs Control, BYF vs Model, BJF vs Model, YZF vs Model, and APL
vs Model) using Student’s t-tests; Num: number of the corresponding genes occurring in the four treatment protocols with one certain threshold.
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AUC, sensitivity, and specificity were 0.9991 (95% CI,
0.7441–1), 94.44%, and 100%, respectively. For the 30
normal lung tissues and 80 lung cancer tissues
obtained from GSE43458, the values of AUC, sensitiv-
ity, and specificity were 0.9835 (95% CI, 0.6603–1),
80.00%, and 96.67%, respectively, and for the 20 nor-
mal lung tissues and 80 lung cancer tissues obtained
from GSE33532, the values were 1.000 (95% CI,
0.5839–1), 100.00%, and 100.00%, respectively. These
results demonstrated that the signature has the ability
to discriminate lung cancer from normal lung tissues.
Moreover, the performance of the signature was also
validated in COPD-only patients and COPD patients
with lung cancer by searching the gene expression
data of lung tissues from these two groups of
patients. One dataset (GSE8581) with COPD lung tis-
sues from COPD patients with lung cancer, and three
datasets (GSE103174, GSE151052, and GSE106986)
with COPD lung tissues from COPD-only patients were
obtained. There was no dataset that simultaneously
contained lung tissue samples from COPD-only
patients and COPD patients with lung cancer. Thus,
the performance of the signature to predict cancer
incidence-risk of COPD patients was validated in sam-
ples from different datasets. The risk scores in 15
COPD samples from COPD patients with lung cancer
from dataset GSE8581 were significantly higher com-
pared with those in 37 samples from COPD-only
patients from dataset GSE103174 (Wilcoxon rank-sum
test; p¼ 1.10� 10�8). Similarly, the risk scores in COPD
samples from GSE8581 were also significantly higher
compared with those in 77 samples from COPD-only
patients from dataset GSE151052 (Wilcoxon rank-sum
test; p¼ 5.34� 10�10). However, the risk scores were
not significantly different between the 15 COPD
patients with lung cancer from dataset GSE8581 and
14 samples from COPD-only patients from dataset
GSE106986 (Wilcoxon rank-sum test; p¼ .68), which
might be ascribed to low statistical power due to
small sample size. These results further demonstrated
that the signature could effectively predict the cancer
incidence-risk of patients with COPD and also exhib-
ited cross-platform ability.

Due to the lack of corresponding clinical follow-up
data, it is not possible to verify whether the individu-
als without cancer and with high lung cancer inci-
dence-risk score, as identified by the signature,
eventually develop into cancer. Future studies will
involve collaboration with affiliated hospitals to better
evaluate the robustness of the signature; patients
would be followed to further appraise the robustness
of the signature and to compare the cancer

incidence-risk score, calculated by the signature, with
the time from diagnosis to carcinogenesis. This will
determine whether individuals at high risk of cancer
(calculated based on the signature) eventually
develop into cancer. The financial burden of high-
throughput sequencing is markedly decreasing.
Consequently, for the scarce precious tissue samples
at the clinical practice, it will be possible to simultan-
eously measure a set of disease genes that could
more fully reveal the value of clinical samples under
controllable cost conditions. Such data could be
reused in other studies for different application scen-
arios involving diagnosis, histological classification,
prognoses evaluation of disease, etc., thereby enhanc-
ing the value of the clinical research.

In conclusion, the molecular signature identified in
this study (based on qualitative transcriptional charac-
teristics) circumvents problems related to batch effects
[55,56], variations in tumour epithelial cells from differ-
ent sampling sites [57], partial RNA degradation [58],
and amplification bias of minimum specimens [59].
The signature is suitable for inaccurately sampled tis-
sues and can be applied for individualized analysis,
which is more in line with the clinical setting [22].
Moreover, the reversed genes identified in the COPD
rat model and drug treatment group might play a key
role in medical treatment of COPD, and this warrants
further investigation.

5. Conclusions

COPD is a common disease with severe health conse-
quences. It is also a high-risk factor for lung cancer.
For the non-cancer patients with COPD, it would be
significant if their cancer incidence-risk could be
assessed. Considering the unique merits of qualitative
transcriptional characteristics (also called the within
samples REOs of genes), which are insensitive to batch
effects and could be used for the analysis of individual
patients, a qualitative signature was identified to pre-
dict the lung cancer incidence-risk for non-cancer
patients with COPD. Key genes for COPD were further
identified, optimized by correlation analysis with
COPD stage, and filtered in COPD rat model data. The
genes that occurred in reverse fashion when the
COPD rat model was treated with some TCM were fur-
ther identified. In summary, the qualitative transcrip-
tional signature circumvented problems associated
with batch effects and is suitable for the individualized
diagnosis of single samples, making it feasible for
application in clinical settings for the surveillance of
non-cancer patients with COPD. The value of COPD
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key genes in both TCM treatment of COPD and cancer
prevention should be further explored.
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