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Comprehensive assessment gene signatures for
clear cell renal cell carcinoma prognosis
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Long Ge, MDc,d, Juan Ling, MMc,d, Kehu Yang, MDa,d,∗, Yumin Li, MDa,b,∗

Abstract
There are many prognostic gene signature models in clear cell renal cell carcinoma (ccRCC). However, different results from various
methods and samples are hard to contribute to clinical practice. It is necessary to develop a robust gene signature for improving
clinical practice in ccRCC.
Amethod was proposed to integrate least absolute shrinkage and selection operator and multiple Cox regression to obtain mRNA

and microRNA signature from the cancer genomic atlas database for predicting prognosis of ccRCC. The gene signature model
consisted by 5 mRNAs and 1 microRNA was identified. Prognosis index (PI) model was constructed from RNA expression and
median value of PI is used to classified patients into high- and low-risk groups.
The results showed that high-risk patients showed significantly decrease survival comparison with low-risk groups [hazard ratio

(HR) =7.13, 95% confidence interval=3.71–13.70, P< .001]. As the gene signature was mainly consisted by mRNA, the validation
data can use transcriptomic data to verify. For comparison of the performance with previous works, other gene signature models and
4 datasets of ccRCC were retrieved from publications and public database. For estimating PI in each model, 3 indicators including
HR, concordance index , and the area under the curve of receiver operating characteristic for 3 years were calculated across 4
independent datasets.
The comparison results showed that the integrative model from our study was more robust than other models via comprehensive

analysis. These findings provide some genes for further study their functions and mechanisms in ccRCC tumorigenesis and
malignance, and may be useful for effective clinical decision making of ccRCC patients.

Abbreviations: AUC = area under the curve, ccRCC = clear cell renal cell carcinoma, CI = confidence interval, C-index =
concordance index, DFS = disease-free survival, GEO = gene expression omnibus, GO = gene ontology, HR = hazard ratio, LASSO
= least absolute shrinkage and selection operator, OS = overall survival, PI = prognosis index, RCC = renal cell carcinoma, ROC =
receiver operating characteristic, TCGA = the cancer genome atlas, TF = transcription factor.

Keywords: clear cell renal cell carcinoma, Cox regression, gene regulatory network, least absolute shrinkage and selection
operator, prognosis
1. Introduction 10 years ago (2007), 51,190 individuals suffered from kidney
[2]
Renal cell carcinoma (RCC) is a frequent malignant tumor of the
adult kidney. According to cancer statistics in 2018, 65,340 new
kidney cancer patients and 14,970 deaths.[1] Comparison to
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cancer and 12,890 died. In 10 years, the morbidity and
mortality of patients with renal cancer have not been significantly
changed. One of the important reasons is that RCC is a highly
heterogeneous set of disease. Of these subtypes of RCCs, The
clear-cell renal cell carcinoma (ccRCC) is one of most common
subtypes, accounting for approximately 70% to 80% of the
whole RCC.[3] Thus, identification of robust biomarkers for
ccRCC prognosis is necessary.
In an age of precision medicine, molecular subtype and gene

signature can provide new insight for clinical strategy and drug
development. High-throughput gene sequencing technology
provides us with a powerful tool to find genetic differences
among different patients. Therefore, different strategies can be
used to treat the patient in molecular level. Nevertheless, different
approaches using by different groups have produced many
different prognostic biomarkers for ccRCC.[3–24] How do we
decide which gene signature is effective against the current
ccRCC, which gene signature is more universal? In this study,
a least absolute shrinkage and selection operator (LASSO)
penalized Cox regression analysis method was combined with
multivariate Cox regression to obtain a set of gene biomarkers
and compared it with other gene signature from publications.
In addition, there are many studies in microRNA prognostic
signature.[15,25–28] Thus, we also integrated microRNA and
mRNA expression for predicting prognosis of ccRCC.
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In this study, we select data from 2 common databases of the
cancer genome atlas (TCGA) and gene expression omnibus
(GEO) database as training data sets and validating datasets,
respectively. Other 3 gene signatures were also tested with these 2
database sets. To exclude methodological heterogeneity, we
selected 3 studies of gene prognostic biomarkers that were
obtained using Cox regression. In the 3 studies, Yao et al[9] find 3
genes for prognosis of ccRCC, Boguslawska et al[22] find 10 genes
and Zhan et al[21] find 5 genes. In our study, we found 5 mRNAs
and 1 microRNA can predict prognosis of ccRCC. Interestingly,
each of the gene signature has no intersection, but they performed
well in validating the data set.
Here we demonstrate that the gene signature from LASSO

combined multivariate Cox regression has more stability and
universal in prognosis of ccRCC. These may be helpful
for selecting high-risk ccRCC patients for better clinical
decision making and provide useful biomarkers for downstream
experimental.
2. Methods

2.1. Data collected and preprocessing

The microRNA expression proliferation and mRNA expression
proliferation are collected TCGA database (https://portal.gdc.
cancer.gov/). The mRNA dataset is performed by the Illumina
Hiseq platform. And microRNA dataset is also performed by
Illumina Hiseq platform. In ccRCC cohort of TCGA database,
RNASeqV2 expression data contain 20,530 genes and micro-
RNA expression data contain 1046 microRNAs. The patients
without survival time and event information were excluded. The
samples with mRNA expression contained 510 patients with
primary tumor and 70 patients with solid tissue normal. The
samples with microRNA expression contained 254 patients with
primary tumor and 71 patients with solid tissue normal. We used
both mRNA and miRNA samples as training dataset (n=239).
Validation data are collected from GEO database. GSE22541
contains 68 samples which include 24 primary and 44 metastasis
samples.[29] And this dataset employed Affymetrix Human
Genome U133 Plus 2.0 Array. This work did not directly use
tissues from patients or animals.
2.2. Gene differential expression analysis

After differential gene expression analysis, there are 4205
mRNAs and 59 microRNAs with differential expression
comparison of normal tissue. In this study, we selected
differential expression genes with fold-change >1.5 and false
discovery rate (FDR) <0.01 as candidate genes for next step. The
microRNA and mRNA differential expression are assayed by R
package by “limma”[30] from Bioconductor 2.14.
2.3. Univariate Cox regression gene test

Firstly, univariate Cox regression and survival analysis are
applied to analyze clinical factors and each differential
expression gene. For clinical factors, we employed univariate
Cox regression to test hazard ratio (HR). And survival analysis
using Kaplan-Meier is applied to analyze clinical factor
significant difference by log-rank (2-sided test). For estimating
the clinical factor in ccRCC patients, HR >1 is considered
as risk increasing group and HR <1 is considered as risk-
decreasing factor.
2

2.4. Multivariate Cox regression for clinical factor and
LASSO Cox regression for RNAs

For univariate Cox regression clinical factor, we screened the
factor with Wald test P< .05 as candidate for multivariate Cox
regression.
For mRNA and miRNA expression, we filtered the RNA with

Wald test P< .05 as candidate for LASSO Cox regression. By
univariate Cox regression filtering, 2498 mRNAs and 18
miRNAs were selected to submit to LASSO. LASSO is performed
by R package of “glmnet.” LASSO is employed to filter 2498
mRNAs and 18 miRNAs, respectively. After 10,000 iterations
and 10 folds cross-validation, 16 mRNAs and 9 miRNAs are
obtained.
2.5. Integrative mRNAs and miRNAs for predicting survival
of ccRCC

For investigating integrative model of miRNAs and mRNAs,
ccRCC patients who both include mRNA and miRNA
expression are selected. There are 239 samples including for
assay the integrative model. We employed multivariate Cox
regression for 25RNAs (16mRNAs and 9microRNAs), andwe
obtained 5 mRNAs and 1 microRNA-independent predictors
for ccRCC.
2.6. Literature reviews

Prognostic model search was employed by PubMed. The
following terms were searched in PubMed: ({“clear cell renal
cell carcinoma” OR “clear cell renal cell cancer” OR “clear cell
renal cell tumor”OR “clear cell renal cell tumour”OR “clear cell
kidney cell carcinoma” OR “clear cell kidney cell cancer” OR
“clear cell kidney cell tumor” OR “clear cell renal cell tumour”}
AND {“gene expression” OR “gene signature” OR “gene
proliferation” OR “microarray” OR “high-throughput” OR
“microRNA expression” OR “mRNA expression”} AND
{“survival” OR “survivor” OR “outcome” OR “prognosis”
OR “prognostic”OR “prediction”} AND {“risk score”OR “cox
regression”}). After above filtering, 3 studies were included in this
study.
2.7. Prognostic index construction

A prognosis index (PI) as an integrated indicator of candidate
RNAs for each ccRCC patient was constructed. The PI was
computed as a linear combination of the RNA expression value
and weighted by LASSO Cox regression coefficients.

PI ¼
X

i
biXi

where bi is the regression coefficient of the ith variable. Xi is the
value of the ith variable. In this study, Xi is the log2-transformed
expression value of each RNA and bi is the LASSO Cox
regression coefficient of the ith RNA.
2.8. Validation datasets construction

For assessment performance of gene signature model,
gene expression array (AgilentG4502A_07_3) and RNAseq
(IlluminaHiSeq) were selected. The RNAseq data were divided
into 2 parts. One part includes both miRNA and mRNA
samples (n=239) that were used to be training data in this
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Table 1

Clinical factor information of 4 clear cell renal cell carcinoma cohort datasets.

239 Patients 510 Patients 72 Patients 24 Patients

Clinical
factors

Patients
(event/patients)

Median of
survival
(95% CI)

Patients
(event/patients)

Median
of survival
(95% CI)

Patients
(event/patients)

Median
of survival
(95% CI)

Patients
(event/patients)

Median
of survival
(95% CI)

Age
>60 41/114 2190(1588-NA) 103/257 1986(1639–2601) 6/33 NA NA NA
�60 28/125 NA(2454-NA) 63/257 NA 8/39 NA NA NA

Sex
Male 47/164 2454(2090-NA) 104/335 2454(1986-NA) 5/43 NA 10/13 82 (0-NA)
Female 22/75 NA(1714-NA) 62/179 2386(1964-NA) 9/29 2227(1610-NA) 7/11 63(45-NA)

Grade
G1 0/6 NA 0/11 NA 0/4 NA NA NA
G2 13/94 NA(2454-NA) 42/220 NA 4/36 NA 13/18 71(6-NA)
G3 29/97 2830(2090-NA) 70/199 2299(1964-NA) 7/22 NA 4/6 76(0-NA)
G4 27/39 819(561–1714) 53/76 885(600–1588) 3/6 3227(1661-NA) NA NA
Gx 0/1 NA 1/5 NA 0/3 NA NA NA

Unknown 0/2 NA 0/3 NA 0/1 NA NA NA
Adjuvant treatment:
Yes 3/8 1714(1714-NA) 9/18 1714(1034-NA) 0/1 NA NA NA
No 66/231 2830(2090-NA) 157/496 2454(2190-NA) 14/71 NA NA NA

Laterality
Bilateral 0/1 NA 0/1 NA 0 NA NA
Left 38/107 2299(1620-NA) 93/241 2227(1639–2752) 9/38 2227(1661-NA) NA NA
Right 31/131 NA 73/272 NA 5/34 NA NA NA

T stage
TO 19/124 NA(2454-NA) 48/261 NA 5/41 NA 3/10 NA
T2 8/30 2830(NA) 18/67 2830(2256-NA) 1/14 2227(2227-NA) 9/9 6(0-NA)
T3 37/79 1567(1097-NA) 90/175 1337(1019–1724) 8/17 992(709-NA) 5/5 90(83-NA)
T4 5/6 1022(206-NA) 10/11 206(110-NA) 0 NA NA

Stage
Stage I 41/121 2090(1625-NA) 43/256 NA 4/40 NA NA NA
Stage II 5/26 NA(1417-NA) 10/55 2830(2256-NA) 0/13 NA NA NA
Stage III 14/48 2830(2454-NA) 49/122 1724(1417-NA) 5/14 1610(885-NA) NA NA
Stage IV 9/44 NA(2299-NA) 64/81 578(445–1034) 5/5 709(431-NA) NA NA

Tumor status
With tumor 20/78 1238(932–1625) 109/157 1034(845–1371) 8/13 1610(709-NA) NA NA
Tumor free 48/155 NA(2830-NA) 51/341 NA 5/52 NA NA NA
Unknown 1/6 1964(1075-NA) 6/16 1964(953-NA) 1/7 NA NA NA

CI = confidence interval.

Table 2

Clinical factor log-rank and multivariate Cox regression test.

Clinical factors Log-rank HR (95% CI) Multivariate P value HR (95% CI)

Age: >60 vs �60 0.025
∗

1.72 (1.06–2.78) .109 1.48 (0.92–2.40)
Sex: female vs male 0.858 0.95 (0.57–1.59)
Grade
G3–4 vs G1–2 2.36e-4

∗
2.95 (1.61–5.39) .012

∗
2.20 (1.18–4.08)

Adjuvant treatment: yes vs no 0.275 1.89 (0.59–6.03)
Laterality
Right vs left 0.129 0.69 (0.43–1.12)
T stage
T3–4 vs TO–2 4.6e-7

∗
3.27 (2.00–5.31) .0001

∗
2.68 (1.62–4.41)

Stage II vs stage I 0.585 0.76 (0.30–1.93)
Stage III vs stage I 0.631 0.86 (0.46–1.58)
Stage IV vs stage I 0.296 0.66 (0.32–1.36)

Tumor status
With tumor vs tumor free 0.481 0.93 (0.49–1.40)

CI = confidence interval, HR = hazard ratio.
∗
Log-rank test showed significant difference.
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Table 3

List of high- and low-risk candidate genes by Cox regression analysis with clear cell renal cell carcinoma (n=239).

Gene symbol HR (univariate) 95% CI P HR (multivariate) 95% CI P Description

Risky genes
INTS8 3.708 (2.508–5.483) 5.15E-11 2.363 (0.904–6.170) .079 Integrator complex subunit 8
GTPBP2 2.916 (2.274–3.739) 0 2.179 (0.941–5.043) .069 GTP-binding protein 2

Protective genes
ANK3 0.716 (0.658–0.778) 6.44E-15 0.770 (0.601–0.987) .039 Ankyrin-3
SLC16A12 0.792 (0.749–0.839) 8.88E-16 0.864 (0.728–1.025) .093 Monocarboxylate transporter 12
LIMCH1 0.559 (0.477–0.655) 6.60E-13 0.451 (0.291–0.698) .0003 LIM and calponin homology

domains–containing protein 1
Hsa-mir-374a 0.623 (0.393–0.988) .044 0.506 (0.289–0.885) .017

CI = confidence interval, HR = hazard ratio.

Chang et al. Medicine (2018) 97:44 Medicine
study. Another part contained all ccRCC patients (n=510).
The gene expression array contained other ccRCC patients
(n=72). All ccRCC cohorts in TCGA data were downloaded
from Cancer browser (https://xenabrowser.net/datapages/)
which is built by UCSC. In addition, the samples in
Figure 1. The integrative model for predicting outcome of clear cell renal cell carcino
index (PI) value is as a sign for classification ccRCC patients into low-risk and high
low-risk and high-risk groups. D, Receiver operating characteristic (ROC) curve for
HR =hazard ratio.

4

gene expression array has little overlap in training data
samples (overlap n=5). Thus, the microarray data can be
used as an independent dataset. In addition, GSE22451
is an independent dataset which downloads from GEO
database.
ma (ccRCC) in the cancer genome atlas (TCGA) cohort. A, Median of prognosis
-risk groups. B, The heatmap of 6 RNAs in 329 patients. C, Survival analysis of
estimating the effect of PI for classification of patients. CI = confidence interval,

https://xenabrowser.net/datapages/


[31]

Figure 2. The integrative model for predicting outcome of clear cell renal cell carcinoma (ccRCC) in gene expression omnibus (GEO) cohort. A, Survival analysis of
low-risk and high-risk groups in GEO dataset. B, Receiver operating characteristic (ROC) curve for estimating the effect of prognosis index (PI) for classification of
patients. CI = confidence interval, HR =hazard ratio.
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2.9. Estimating performance of the models

The ability and efficiency of each model to predict ccRCC patient
outcome was estimated by calculating the area under the curve
(AUC) of the receiver operating characteristic (ROC), which was
conducted using the survival ROC package in R software.
Another indicator called concordance index (C-index) was
conducted using “Hmisc” package.
2.10. MicroRNA target predicting

Many computational prediction approaches are available recently
such as TargetScan, miRanda, PicTar, TarBase, RNAHybrid, etc,
which are mostly based on complementarity, thermodynamics, or
Table 4

The published 3 prognostic gene signature models of clear cell
renal cell carcinoma.

Gene symbol Coef HR Description

Yao et al, 2008 model
VCAM1 �0.095 0.909 Vascular cell adhesion protein 1
EDNRB �0.229 0.796 Endothelin receptor type B
RGS4 �0.181 0.834 Regulator of G-protein signaling 4

Zhan et al, 2015 model
CKAP4 0.422 1.525 Cytoskeleton-associated protein 4
SLC40A1 �0.369 0.691 Solute carrier family 40 member 1
OTOF 0.330 1.391 Otoferlin
MAN2A2 0.551 1.735 Alpha-mannosidase 2x
ISPD �0.443 0.642 D-ribitol-5-phosphate

cytidylyltransferase
Boguslawska et al, 2015 model
COL1A1 0.230 1.7 Collagen alpha-1(I) chain
COL5A1 0.279 1.9 Collagen alpha-1(V) chain
COL11A1 0.258 1.81 Collagen alpha-1(XI) chain
FN1 0.152 1.42 Fibronectin
THBS2 0.170 1.48 THBS2
ICAM1 0.248 1.77 Intercellular adhesion molecule 1
ITGAM 0.146 1.4 Integrin alpha-M
ITGAL 0.057 1.14 Integrin alpha-L
TIMP1 0.407 2.55 Metalloproteinase inhibitor 1
ITGB2 0.100 1.26 Integrin beta-2

HR = hazard ratio.

5

experimental validation. In this study, TargetScan (Release 7.1)
(http://www.targetscan.org/) and miRanda (Release 19) (http://
www.microrna.org/) methods were employed to predict target.[32]

Moreover, TargetScan and miRanda tool were used considering
both conserved and nonconserved targets.

2.11. Gene regulation network and Gene Ontology
enrichment

Each gene signature model contains a very small number of genes.
It is difficult to enrich pathway through Gene Ontology (GO)
analysis. Thus, the transcription factor (TF) of each gene in gene
signature model is to predict and combines them to analyze to
ClusterProfiler for GO analysis.[33] TF target genes were identified
using the approach developed by Kathrin et al,[34] via defining the
±1000bp sequence around transcription start sites as the promoter
region. The genes with promoter regions completely overlapped
with TF binding sites were considered as TF targets. To further
enhance the reliability of TF,we calculated the correlation between
predicted TF and target genes in TCGA dataset. Pearson
correlation was used to estimate the relation between TFs and
targets. Generally, TFs were considered to promote the expression
of their targets. So, TFs expressions have positive correlationswith
their target genes (r>0.3), and visualization of regulation network
is used by Cytoscape software (version 3.5.1).[35]
3. Result

3.1. Demographic and clinical factors

In this study, 4 gene signature models were validated in 4
datasets, and baseline information of patients with ccRCC is
listed in Table 1. The cohorts include 329 samples that both
including miRNAs and mRNAs expression is used to train
prognostic model. Others were employed to testing datasets. Of
these datasets, TCGA with Agilent G450 platform was
considered as an independent dataset which has little intersection
from TCGA with Illumina Hiseq platform. For identification
RNAs that significantly associated with overall survival (OS), the
clinical factors of training dataset (329 samples) were analyzed.
Eight clinical factors were assayed by univariate survival analysis
(the 2-sided log-rank test), including age at initial diagnosis, sex,

http://www.targetscan.org/
http://www.microrna.org/
http://www.microrna.org/
http://www.md-journal.com


Figure 3. correlation analysis of 3 indicators. A, The correlation of 3 indicators in integrated model. B, The correlation of three indicators in Yao model. C, The
correlation of 3 indicators in Zhan model. D, The correlation of 3 indicators in Boguslawska model. AUC = area under the curve, HR = hazard ratio.
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grade, adjuvant treatment, laterality, T stage, Topography,
LymphNode andMetastasis (TNM) stage, and tumor status. The
results of log-rank test showed that age, grade, and T stage were
significantly associated with OS in ccRCC. Multivariate Cox
regression analysis of these factors suggested that grade and T
stage were independent factors correlated with OS (Table 2).
3.2. Integrative miRNA and mRNA model in TCGA ccRCC

With LASSO combined multivariate Cox regression, 6 RNAs
were obtained, and the result is listed in Table 3. Of these 6
RNAs, 3 mRNA and 1 miRNA were protective RNAS (HRs<1)
and the other 2 mRNAs were risky RNAs (HRs>1), and the
6

coefficient of multivariate Cox regression is applied to calculate
PI for ccRCC.
As a linear combination of the expression values of 6 RNAs,

the PI was significantly associated with OS in ccRCC [HR=7.13,
95% confidence interval (CI)=3.71–13.70, P< .001]. The HR of
PI was greater than HRs of grade (HR=2.20, 95% CI=1.18–
4.08, P= .012) or T stage (HR=2.68, 95% CI=1.62–4.41,
P< .001). The patients with ccRCC were ranked by PI value
(Fig. 1A). The median of PI value as threshold can classify
patients into high-risk group and low-risk group. The result
showed that the gene signature can significantly classify survival
time of ccRCC patients (Fig. 1B). The survival time of high-risk
group is significant shorter than low-risk by log-rank test



Figure 4. Box plot of 3 indicators [hazard ratio (HR), C-index, AUC) in different datasets. A, Box plot of HRs from 4 models distribute in different datasets. B, Box
plot of C-indexes from 4 models distribute in different datasets. C, Box plot of AUCs from 4 models distribute in different datasets. AUC = area under the curve.
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(P< .001). The identified RNA expressions in high-risk and low-
risk are listed in Figure 1C, and the value of AUC=0.748
(3 years) demonstrated that the model performed well in
predicting prognosis of ccRCC (Fig. 1D).

3.3. Validating the result in independent dataset

For validation of the result, the GSE22541 dataset is employed to
be an independent data to test above result. The dataset contains
24 primary ccRCC tumor and disease-free survival (DFS) time of
patients. Although this data set does not have OS time, DFS data
can also reflect patient outcomes. We just employed mRNA data
to validate the results due to lack of microRNA data. The
validation result is shown in Figure 2.
From Figure 2, we find that 5 mRNAs can significantly classify

2 groups into high-risk and low-risk (P= .03). The PI was
significantly associated with DFS in independent data of ccRCC
(HR=2.77, 95% CI=1.07–7.71). The value of AUC=0.762 (3
years) also indicated that the model performed well. Above
results demonstrated that the integrative model could effectively
classify patients.
3.4. Other gene signature of ccRCC performance in 4
datasets

For further validation the result, we tested the model in other
ccRCC data in TCGA. Moreover, we also validate the other 3
models in 4 data sets. These 3 gene signature models that were
published previously are listed in Table 4.
7

For estimating the performance of various gene signature
models, 3 indicators (HR, C-index, and AUC) of prognostic
models need to be calculated. These 3 indicators were analyzed
correlation in each other. Thus, the relationship of these 3
indicators in 4 models was assayed (Fig. 3).
The 3 indicators of Boguslawska model showed the strongest

collinearity (Fig. 3D). The collinearity represented the model has
good generalization ability. In addition, 1 value of HR in our
study is missing. The integrate model from our study showed null
value in TCGA_GA450 dataset. Because low-risk group that
classified by integrate model has no end event occurs.
For testing performance of gene signature models, the box plot

was employed to test the variation among indicators. Therefore,
we consider 3 indicators (HR, C-index, and AUC) to evaluate the
effect of all models in the 4 datasets (Fig. 4). These 3 indicators
usually indicate the capacity of model prediction and high level of
these indicators represents better performance of the model. The
box plot also indicated the dispersion of gene signature models in
different data sets. The results showed that the integrate model
from our work had higher HR, C-index, and AUC among all
datasets.

3.5. Gene Ontology enrichment of 4 gene signature
models

The results in Figure 4 show that 3 indicators of the integrated
model were higher than those of other models. Thus, we try to
analyze the GO enrichment and pathways in which these models
involved in. Of these gene signature models, the number of genes

http://www.md-journal.com


Figure 5. The gene regulation network of 4 gene signature models. The red blocks represent transcription factor (TF) and blue blocks represent target (genes in
each gene signature). A, The gene regulation network and pathway analysis of integrate model in the cancer genome atlas (TCGA) dataset. B, The gene regulation
network and pathway analysis of Zhan et al model in TCGA dataset. C, The gene regulation network and pathway analysis of Yao et al model in TCGA dataset. D,
The gene regulation network and pathway analysis of Boguslawska et al model in TCGA dataset.

Chang et al. Medicine (2018) 97:44 Medicine
in a gene signature model is so small that it is difficult to enrich in
GO analysis. Therefore, TF of these genes in gene signature was
involved in pathway analysis. The regulation network of TF and
genes was constructed by method section (Fig. 5). The integrate
gene signature model from our work showed that 4 genes were
regulated by 13 TFs (Fig. 5A). The width of lines represented the
weighted of regulation by correlation coefficient of their
expression level. Regulation network of other gene signature
models are listed in Figure 5B, C, and D, respectively. The results
showed that these genes shared some common TFs such as
STAT4, ETS1, and FOXP3.
For further investigating the GO enrichment and pathway of

these genes and TFs, ClusterProfiler package was employed to
analyze 4 models. The above package can compare the results of
biological process, cellular component, molecular function, and
KEGG pathway in 4 models (Fig. 6). The results of biological
process suggested that the 4 gene signature models share many
similar processes (Fig. 6A). The molecular function of these gene
8

signature models showed that integrate model was similar to
model of Boguslawska. And model of Zhan was similar to model
of Yao (Fig. 6B). The molecular function enrichment showed that
4 models were very similar (Fig. 6C). In KEGG pathway, the
comparison results showed that the integrative model is involved
in more cancer-associated pathways (Fig. 6D). The model of
Boguslawska et al showed very complex and mainly involved in
many signaling pathways associated with cancer. Although these
gene signature models and TFs are very different, the biological
process and pathways were very similar.

4. Discussion

Our present study combined LASSO and multivariate Cox
regression to calculate a prognostic gene signature model from
integrative microRNA and mRNA expression of TCGA dataset.
The other platform of TCGA and GEO dataset as validation
datasets were employed to validate the results. Previous study has



Figure 6. Gene Ontology (GO) and KEGG pathway enrichment comparison in 4 models. A, Biological process enrichment comparison in 4 models. B, Cellular
component enrichment comparison in 4 models. C, Molecular function enrichment comparison in 4 models. D, KEGG pathways enrichment comparison
in 4 models.
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provided many biomarkers for predicting prognosis of ccRCC. In
this study, we proposed 5 mRNAs and 1 microRNA (INTS8,
GTPBP2, ANK3, SLC16A12, LIMCH1, and hsa-mir-374a) as
robust gene signature model that could effectively predict the
prognosis for ccRCC. In addition, we also found a regulation pair
of hsa-mir-374a and ANK3 from TargetScan.
Of these genes, INTS8, ANK3, and LIMCH1 indicated that

they are associated with renal cancer by previous publication.[36–
38] To the best of our knowledge, we did not find the GTPBP2
and SLC16A12 associatedwith kidney cancer. Although the gene
hsa-mir-374a is associated with cancer in many reports, there is
no study on ccRCC. Previous studies have shown that hsa-mir-
374a (HR=0.64, 95% CI: 0.48–0.86) can reduce the risk of
colorectal cancer.[39] Our findings in kidney cancer also showed
similar results (HR=0.51, 95% CI: 0.29–0.89), so we hypothe-
sized that hsa-mir-374a could reduce the risk of death. These 6-
gene signatures showed robust ability in predicting prognosis of
ccRCC.
Generally, gene signature prediction for prognosis mainly

derived from Cox regression. However, different data preprocess
and steps for Cox regression might lead to different results. This
study combined the genes with differential expression, univariate
Cox regression, LASSO, and multivariate Cox regression method
9

to obtain gene signature for prognosis of ccRCC. In addition, 3
indictors including HR, C-index, and value of AUC were
employed to estimate all models in systems level (Fig. 5). The
results showed that the integrate model had more advantages
than others.
Although our results show more advantages, it does not mean

that other models are not good. Among the various gene
signature models previously proposed, prognosis is thought to be
predictive. In fact, different gene signature has similar pathway
and its own special function. The similar pathways are possible to
perform similar functions that affect prognosis. The different
pathways may represent the heterogeneity of ccRCC.
In the work, the integrate model mainly involved in viral

infection and inflammatory bowel disease (IBD)-related path-
ways. From literature review, there are few reports about viral
infection associated with ccRCC. However, there are many
reports about the relationship between IBD and renal can-
cer[40,41]. Although this work could not reveal the relationship
between IBD and prognosis of ccRCC, the result might provide a
new insight for further study about the ccRCC.
In addition, the gene expression data and clinical data of

available ccRCC are very limited, which results in difficulty to
further verify. We just used different platforms of TCGA dataset
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and GEO dataset as independent datasets for training and
validation. For further validation of different, we test other 3 gene
signature models (from Cox regression method) in different
datasets. Moreover, the integrate model indeed showed greater
stability and versatility in the TCGA and GSE22541 datasets.
Despite the limited data available, the data we obtained may

have bias. However, the gene markers obtained by LASSO
coupled multivariate Cox regression are indeed more stable in
various public databases. In this study, we propose the
optimization steps for analyzing gene prognostic markers by
Cox regression. In addition, when gene markers are too scarce to
enrich their functions by GO analysis, we can further analyze GO
functional enrichment by predicting their TFs. We expect to find
more and more stable genetic markers by this way to provide a
more scientific reference for drug development and clinical
decision-making.
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