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A B S T R A C T   

Background: A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to 
fight COVID-19. 
Methods: In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) 
combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular 
dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are 
computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an un-
balanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the 
results of the random walks are taken as the input of Laplacian regularized least squares to compute the asso-
ciation score for each virus-drug pair. Fourth, the final associations are characterized by integrating the pre-
dictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics 
simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the 
predicted results. 
Results: In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, 
LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction 
performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular 
docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 
drugs. 
Conclusions: Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, 
and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may 
contribute to preventing COVID-19 transmission.   

1. Introduction 

1.1. Background 

In December 2019, a new coronavirus disease named COVID-19 by 
the World Health Organization broke out in Wuhan, China. COVID-19 is 
caused by an unknown coronavirus called severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2). As of May 13, 2021, COVID-19 
had a cumulative total of 159,949,065 confirmed cases with over 
3,322,439 deaths [1]. With the continuing threat of SARS-CoV-2 to 
global health, it is urgent to develop effective prevention and treatment 
strategies for SARS-CoV-2 transmission [2–7]. 

Although pharmaceutical companies have invested enormous money 
and time in drug research and development over the past two decades, 
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the number of new chemical entity drugs approved by the FDA is still 
relatively limited every year. Drug repositioning, applied to reposition 
an existing active pharmaceutical ingredient for a new indication, helps 
to reduce the attrition experienced in the process of new drug discovery 
[8,9]. Therefore, drug repositioning has been a research hotspot in drug 
discovery. It is unrealistic to find therapeutic options for COVID-19 
patients by experimental methods under such an urgent situation. 
Subsequently, systematic identification of anti-SARS-CoV-2 drugs by 
repositioning FDA-approved drugs offers an effective way to find 
possible pharmaceutical ingredients for COVID-19 [10,11]. 

However, due to a lack of knowledge of complete drug-target in-
teractions, designing promising and affordable methods for the effective 
treatment of COVID-19 is challenging. SARS-COV-2 is a new single- 
stranded RNA virus [12] and has high homology with severe acute 
respiratory syndrome coronavirus (SARS-CoV) and Middle East respi-
ratory syndrome coronavirus (MERS-CoV) [13,14]. In addition, the 
spike (S) protein and host angiotensin-converting enzyme 2 (ACE2) have 
been recognized as two target proteins of COVID-19 in clinical trials 
[15]. The above knowledge provides clues for repositioning available 
drugs for COVID-19 [15–17]. 

1.2. Related work 

1.2.1. Initial screening of potential antifungal drugs for COVID-19 
Potential drugs against COVID-19 can be roughly divided into three 

main categories: antifungal drugs, antibacterial drugs, and antiviral 
drugs [18]. Roudbary et al. [19] and salehi et al. [20] observed that 
patients with COVID-19 infection are still extremely susceptible to 
fungal or bacterial infections. Chen et al. [21] found fungals related to 
co-infections in COVID-19, such as Aspergillus spp., Candida albicans, 
Candida dubliniensis, Candida glabrata, Candida krusei, Candida tropi-
calis, and Candida parapsilosis sensu stricto. Roudbary et al. [19] re-
ported that fungals including aspergillosis, candidemia, Histoplasma 
spp., Rhizopus spp., Mucor spp., Cryptococcus spp. have been increas-
ingly associated with COVID-19 co-infections caused by opportunistic 
fungal diseases. Therefore, new antifungal drug screening is currently 
urgently needed among COVID-19 patients [22,23]. Song et al. [24] 
provided a clinical diagram to help clinicians and laboratory experts 
manage aspergillosis, candidiasis, cryptococcosis, and mucormycosis in 
COVID-19 patients. Mohamed et al. [25] revealed that itraconazole, an 
antifungal drug, is one of the best-documented multi-target drugs. 

1.2.2. Initial screening of potential antibacterial drugs for COVID-19 
A bacterium plays an important role in various environments [26]. In 

COVID-19, bacterial co-pathogens are observed to be co-infectious and 
drastically increase morbidity and mortality rates [27]. Rawson et al. 
[28] reported that a few COVID-19 patients have been co-infected by 
bacteria, such as Acinetobacter baumannii, Escherichia coli, Haemophi-
lus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphy-
lococcus aureus, and Streptococcus pneumoniae. Biosurfactants 
generated by bacterial species have wide antimicrobial activity, 
biocompatibility, biodegradability, low toxicity and better interfacial 
activity than traditionally produced chemical surfactants [26,29]. Has-
san Mahmoudi [30] obtained blood cultures and endotracheal aspirates 
from COVID-19 patients based on a cross-sectional study and confirmed 
the bacterial isolates. They identified bacteria isolated through blood 
culture and endotracheal aspirate, for example, Enterobacter species 5, 
Escherichia coli 7, Klebsiella species 11, methicillin-resistant Staphylo-
coccus aureus 6, methicillin-sensitive Staphylococcus aureus 9, Pseudo-
monas aeruginosa 4, and Streptococcus pneumoniae 1. Li et al. [31] 
revealed that secondary bacterial infection is one of the main compli-
cations in COVID-19 patients with high mortality. They found that 
Gram-negative bacteria (especially A. baumannii and K. pneumoniae) are 
the main bacteria. Thus, precise application of antibacterial drugs con-
stitutes a promising alternative to COVID-19 patients with secondary 
bacterial infection [29,31,32]. Several works are dedicated to finding 

antimicrobial compounds produced by bacterial species to prevent the 
continuing transmission of COVID-19. Narendrakumar et al. [33] pre-
sented that doxycycline can inhibit bacterial protein synthesis and 
shows antibacterial activity in COVID-19 [33]. Pan et al. [34] reported 
that Shuanghuanglian, an antiviral and antibacterial compound, has 
been applied to COVID-19 treatment in China. 

1.2.3. Initial screening of potential antiviral drugs for COVID-19 
To accelerate drug discovery of COVID-19, multiple computational 

models were presented to assist in finding antiviral drugs by drug 
repositioning. Currently, computational drug-repurposing methods for 
initially screening anti-COVID-19 drugs can be roughly classified into 
structure-based approaches, machine learning-based approaches, and 
network-based approaches. Structure-based approaches [35–38] aim to 
understand the binding mechanism of compounds with the targets of 
COVID-19 mainly by molecular docking, Molecular Dynamic Simula-
tions (MDS) and binding energy computation. 

Machine learning-based methods mainly use machine learning 
models, especially deep learning models, to fight COVID-19 effects. 
BenevolentAI [39] extracted numerous structured medical information 
from recent reports by machine learning and predicted that baricitinib 
may be therapeutic strategy for COVID-19. Ge et al. [5] developed a 
data-driven drug repurposing framework integrating machine learning 
models and statistical analysis approaches to find possible drugs against 
SARS-CoV-2. Ray et al. [40] used a variational graph autoencoder to 
fight COVID-19. Ke et al. [41] developed a deep learning method to 
search available compounds effective against coronaviruses. Beck et al. 
[42] proposed a previously trained deep learning model called molecule 
transformer-drug-target interactions to find commercially available 
antiviral drugs against COVID-19. Although machine learning re-
searchers have been very active in their efforts to prevent COVID-19 
infections, few studies have concerned drug repositioning. More 
importantly, only few studies have been accepted for publication or are 
available online in a journal although their applications against 
COVID-19 have become publicly available [43]. 

Network-based methods computed biological similarity between 
drugs, viruses, targets and proposed network propagation algorithms to 
find therapeutic strategies for COVID-19. Gysi et al. [44] developed a 
graph neural network-based method and identified 81 potential repo-
sitioning candidates associated with SARS-CoV-2. Peng et al. [45] con-
structed a single-stranded RNA Virus-Drug Association (VDA) dataset 
and developed a bipartite local model to find potential treatments for 
COVID-19. Zhou et al. [46] designed a KATZ measurement for predict-
ing therapeutic agents of COVID-19. Following by the above methods, 
Peng et al. [47] constructed three VDA datasets and developed a random 
walk with restart to discover potential antiviral drugs. The above 
methods effectively combined network-based drug repositioning, mo-
lecular docking, and document retrieval and are state-of-the-art virus--
drug association prediction methods. 

1.2.4. Molecular docking and dynamics simulation 
To design novel inhibitors for various diseases, computational 

methods such molecular docking and MDS have been broadly carried 
out [48,49]. Molecular docking is a powerful technique widely applied 
to model the interactions between ligands and target proteins at the 
atomic level [50]. We can characterize the behavior of ligands binding 
to target proteins and elucidate fundamental biochemical processes 
through molecular docking. Molecular docking contains two basic steps: 
prediction of the ligand conformation and its position within binding 
sites and computation of the ligand-protein binding affinity. A higher 
binding energy shows more stable ligand-protein binding capability. 
Similarly, the binding affinity between chemical agents and the S pro-
tein/human ACE2 can be computed by molecular docking [51]. For 
example, Thillainayagam et al. [52] revealed the anti-malarial feature of 
quinolinyl chalcone derivatives by molecular docking, 
three-dimensional QSAR, and comparative molecular field analysis. 
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MDS has been used to confirm ligand-protein stable interactions 
[53]. For example, by molecular docking and MDS, Thillainayagam 
et al. [48] studied the inhibitory action of epoxyazadiradione on ma-
laria. Ragunathan [54] et al. reported that FtsA is a cidal target of 
Staphylococcus aureus. Ragunathan et al. [55] found that quercetin may 
be a stable inhibitor of Murb. More importantly, Basu et al. [53] iden-
tified a new cyclohexanone compound, ZINC07333416, that has crucial 
associations with most active-site residues of the SARS-CoV-2 main 
protease by molecular docking and confirmed these associations 
through MDS. 

1.3. Study contributions 

In this study, we developed a VDA prediction model (VDA-RWLRLS) 
based on biological information of viruses and drugs, unbalanced bi- 
Random Walks, Laplacian Regularized Least Squares (LRLS), molecu-
lar docking, and MDS. This study has four main contributions:  

● The unbalanced bi-random walk algorithm is designed to globally 
exploit the weighted circular bigraphs in the virus network and the 
drug network.  

● LRLS is presented to iteratively score each virus-drug pair.  
● Viral sequences, drug chemical structures, and VDA information are 

utilized to integrate the biological features of the viruses and drugs.  
● Molecular docking and MDS are applied to validate the inferred anti- 

SARS-CoV-2 drugs. 

2. Materials and methods 

2.1. Experimental data 

2.1.1 drug. Virus- association 
In this study, we use three VDA datasets provided by Peng et al. [47]. 

Dataset 1 was provided by Zhou et al. [46] and contains 96 confirmed 
VDAs between 12 human RNA viruses, including SARS-CoV-2, and 78 
small molecules. Dataset 2 was obtained by manually retrieving recent 
documents based on the text mining technique and contains 770 
confirmed VDAs between 69 viruses and 128 small molecules. Dataset 3 
was constructed by preprocessing VDA data from the Drug Virus.info 
database [56] and consists of 407 known VDAs from 34 viruses and 203 
chemical agents. The details are shown in Table 1. 

A VDA matrix is represented as X(n×m) (n and m are the number of 
viruses and drugs, respectively), where xij = 1 if the i-th virus vi asso-
ciates with the j-th drug dj and xij = 0 otherwise. The adjacency matrix of 
a VDA network is represented as Y(n×m) with the element yij by Eq. (1): 

yij =

⎧
⎪⎪⎨

⎪⎪⎩

1
/

96 if vi associates with dj in dataset 1
1
/

770 if vi associates with dj in dataset 2
1
/

407 if vi associates with dj in dataset 3
0 otherwise

(1)  

2.1.2. Drug chemical structure similarity 
Based on the assumption that two drugs sharing more chemical 

substructures are more similar [57], drug chemical structure similarity 
can be calculated. Chemical substructures were first downloaded from 
the DrugBank database [58]. An open-source cheminformatics software, 
RDKit [59], is then applied to compute extended connectivity finger-
prints [60] of drugs based on their chemical substructures. Finally the 

drug chemical structure similarity matrix Sd was calculated based on the 
extended connectivity fingerprints. 

2.1.3. Virus sequence similarity 
The complete genomic sequences of viruses were obtained from the 

NCBI database [61], and the virus sequence similarity matrix Sv was 
computed based on MAFFT [62], a multiple sequence alignment 
software. 

2.2. Methods 

2.2.1. Problem description 
A heterogeneous virus-drug network is comprised of a virus simi-

larity network, a drug similarity network and VDA data. Let V(n×n), 
D(m×m) and Y(n×m) denote the affinity matrices of the virus similarity 
network, drug similarity network, and VDA network, respectively. The 
virus similarity network is constructed by using viruses as vertices, 
virus-virus similarities as edges, and similarity between two viruses as 
the weight of their linked edge. Similarly, a drug similarity network is 
built. The VDA network is the constructed VDA matrix. Our objective is 
to find missing VDAs on the heterogeneous network by reconstructing 
an association matrix P(n×m). 

2.2.2. Overview of VDA-RWLRLS 
In this study, we developed a VDA prediction framework, VDA- 

RWLRLS, based on various biological information, unbalanced bi- 
random walk, LRLS, molecular docking, and MDS. Fig. 1 shows the 
flowchart of VDA-RWLRLS. As shown in Fig. 1, the VDA-RWLRLS 
framework contains six main steps. (1) Similarity computation. Viral 
similarities are fused based on genomic sequences and Gaussian asso-
ciation profiles. Drug similarities are integrated based on chemical 
structures and Gaussian association profiles. (2) Label propagation. An 
unbalanced bi-random walk is designed to propagate association labels 
based on the left random walk on the virus network and the right 
random walk on the drug network. (3) Virus-drug association proba-
bility computation. LRLS is applied to compute association probabilities 
for unknown virus-drug pairs based on the results obtained from un-
balanced bi-random walks. The prediction scores from the virus network 
and the drug network are averaged as the results at the current iteration. 
(4) Iteratively updating. Steps (2) and (3) are iteratively updated t times 
and the final predicted association scores (Pt) are computed. (5) Mo-
lecular docking. Molecular docking was employed to measure the 
binding abilities between the predicted top anti-SARS-CoV-2 drugs and 
the crystal structure of the S protein-binding domain bound to human 
ACE2. (6) MDS. MDS was used to evaluate the interaction-dynamics of 
the predicted possible anti-COVID-19 drug-target proteins of the COVID- 
19 complex. 

2.2.3. Gaussian association profile kernel similarity 
Considering that any two viruses associated with more common 

drugs could tend to share higher similarity, we utilize Gaussian Asso-
ciation Profile Kernels (GAPK) [63] to compute virus and drug GAPK 
similarity matrices. The association profile of a virus vi, denoted as IP(vi) 
(the i-th row of Y), describes the relationship between virus vi and all 
observed drugs. For two viruses vi and vj, their GAPK similarity Kv is 
computed by Eq. (2). 

Kv
(
vi, vj

)
= exp

(
− γv

⃒
⃒
⃒
⃒IP(vi) − IP

(
vj
)⃒
⃒
⃒
⃒ 2
)

γv = γ’
v

/(
1
n

∑n

i=1
||IP(vi)||

2

) (2)  

where γ′

v is the bandwidth parameter. Similarly, drug GAPK similarity 
can be defined by Eq. (3). 

Table 1 
The description of virus-drug association datasets.  

Dataset Virus Drugs VDAs 

Dataset 1 12 78 96 
Dataset 2 69 128 770 
Dataset 3 34 203 407  
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Kd
(
di, dj

)
= exp

(
− γd

⃒
⃒
⃒
⃒IP(di) − IP

(
dj
)⃒
⃒
⃒
⃒ 2
)

γd = γ’
d

/(
1
m

⃒
⃒
⃒

⃒
⃒
⃒
∑m

i=1

IP(di)||
2

) (3)  

where γ′

d is the bandwidth parameter. IP(dj) is the j-th column of Y and 
represents the correlation between drug dj and all observed viruses. 

Sequence similarity and GAPK similarity are integrated to measure virus 
similarity by Eq. (4). 

V = λv ∗ Sv + (1 − λv) ∗ Kv (4) 

Similarly, the fused drug similarity can be calculated by Eq. (5). 

D = λd ∗ Sd + (1 − λd) ∗ Kd (5) 

Fig. 1. The flowchart of VDA prediction based on an unbalanced bi-random walk, LRLS, molecular docking, and MDS (VDA-RWLRLS).  
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2.2.4. Balanced random walk 
Suppose that a circular bigraph is represented as a subgraph 

comprised of a virus path and a drug path with two ends connected by 
two VDAs (v1, d1) and (vn, dm). The circular bigraph denotes a vicinity 
relationship between two VDAs (v1, d1) and (vn, dm) by generalizing the 
similarity between v1 and vn, and one between d1 and dm. The smallest 
circular bigraph can be represented based on the “guilt-by-association” 
principle:  

● The triangle with one virus and two drugs follows the assumption 
that similar drugs may be applied to the same disease.  

● The rectangle with two viruses and two drugs follows the assumption 
that virus vi tends to associate with drug dm when virus vj associates 
with drug dn, vi is similar to vj and dm is similar to dn.  

● The triangle with two viruses and one drug follows the assumption 
that diseases caused by similar viruses may be treated by the same 
drug. 

A Balanced Bi-Random Walk method (VDA-BiRW) is designed to 
identify potential VDAs by investigating circular bigraphs with high 
frequency in a VDA network. By multiplying V on the left and D on the 
right, VDA-BiRW iteratively extends the virus path and the drug path to 
identify the circular bigraphs by Eq. (6). 

Pt = αV⋅Pt− 1⋅D + (1 − α)Y (6) 

In Eq. (6), both Y and P are normalized to make the sum of all ele-
ments 1. Initially, P0 is equal to Y. The known VDA matrix Y is inte-
grated to balance the bi-random walk and the prior knowledge. 
Parameter α ∈ (0, 1) has two functions: (I) Decreasing the importance of 
a circular bigraph when the path is getting longer. (II) Balancing po-
tential VDAs and known VDAs. Successive matrix multiplication 

(
V(n×n)⋅ 

P(n×m)⋅D(m×m)

)
is used to implement mimic jumps on the virus network, 

the drug network, and the VDA network. In the first walking, the (i, j)-th 
element in the matrix (V⋅P⋅D)(i,j) denotes the number of circular bigraphs 
obtained by linking the i-th target virus with the path length of 1 to the j- 
th candidate drug with the path length of 1. When α = 1, after t steps of 
successive multiplication (V…(V(V⋅P⋅D)D )…D ) = VtPDt, we can find 
circular bigraphs with a path length of t. 

2.2.5. Unbalanced Bi-random walk 
Theoretically, the above balanced random walk model can converge 

to a unique solution. However, circular bigraphs with small path lengths 
are more informative for VDA identification. In particular, circular 
bigraphs with long path lengths could result in false positives. More 
importantly, the virus similarity network and the drug similarity 
network contain different topological structures, and thus the optimal 
walking step size could be different in the process of random walk on the 
two networks. Therefore, we develop an unbalanced bi-random walk- 
based VDA prediction method by introducing two parameters (l, r) as the 
maximal iteration numbers on the left and right random walks on the 
two networks, respectively: 

Pt
v = αV⋅P(t− 1) +

(
1 − α

)
Y for t = l (7)  

Pt
d = αP(t− 1)⋅D + (1 − α)Y for t = r (8)  

where Eqs. (7) and (8) denote the left random walk with the step size of l 
on the virus network, and the right random walk with the step size of r 
on the drug network, respectively. At each step, virus similarity is in-
tegrated to the left random walk by multiplying V on the left of Eq. (7). 
Similarly, drug similarity is integrated by Eq. (8). 

2.2.6. Laplacian Regularized Least Squares 
In the unbalanced bi-random walk algorithm, the jump condition 

depends on the computed similarity matrices and known VDAs. For a 

given node in a VDA network, if there exist two nodes that have the same 
similarity with the given node, the two nodes will equally contribute to 
the direction of the jump. However, the node with relatively smaller 
similarities with the other nodes may have more contribution. There-
fore, LRLS [64] is introduced to solve the above problem. First, the virus 
Laplacian matrix LV and drug Laplacian matrix LD are normalized to 
measure the jump for each node by Eqs. (9) and (10). 

LV = (MV)
− 1/2

(MV − V)(MV)
− 1/2 (9)  

LD = (MD)
− 1/2

(MD − D)(MD)
− 1/2 (10)  

where MV and MD are the diagonal matrices of viruses and drugs whose 
elements MV(i, i) and MD(j, j) represent the summation of the i-th row of 
V and the j-th row of D, respectively. 

Second, the cost function in the virus space and the drug space can be 
defined to describe the minimum optimization problem based on Lap-
lacian matrices LV and LD by Eqs. (11) and (12), respectively: 

min
FV

[⃦
⃦YT − FV‖

2
F + ηV

⃦
⃦FV ⋅ LV ⋅ (FV)

T‖
2
F

]
(11)  

min
FD

[
||Y − FD||

2
F + ηD

⃦
⃦FD⋅LD⋅(FD)

T‖
2
F

]
(12)  

where ‖ ⋅‖F represents the Frobenius norm, (⋅)T denotes the transpose, 
and ηv and ηd are trade-off parameters. The above two models (11) and 
(12) can be solved by Eqs. (13) and (14), respectively: 

F∗
V = V(V + ηv⋅LV ⋅V)

− 1YT (13)  

F∗
D = D(D + ηd⋅LD⋅D)

− 1Y (14) 

To comprehensively consider the effect of unbalanced random walk 
on the prediction performance, we replace Y with association scores 
obtained from unbalanced random walks. Suppose that Eqs. (15) and 
(16) be defined as follows: 

FV = V(V + ηv⋅LV ⋅V)
− 1 (15)  

FD = D(D + ηd⋅LD⋅D)
− 1 (16) 

At the t-th walking, the corresponding models integrating unbal-
anced random walk and LRLS can be defined by Eqs. (17) and (18), 
respectively. 

Pt
v = FD⋅Pt

v (17)  

Pt
d = Pt

d⋅FV (18) 

Finally, VDA-RWLRLS computes the association probability for each 
virus-drug pair by integrating the interaction scores from the virus 
network and the drug network by Eq. (19): 

Pt =
1
2
(
Pt

v + Pt
d

)
(19)  

2.2.7. Molecular docking and dynamics simulation 
Molecular docking has been widely applied to measure the inter-

molecular binding affinity between one ligand-receptor pair. We 
implemented molecular docking to evaluate the binding abilities be-
tween the predicted anti-SARS-CoV-2 drugs and the S protein/human 
ACE2. Drug chemical structures can be obtained from the DrugBank 
database [58] and are represented based on the PDB format files. 
AutoDockTool is used to convert the PDB files into the pdbqt format files 
required by AutoDock 4. The structure of the S protein-binding domain 
bound to human ACE2 (PDB ID: 6M0J) was downloaded from the RCSB 
Protein Data Bank [65]. The predicted anti-SARS-CoV-2 compounds are 
used as ligands, and the binding domain of the S protein bound to human 
ACE2 is used as a receptor to implement molecular docking. 

We used PyMOL [66] to remove solvent and organic compounds. 
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Receptor atoms are set as the AD4 type and Gasteiger charges are 
computed before docking. Binding pockets are defined using AutoGrid 

4. The grid size is set as 126 × 126 × 126 with a spacing of 0.375A
̊
, and 

the grid center is placed at the area of the S protein-binding domain 
bounding with ACE2. AutoDock [67] is finally applied to molecular 
docking where the Lamarckian genetic approach with default parame-
ters [68] is used as the search algorithm. 

Basu et al. [53] employed MDS and evaluated the interaction dy-
namics of one ligand-protein complex for COVID-19. Inspired by MDS 
proposed by Basu et al. [53], we carried out MDS to analyze our pre-
dicted anti-SARS-CoV-2 drugs after molecular docking. We employ 
GROMACS 2021-2 for MDS with a Charmm36 force field [69]. First, we 
obtained topological files of ligands through CGENFF [63]. Second, we 
generated topological files of receptors by ignoring H atoms and using 
the tip 3-point for the water model based on gromacs. Third, the 
ligand-protein complex is placed in a dodecahedral box filled with 
simple point charge water, distance between the solvent and the box is 
set to 1 nm, and ions including Na or Cl are added to the solvation system 
to balance the charge. Fourth, the energy is minimized to the initial 
structure before simulation by the steepest descent minimization 
method. In the process, the iteration stop condition is set as the 
maximum force with less than 1000 kJ/mol nm− 1 and the maximum 
number of iterations is set as 50 000. Five, the solvents and ions around 
the complex are balanced. The process is divided into two stages: NVT 
(constant number of particles, constant volume, and constant tempera-
ture) and NPT (constant number of particles, constant pressure P, and 
constant temperature). In NVT stage, we set the target temperature to 
300 K and perform 100 ps simulation where unit time is set to 2 fs and 
the maximum number of iterations is set to 50 000. In the NPT stage, we 
use the same 100 ps balance, and the reference pressure is set to 1 bar. 
After balancing the density of the system, we conduct an MDS of 50 ns. 

3. Results 

3.1. Experimental setting 

We perform 5-fold Cross Validations (CVs) to investigate the per-
formance of our proposed VDA-RWLRLS method. 80% of the VDAs of Y 
were randomly extracted as the training set, and the remaining VDAs as 
testing set. Sensitivity, specificity, accuracy, F1 score, and AUC were 
used as evaluation metrics. Sensitivity and specificity denote the ability 
of a VDA identification model to correctly predict positive VDAs and 
negative VDAs, respectively. Accuracy denotes the ratio of the correctly 
predicted positive and negative VDAs to all known positive VDAs and 
screened negative VDAs. The F1 score is a harmonic mean between 
precision and recall. Precision is the ratio of the correctly predicted 
positive VDAs to all predicted positive VDAs. Recall is the same for 
sensitivity. Let TP, FP, TN, and FN indicate true positive, false positive, 
true negative, and false negative, respectively. The definitions of sensi-
tivity, specificity, accuracy, and F1 score are by Eqs. (20)-(25): 

sensitivity =
TP

TP + FN
(20)  

specificity =
TN

TN + FP
(21)  

accuracy =
TP + TN

TP + FP + TN + FN
(22)  

F1 − score =
2 ∗ precision ∗ recall

precision + recall
(23)  

where 

precision =
TP

TP + FP
(24)  

recall =
TP

TP + FN
(25) 

AUC is widely applied to evaluate the performance of a binary 
classifier. It denotes the area under the Receiver Operating Character-
istic (ROC) curve [70,71]. The ROC curve is a plot that characterizes the 
trade-off between sensitivity and (1-specificity) or between the true 
positive rate and false positive rate across a few cut-off points. Higher 
sensitivity, specificity, accuracy, F1 score and AUC indicate better per-
formance for VDA prediction models. In addition, the AUC is a more 
important measurement than the other four evaluation metrics. The 
experiments are repeated 20 times, and the final performance is ach-
ieved by averaging the results from 20 experiments. 

3.2. Parameter settings 

There are seven parameters used in VDA-RWLRLS: α, l, r, λv, λd, and 
γd/γv. The parameter α is used to control the importance between the 
predicted VDAs and known VDAs during random walks. l and r control 
the iteration steps on the left and right random walks, respectively. λv 
and λd measure the importance of Gaussian association profile similarity 
and virus sequence similarity/drug chemical structure similarity. γd and 
γv are bandwidth parameters. ηv and ηd are set as 0.01. We use grid 
search to obtain the optimal parameter combination. Table 2 shows the 
optimal parameter settings where VDA-RWLRLS computes the best 
performance. 

3.3. Comparison with six state-of-the-art methods 

The proposed VDA-RWLRLS method is compared with six VDA 
prediction methods (NGRHMDA [72], SMiR-NBI [73], LRLSHMDA [64], 
VDA-KATZ [46], VDA-RWR [47], and VDA-BiRW) on three VDA data-
sets. NGRHMDA is a recommendation-based microbe-disease associa-
tion prediction approach. SMiR-NBI is a network inference-based 
method applied to identify biomarkers of cancers. LRLSHMDA is an 
LRLS classifier with Gaussian interaction profile kernel similarity. The 
three methods computed good accuracy in the corresponding applica-
tion area. VDA-KATZ and VDA-RWR are the two newest VDA prediction 
methods and obtained better performance. VDA-BiRW is a balanced 
random walk-based VDA identification model. Table 3 illustrates the 
comparison results of seven VDA prediction models on three VDA 
datasets. The experimental results show that VDA-RWLRLS obtains 
better AUCs on the three datasets. We predicted the top 10 drugs asso-
ciated SARS-CoV-2 and found that two small molecules, remdesivir and 
ribavirin, came together in three datasets, and three small molecules, 
nitazoxanide, favipiravir, and niclosamide, came together in two data-
sets. Molecular docking and MDS were implemented between the five 
drugs and the crystal structure of the S protein-binding domain bound 
with ACE2. The results suggest that remdesivir, ribavirin, nitazoxanide, 
and niclosamide have higher binding abilities with the crystal structure. 

VDA-RWLRLS obtains better specificity, F1 score, accuracy, and AUC 
than the other six methods on the three datasets. On dataset 1, for 
example, the AUCs obtained from VDA-RWLRLS are 27.08%, 35.39%, 
5.14%, 0.62%, 3.12%, and 1.05% better than NGRHMDA, SMiR-NBI, 
LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW, respectively. On 
dataset 2, the AUCs computed by VDA-RWLRLS are 63.96%, 50.26%, 
1.28%, 0.71%, 20.11%, and 0.39% better than those of six methods, 
respectively. On dataset 3, the AUC calculated by VDA-RWLRLS 

Table 2 
The parameter settings of VDA-RWLRLS.  

Dataset α l r λv λd γd/γv 

dataset1 0.3 11 11 0.1 0.1 2.5 
dataset2 0.001 31 1 0.5 0.5 2.5 
dataset3 0.001 11 1 0.1 0.1 2.5  
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increases 70.39%, 49.39%, 5.29%, 1.70%, 17.41%, and 1.32%, 
respectively. Fig. 2 illustrates the AUC values achieved from the seven 
VDA prediction methods on the three datasets. The AUC and F1 score 
can better evaluate the performance of the association prediction 
methods compared to the other three measurements. VDA-RWLRLS 
computes the best F1 scores and AUCs on the three VDA datasets. 
Therefore, VDA-RWLRLS can be effectively applied to rank unknown 
virus-drug pairs at a more accurate rate based on known VDAs. 

More importantly, VDA-KATZ and VDA-RWR are two of the newest 

VDA prediction models and obtained good prediction performance. 
VDA-KATZ used the KATZ measurement, and VDA-RWR applied the 
random walk with restart on the constructed heterogeneous virus-drug 
network. Compared to the two state-of-the-art methods, VDA-RWLRLS 
boosts the prediction performance under the majority of conditions on 
the three datasets. Therefore, VDA-RWLRLS improves the VDA predic-
tion accuracy. 

VDA-RWR, VDA-BiRW and VDA-RWLRLS use bi-random walk for 
VDA prediction. The three methods use random walk with restart, 

Table 3 
The performance of seven VDA prediction methods on three datasets.  

Datasets Methods Sensitivity Specificity F1 score Accuracy AUC 

Dataset 1 NGRHMDA 0.578 3 0.556 7 0.061 5 0.557 2 0.645 9 
SMiR-NBI 0.833 1 0.193 6 0.038 5 0.207 9 0.572 3 
LRLSHMDA 0.803 4 0.581 3 0.111 9 0.586 3 0.840 3 
VDA-KATZ 0.697 6 0.668 4 0.151 7 0.669 1 0.880 3 
VDA-RWR 0.482 4 0.783 1 0.115 3 0.827 8 0.858 2 
VDA-BiRW 0.832 3 0.636 8 0.133 2 0.641 1 0.876 5 
VDA-RWLRLS 0.562 6 0.838 0 0.225 9 0.831 9 0.885 8 

Dataset 2 NGRHMDA 0.454 4 0.356 2 0.021 8 0.358 1 0.301 1 
SMiR-NBI 0.834 9 0.094 2 0.033 6 0.108 1 0.415 6 
LRLSHMDA 0.783 8 0.484 0 0.073 3 0.489 6 0.824 8 
VDA-KATZ 0.551 2 0.757 4 0.080 5 0.753 5 0.829 6 
VDA-RWR 0.502 2 0.664 3 0.057 4 0.661 3 0.667 5 
VDA-BiRW 0.557 4 0.752 4 0.110 5 0.748 7 0.832 2 
VDA-RWLRLS 0.513 3 0.826 4 0.123 2 0.820 5 0.835 5 

Dataset 3 NGRHMDA 0.358 2 0.408 1 0.011 9 0.407 4 0.255 4 
SMiR-NBI 0.923 0 0.042 7 0.023 0 0.053 6 0.436 5 
LRLSHMDA 0.812 9 0.523 9 0.055 2 0.527 5 0.816 9 
VDA-KATZ 0.711 6 0.566 6 0.062 6 0.568 4 0.847 8 
VDA-RWR 0.505 3 0.705 7 0.055 6 0.703 2 0.712 3 
VDA-BiRW 0.707 8 0.574 1 0.072 6 0.575 8 0.851 1 
VDA-RWLRLS 0.519 8 0.843 8 0.118 9 0.844 6 0.862 5  

Fig. 2. The AUC values predicted by seven VDA prediction methods on three VDA datasets.  
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balanced bi-random walk, and unbalanced bi-random walk. VDA- 
RWLRLS significantly outperforms VDA-RWR and VDA-BiRW. The re-
sults demonstrate the contributions of LRLS to VDA classification ability. 

LRLSHMDA is an LRLS-based association prediction method. VDA- 
RWLRLS obtains better performance than LRLSHMDA on the three 
datasets. The results may be due to the left random walk on the virus 
network and the right random walks on the drug network: thus, 
considering the different maximal random walking steps based on two 
sides of the networks may boost the VDA prediction performance. In 
summary, integrating unbalanced bi-random walk and LRLS helps to 
mine underlying VDAs. 

In addition, all unknown drug-virus pairs were chosen as negative 
samples. Sensitivity was defined as TP/(TP + FN). In datasets 1, 2, and 3, 
there were 96, 770, and 407 known VDAs, respectively, and 840, 8062, 
and 6495 unknown virus-drug pairs, respectively. The ratios of known 
VDAs to unknown virus-drug pairs in the three VDA datasets were 
11.43%, 9.55%, and 6.27%, respectively. Thus, FN is much greater than 
TP because of the unbalanced characteristics between negative VDAs 
and positive VDAs. Therefore, the sensitivity and F1 score are relatively 
lower for VDA prediction algorithms. In addition, on dataset 1, 
NGRHMDA and SMiR-NBI calculated AUCs larger than 0.5. However, 
they computed AUCs smaller than 0.5 on datasets 2 and 3. In contrast, if 
we re-evaluate the logical direction of the cut-off points, NGRHMDA and 
SMiR-NBI will obtain AUCs larger than 0.5 on datasets 2 and 3: however, 
AUCs from the two methods will be smaller than 0.5 on dataset 1. This 
may be caused by the poor generalization ability of NGRHMDA and 
SMiR-NBI. 

3.4. Case study 

We aimed to identify possible clues of treatment for COVID-19 after 
confirming the performance of VDA-RWLRLS. Tables 4–6 list the top 10 
predicted drugs against SARS-CoV-2 in the three datasets. The majority 
of the top 10 predicted antiviral drugs have been supported by recent 
literature. The powerful results indicate the prediction confidence of 
VDA-RWLRLS. Among the inferred antiviral drugs, there are two small 
molecules coming in three VDA datasets, that is, remdesivir and riba-
virin. In addition, three chemical agents were combined into two VDA 
datasets: nitazoxanide, favipiravir, and niclosamide. 

Remdesivir is a triphosphate analog first reported as a potential 
therapeutic agent against Ebola. The drug has broad antiviral activity 
against the Arenaviridae, Coronaviridae, Filoviridae, Flaviviridae, Par-
amyxoviridae, and Pneumoviridae viral families. It has been confirmed 
as a non-obligate chain terminator of RNA-dependent RNA polymerase 
from SARS-CoV-2 and investigated in many COVID-19 clinical trials. On 
November 19, 2020, it was authorized for the treatment of COVID-19 in 
combination with baricitinib [58]. 

Ribavirin is an antiviral drug. This drug can inhibit viral RNA syn-
thesis and mRNA capping. Thus it has broad-spectrum activity against a 
few RNA and DNA viruses. Currently, dual therapy with ribavirin and 

peginterferon alfa-2a/peginterferon alfa-2b is recommended as the first- 
generation and standard antiviral treatment [58]. 

3.5. Molecular docking 

We used AutoDock 4.2, a molecular docking software, to conduct 
molecular docking between the predicted five antiviral drugs and the 
crystal structure of the S protein-binding domain bound with ACE2. The 
chemical agents are taken as ligands and the crystal structure is taken as 
the receptor. Molecular binding energy was used to measure the binding 
stabilities between the predicted five antiviral drugs and the crystal 
structure. 

Fig. 3 shows the molecular docking between remdesivir and ribavirin 
and the crystal structure. The results show that remdesivir has a binding 
energy of − 7.00 kcal/mol with the crystal structure and that binding 
sites are K68 with ACE2 and Q493 with the S protein. Ribavirin has a 
binding energy of − 6.59 kcal/mol, and its binding sites are K353 with 
ACE2 and G496, Q493, and R403 with the S protein. Molecular docking 
results for the other three drugs, nitazoxanide, favipiravir, and niclo-
samide and the crystal structure are illustrated in Figs. 1–3 in Supple-
mentary Materials 1. The corresponding binding energies and sites are 
shown in Table 1 in Supplementary Materials 1. 

3.6. Molecular dynamics simulation 

After performing molecular docking, we continued to conduct MDAs 
between the predicted possible drugs and the S protein, human ACE2, 
and the crystal structure of the S protein-binding domain bound with 
ACE2. Fig. 4 illustrates Root Mean Square Deviation (RMSD) trajectories 
of ACE2 and remdesivir, Radius of gyration (Rg) pattern of the 
remdesivir-ACE2 complex, Root Mean Square Fluctuation (RMSF) 

Table 4 
The predicted top 10 drugs against SARS-CoV-2 on dataset 1.  

Rank Drug Evidence 

1 Remdesivir PMID: 32 020 029, 31 996 494, 32 022 370, 31 971 553, 
32 035 018, 32 035 533, 32 036 774, 32 194 944, 
32 275 812, 32 145 386, 32 838 064 

2 Oseltamivir PMID: 32 034 637, 32 127 666 
3 Zanamivir PMID: 32 511 320 
4 Ribavirin PMID: 32 034 637, 32 127 666, 32 227 493, 

26 492 219,32 771 797 
5 Presatovir PMID: 32 147 628 
6 Elvitegravir PMID: 32 147 628 
7 Zidovudine PMID: 32 568 013 
8 Emtricitabine PMID: 32 488 835 
9 Laninamivir https://arxiv.org/abs/2009.10333 
10 Peramivir unconfirmed  

Table 5 
The predicted top 10 drugs against SARS-CoV-2 on dataset 2.  

Rank Drug Evidence 

1 Favipiravir PMID: 32 346 491, 32 967 849, 32 972 430 
2 Niclosamide PMID: 32 125 140, 32 221 153 
3 Remdesivir PMID: 32 020 029, 31 996 494, 32 022 370, 

31 971 553, 32 035 018, 32 035 533, 32 036 774, 
32 194 944, 32 275 812, 32 145 386, 32 838 064 

4 Cyclosporine PMID: 32 777 170, 32 505 466 
5 Nitazoxanide PMID: 32 127 666, 32 568 620, 32 448 490 
6 Mycophenolic 

acid 
PMID: 32 579 258 

7 BCX4430 
(Galidesivir) 

PMID: 32 711 596 

8 Emetine PMID: 32 251 767,32 278 693,32 340 120 
9 Amodiaquine PMID: 32 246 834, 32 834 612, 32 631 083, 

32 317 408 
10 Ribavirin PMID: 32 034 637, 32 127 666, 32 227 493, 

26 492 219,32 771 797  

Table 6 
The predicted top 10 drugs against SARS-CoV-2 on dataset 3.  

Rank Drug Evidence 

1 Ribavirin PMID: 32 034 637, 32 127 666, 32 227 493, 26 492 219, 
32 771 797 

2 Nitazoxanide PMID: 32 127 666, 32 568 620, 32 448 490 
3 Chloroquine PMID: 32 020 029, 32 145 363, 32 074 550, 32 236 562 
4 Camostat PMID: 32 347 443 
5 Umifenovir PMID: 32 941 741 
6 Favipiravir PMID: 32 346 491, 32 967 849, 32 972 430 
7 Amantadine PMID: 32 361 028 
8 Niclosamide PMID: 32 125 140, 32 221 153 
9 Remdesivir PMID: 32 020 029, 31 996 494, 32 022 370, 31 971 553, 

32 035 018, 32 035 533, 32 036 774, 32 194 944, 
32 275 812, 32 145 386, 32 838 064 

10 Berberine PMID: 33 670 363  
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pattern of ACE2, and H-bond during MDS, and Solvent Accessible Sur-
face Area (SASA) of the remdesivir-ACE2 complex backbone. From 
Fig. 4, we can observe that the RMSD trajectory of ACE2 (Fig. 4 (a)) 
obtains equilibrium beyond 10 ns with an average value of approxi-
mately 0.25 nm. The RMSD of remdesivir (Fig. 4 (b)) is approximately 
stable during MDS, with an average value of approximately 0.6 nm. The 
two average values indicate that the relative change in ligand position is 
less than that of human ACE2, thereby demonstrating the stability of the 
remdesivir-human ACE2 pose. 

The lower mean value (2.5 nm) and stable trajectory of Rg (Fig. 4(c)) 
depict the compactness of the remdesivir-ACE2 complex during the 
simulation. In Fig. 4(d), the SASA of the complex is 0.1–0.5 nm2, indi-
cating that the hydrophobic core is compact and that the conformational 
geometry of the complex is stable during MDS. In Fig. 4(e), remdesivir 
and ACE2 interact with 1–5 hydrogen bonds; however, only two bonds 
are observed to be consistent throughout MDA. In Fig. 4(f), RMSF is 
applied to measure the number of positional fluctuations of each residue 
in the remdesivir-ACE2 backbone during MDS. The RMSF value in the 
backbone is in the range of 0.05–0.4 nm with an average of approxi-
mately 0.15 nm and minimum fluctuations of the key active-site resi-
dues. The other MDSs between the predicted ligands (remdesivir, 
ribavirin, nitazoxanide, favipiravir, and niclosamide) and three re-
ceptors (the S protein, human ACE2, and the crystal structure of the S 
protein-ACE2 binding domain) under 50 ns and 10 ns are illustrated in 
Figs. 1–25 in Supplementary Materials 2. 

4. Discussion and conclusion 

The key to preventing the transmission of SARS-CoV-2 lies in a deep 
understanding of associations among viruses, target proteins and tar-
geting drugs. Laboratory techniques may not be realistic under such an 
emergent situation. Drug repositioning is a more powerful approach to 
find possible clues for treatment of COVID-19. Identification of potential 
associations between viruses including SARS-CoV-2 and post-marked 
drugs through drug repositioning, provides an effective way to priori-
tize chemical agents related to SARS-CoV-2. Toward this goal, we first 
analyzed the pattern of associations between viruses and drugs and 
observed that the majority of known VDAs are circular bigraphs with 
short path lengths. This result provides the foundation for new VDA 
prediction based on known linkages in a VDA network. An Unbalanced 
bi-random walk is specifically developed to mine circular bigraphs and 
thus reconstructs associations between viruses and chemical agents. In 
addition, during an unbalanced bi-random walk, the jumps of nodes 
severely depend on virus similarities, drug similarities and known VDAs. 
To reduce the limitations, LRLS is integrated into the unbalanced bi- 
random walk model. VDA-RWLRLS is compared to six classical VDA 
prediction models. The experimental results show that VDA-RWLRLS 
outperforms the six association prediction methods. 

The novelty of VDA-RWLRLS comes from the combination of 

unbalanced bi-random walk, LRLS, molecular docking, and MDS. Our 
proposed VDA-RWLRLS algorithm performs consistently better on three 
constructed datasets. It may be contributed to by the following four 
features. First, VDA-RWLRLS uses the unbalanced bi-random walk 
method and takes advantage of different combinations in left and right 
random walks. Second, VDA-RWLRLS globally explores the weighted 
circular bigraphs by bi-random walk on the virus network and the drug 
network. The number of circular bigraphs affects the probability of a 
virus associated with a drug. Third, LRLS is utilized to decrease the 
drawback of unbalanced bi-random walk. Finally, VDA-RWLRLS com-
putes the virus similarity and drug similarity by fusing biological in-
formation and association information in a VDA network. 

In addition, morbidity and mortality rates in the COVID-19 
pandemic are sharply increasing because of bacterial and fungal co- 
infections. However, there is currently a lack of efficient clinical trials 
to screen antibacterial and antifungal compounds in COVID-19 patients 
[74]. Therefore, it is urgent to boost the knowledge about antibacterial 
and antifungal drugs to optimize the prevention, diagnosis, and thera-
peutic strategies in the COVID-19 pandemic. In the future, we will 
further mine drug banks and pharmacological resources and build two 
datasets, that is, datasets involved in associations between antibacterial 
drugs and single stranded RNA virus-caused diseases and datasets 
involved in associations between antifungal drugs and single stranded 
RNA virus-caused diseases, to initially screen small molecules for 
COVID-19 treatment. 
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Fig. 3. Molecular docking between remdesivir and ribavirin and the crystal structure of the S protein-ACE2 binding domain.  

L. Shen et al.                                                                                                                                                                                                                                     

https://github.com/plhhnu/VDA-RWLRLS/
https://github.com/plhhnu/VDA-RWLRLS/


Computers in Biology and Medicine 140 (2022) 105119

10

Favipiravir: DB12466, Niclosamide: DB06803. 

Declaration of competing interest 

All authors declare that the research was conducted in the absence of 
any commercial or financial relationships that could be construed as a 
potential conflict of interest. 

Acknowledgments 

We really appreciate four anonymous reviewers for their valuable 
comments. We would like to thank all authors of the cited references. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.105119. 

Fig. 4. MDS between remdesivir and human ACE2 protein during 50ns.  

L. Shen et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.compbiomed.2021.105119
https://doi.org/10.1016/j.compbiomed.2021.105119


Computers in Biology and Medicine 140 (2022) 105119

11

References 

[1] WHO, Who coronavirus (covid-19) overview, Website, Access on May 13, 2021. 
URL: https://covid19.who.int. 

[2] L. Riva, S. Yuan, X. Yin, L. Martin-Sancho, N. Matsunaga, S. Burgstaller- 
Muehlbacher, L. Pache, P. P. D. Jesus, M. V. Hull, M. Chang, J. F.-W. Chan, J. Cao, 
V. K.-M. Poon, K. Herbert, T.-T. Nguyen, Y. Pu, C. Nguyen, A. Rubanov, L. 
Martinez-Sobrido, W.-C. Liu, L. Miorin, K. M. White, J. R. Johnson, C. Benner, R. 
Sun, P. G. Schultz, A. Su, A. Garcia-Sastre, A. K. Chatterjee, K.-Y. Yuen, S. K. 
Chanda, A Large-Scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, 
bioRxiv (2020) 2020.04.16.044016. Publisher: Cold Spring Harbor Laboratory 
Section: New Results. 

[3] M.B. Serafin, A. Bottega, V.S. Foletto, T.F. da Rosa, A. Hörner, R. Hörner, Drug 
repositioning is an alternative for the treatment of coronavirus COVID-19, Int. J. 
Antimicrob. Agents 55 (2020) 105969. 

[4] Y.E. Zohner, J.S. Morris, Covid-track: world and USA sars-cov-2 testing and covid- 
19 tracking, BioData Min. 14 (2021) 1–15. 

[5] Y. Ge, T. Tian, S. Huang, F. Wan, J. Li, S. Li, H. Yang, L. Hong, N. Wu, E. Yuan, L. 
Cheng, Y. Lei, H. Shu, X. Feng, Z. Jiang, Y. Chi, X. Guo, L. Cui, L. Xiao, Z. Li, C. 
Yang, Z. Miao, H. Tang, L. Chen, H. Zeng, D. Zhao, F. Zhu, X. Shen, J. Zeng, A Data- 
Driven Drug Repositioning Framework Discovered a Potential Therapeutic Agent 
Targeting COVID-19, bioRxiv (2020) 2020.03.11.986836. Publisher: Cold Spring 
Harbor Laboratory Section: New Results. 

[6] K. Gao, Y.-P. Song, A. Song, Exploring active ingredients and function mechanisms 
of ephedra-bitter almond for prevention and treatment of corona virus disease 
2019 (covid-19) based on network pharmacology, BioData Min. 13 (2020) 1–20. 

[7] A. Anbarasu, S. Ramaiah, P. Livingstone, Vaccine repurposing approach for 
preventing COVID 19: can MMR vaccines reduce morbidity and mortality? Hum. 
Vaccines Immunother. 16 (2020) 2217–2218, https://doi.org/10.1080/ 
21645515.2020.1773141. Publisher: Taylor & Francis _eprint:. 

[8] J.-P. Jourdan, R. Bureau, C. Rochais, P. Dallemagne, Drug repositioning: a brief 
overview, J. Pharm. Pharmacol. 72 (2020) 1145–1151. _eprint: https://onlinelibra 
ry.wiley.com/doi/pdf/10.1111/jphp.13273. 

[9] Y. Chu, X. Shan, T. Chen, M. Jiang, Y. Wang, Q. Wang, D.R. Salahub, Y. Xiong, D.- 
Q. Wei, DTI-MLCD: predicting drug-target interactions using multi-label learning 
with community detection method, Briefings Bioinf. 22 (2021), bbaa205. 

[10] M.T. Khan, M. Irfan, H. Ahsan, A. Ahmed, A.C. Kaushik, A.S. Khan, S. Chinnasamy, 
A. Ali, D.-Q. Wei, Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic 
Targets, Intervirology, vol. 64, Publisher: Karger Publishers, 2021, pp. 55–68. 

[11] K. Rian, M. Esteban-Medina, M.R. Hidalgo, C. Çubuk, M.M. Falco, C. Loucera, 
D. Gunyel, M. Ostaszewski, M. Peña-Chilet, J. Dopazo, Mechanistic modeling of the 
sars-cov-2 disease map, BioData Min. 14 (2021) 1–8. 

[12] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, 
Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, 
Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W.J. Liu, D. Wang, W. Xu, E. 
C. Holmes, G.F. Gao, G. Wu, W. Chen, W. Shi, W. Tan, Genomic characterisation 
and epidemiology of 2019 novel coronavirus: implications for virus origins and 
receptor binding, Lancet 395 (2020) 565–574. 

[13] N. Petrosillo, G. Viceconte, O. Ergonul, G. Ippolito, E. Petersen, COVID-19, SARS 
and MERS: are they closely related? Clin. Microbiol. Infect. 26 (2020) 729–734. 

[14] A. In, E. Au, M. Jo, F. Sa, O. Ib, O. Is, O.-G. C, S. Ao, N. J, Exploring the genetics, 
ecology of SARS-COV-2 and climatic factors as possible control strategies against 
COVID-19, Infezioni Med. Le 28 (2020) 166–173. 

[15] Z. Liu, X. Xiao, X. Wei, J. Li, J. Yang, H. Tan, J. Zhu, Q. Zhang, J. Wu, L. Liu, 
Composition and divergence of coronavirus spike proteins and host ACE2 receptors 
predict potential intermediate hosts of SARS-CoV-2, J. Med. Virol. 92 (2020) 
595–601. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmv.25726. 

[16] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, 
Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, 
L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features 
of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 
(2020) 497–506. 

[17] D.S. Hui, E.I. Azhar, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T. 
D. Mchugh, Z.A. Memish, C. Drosten, A. Zumla, E. Petersen, The Continuing 2019- 
nCoV Epidemic Threat of Novel Coronaviruses to Global Health — the Latest 2019 
Novel Coronavirus Outbreak in Wuhan, China, International Journal of Infectious 
Diseases, vol. 91, Publisher: Elsevier, 2020, pp. 264–266. 

[18] G. Feng, K.I. Zheng, Q.-Q. Yan, R.S. Rios, G. Targher, C.D. Byrne, S. Van Poucke, 
W.-Y. Liu, M.-H. Zheng, Covid-19 and liver dysfunction: current insights and 
emergent therapeutic strategies, J. Clin. Transl. Hepatol. 8 (2020) 18. 

[19] M. Roudbary, S. Kumar, A. Kumar, L. Černáková, F. Nikoomanesh, C.F. Rodrigues, 
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