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Abstract

A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of
sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal
in another region. More recently, such lag-based measures have been applied to investigate directed functional
connectivity, although this application has been controversial. We attempted to use large publicly available datasets
(FCON 1000, ADHD 200, Human Connectome Project) to determine whether consistent spatial patterns of Granger
Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7–40,
we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter
and 264 seed ROIs at hubs of the brain’s functional network architecture. Granger causality estimates were strongly
reproducible for connections in a test and replication sample (n=620 subjects for each group), as well as in data from
a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even
stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed
independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality
reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow
distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the
brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of
reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic
response.
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Introduction

A topic of great interest in recent literature is the creation of a
directional connectome based on functional connectivity MRI
(fcMRI) data. fcMRI is based on the observation that different
brain regions show synchronized blood-oxygen-level-
dependent (BOLD) time series that correspond with
established functional neuroanatomy[1]. Recent work has
established consistent relationships across large numbers of
subjects that show a canonical organization of brain network
architecture that reflects extensive prior work characterizing
regional brain function[2-4].

Yet most of the attempts to characterize a whole-brain
connectome have been correlational, modeling mutual
relationships between brain regions rather than determining the
extent to which the communication is preferentially
unidirectional[2,3,5-8]. One technique that has been proposed

for determining directional interactions is to measure sequential
activation in the brain using functional MRI. For task-based
fMRI, a phase difference between two brain regions may
suggest, though not prove, a causal relationship between the
two regions. In task-free, or undirected cognition, it is possible
that similar relationships persist.

Exemplifying this approach are techniques such as Granger
causality or vector autoregression, which ascertain whether the
future of a time series can be more accurately predicted given
past values of another time series than by using the past
values of the time series in question alone[9,10]. These
techniques have been applied to fMRI data[11] as a method for
establishing sequential neural activation associated with
directed causality[12]. When examining two time series, A and
B, if past timepoints for signal A and B allow better prediction of
future timepoints of signal B than by using past timepoints of
signal B only, then A is said to have a Granger causal
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relationship with B[13]. The use of methods allowing inferences
of directed neural communication has been the subject of
several recent reviews[14-16]. Another method that has been
proposed for determining temporal influences of one BOLD
time series on another is total interdependence, which
considers temporal influences of two time series on each other,
as well as co-varying common input[17]. This method has been
shown to elucidate resting state networks that more precisely
correspond to contemporaneously acquired task activation
maps[17].

This set of techniques has even more recently become
relevant to connectomics given the advent of large-sample
datasets of thousands of subjects[5,18]. Since BOLD time
series are noisy, and at best small statistical relationships can
only be inferred through large datasets, it is hopeful that the
use of such large datasets might provide an opportunity for
large-scale analysis of Granger causal differences in resting
state data with higher statistical power. Reproducibility of
correlative measurements improves with 1/square root of
imaging time and/or number of subjects, so reliability of such
measurements is likely to be better assessed using available
large samples[19].

Yet lag-based analysis techniques such as Granger causality
have recently become the topic of controversy. Their accuracy
in fMRI studies has been questioned in a study using simulated
fMRI data to evaluate the accuracy of inferences about directed
functional connectivity[20]. Subsequently, it has been
suggested that a constraint for many of these investigations
could be the relatively small sample size of the data set, and
perhaps using this technique on a larger data set could
overcome the limitations of poor temporal resolution[21],
particularly since lag-based simulations were more accurate for
longer sessions (60 minutes) compared to shorter sessions
(2.5 minutes)[20]. Other studies have examined the effects of
temporal sampling on Granger causality inferences and found
that poor temporal resolution of acquisition and measurement
noise may lead to incorrect inferences, although Granger
causal inferences appear to be robust to variations in
hemodynamic response properties[22]. We attempted to test
whether a large sample of resting state fMRI data might be
able to predict directed functional connectivity relationships by
examining a high resolution spatial matrix to determine whether
the spatial relationships conform to known directional
connections in the brain, taking advantage of the statistical
power afforded by large datasets.

Materials and Methods

Ethics Statement
All analyses and data collected for this study were performed

in accordance with guidelines established by the University of
Utah Institutional Review Board. Data from anonymized
publicly available datasets were all shared in accordance with
guidelines established by human subject protection boards of
the the corresponding institutions as described on the project
websites.

fMRI Data Sources
1240 subjects were analyzed from publicly available datasets

released with the open-access 1000 Functional Connectomes
Project (http://fcon_1000.projects.nitrc.org/, FCON1000) in
which resting-state fMRI scans have been aggregated from 28
sites [5] as well as typically developing subjects from the ADHD
200 project from the International Neuroimaging Data-sharing
Initiative (http://fcon_1000.projects.nitrc.org/indi/adhd200/)
including 8 sites[23]. For inclusion we required that subjects’
ages were between 7 and 40, with BOLD whole-brain coverage
from MNI coordinates z=-35 to z=70. Any subject for whom
postprocessed data did not cover all 7266 ROIs used for this
analysis was discarded prior to analysis. For inclusion, all
subjects included an MPRAGE anatomic sequence that was
successfully segmented and normalized to MNI space.
Although postprocessing steps were performed using an
automated batch script, the results of normalization,
segmentation, and realignment steps were manually inspected
for all subjects, and any subject for whom the normalized and
segmented images were not in close alignment with the MNI
template on visual inspection were discarded. The datasets
from which subjects met all criteria are listed in Table 1. The
mean age of all subjects was 19.2 +/- 6.6 s.d. years (range
7-39). 695 subjects were male; 545 were female. The subjects
were divided into two groups of 620 subjects that did not differ
in age (19.1 +/- 6.6 s.d. years and 19.2 +/- 6.6 years, p=0.96,
two-tailed t-test) or gender (p=0.68, two-tailed t-test) and
analyses were performed separately for the two groups as a
replication sample as well as for the full set of 1240 subjects.
All subjects' data were processed in the same manner
regardless of the site from which they were obtained.

An additional dataset released by the Human Connectome
Project (HCP)[24,25] was tested consisting of 80 subjects for
which both resting state (4 sequences of 1200 volumes each
per subject, TR=720 ms, multiband BOLD acquisition[26,27],
2x2x2 mm spatial resolution) and task paradigm acquisitions
were available. Data were provided by the Human Connectome
Project, WU-Minn Consortium (Principal Investigators: David
Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the
16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington UniversityTask
paradigms are as described on the human connectome project
website (www.humanconnectome.org) and included an
emotional, gambling, language, motor, relational, social, and
working memory task with the same acquisition parameters as
the resting state data. Each task was performed twice for each
subject with left-right and right-left phase encoding directions.

fMRI Preprocessing
The following sequence was used for image preprocessing

of FCON 1000, ADHD200, and single subject BOLD image
datasets. Using SPM8 toolbox (Wellcome Trust, London),
BOLD images were realigned (realign, estimate and write),
slice timing corrected, coregistered to MPRAGE image
(coregister, estimate and write), and normalized to MNI
template (normalize, estimate and write, T1.nii template). Gray
matter, white matter and CSF were segmented from MPRAGE
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image using SPM8 segment function (modulated, normalized,
thorough clean). Images were bandpass filtered between 0.001
and 0.1 Hz and a linear detrend was performed at each voxel
in the brain. No additional temporal smoothing was performed
beyond that entailed within the initial slice timing correction.
Time series were averaged from 2 ROIs in the white matter
(bilateral centrum semiovale, CSF (lateral ventricles), soft
tissues of the head and face, and 6 rigid motion correction
parameters from realignment step as previously described[28]
and for each voxel, a general linear model was used to find a
best fit for white matter, CSF, soft tissues, and motion
parameter time series, which were subtracted from the voxel’s
time series. No regression was performed of the global signal
or gray matter[28-31]. No spatial smoothing of the data was
performed throughout preprocessing. Removal of frames with
residual motion[32] was not performed for this analysis
because this would result in frameshift errors in calculating lag-
based cross-correlograms of time series between subjects.

For Human Connectome Project task data, a preprocessing
pipeline was used that consisted of a minimal preprocessing
pipeline[31] implemented in the FSL software library[33]. For
HCP resting state data, an extended preprocessing pipeline
was used that included the ICA-FIX de-noising procedure
(“Resting State fMRI FIX-Denoised Extended Release”)[34].
This technique includes an automated independent component
analysis decomposition of each subject’s fMRI data, with
removal of “bad” noise components from the data resulting in
cleaned images.

Table 1. Sources of 1240 open access resting state
datasets used for analysis.

Site(FCON
1000) n

TR
(s)  

# of
Volumes Site(ADD 200) n TR (s)  

# of
Volumes

Ann Arbor 18 1 295
Kennedy
Krieger

61 2.5 124

Baltimore 22 2.5 123 NeuroImage 21 1.96 261
Bangor 1 2 265 NYU 89 2 176 - 352
Beijing 188 2 225 OHSU 40 2.5 234
Berlin 25 2.3 195 Peking 112 2 236
Cambridge 193 3 119 Pittsburgh 82 2 196
Cleveland 12 2.8 127 Washington U 50 2.5 133 - 396
ICBM 17 2 128     
Leiden 31 2.2 215     
Leipzig 36 2.3 195     
New York 47 2 192     
Newark 17 2 135     
Orangeburg 7 2 165     
Oulu 100 1.8 245     
Oxford 14 2 175     
Palo Alto 10 2 235     
Queensland 17 2.1 190     
Saint Louis 30 2.5 127     

doi: 10.1371/journal.pone.0084279.t001

Regions of Interest Used
In order to evaluate the spatial distribution of Granger

causality differences in the gray matter, we used a set of ROIs
that covered the gray matter at 5 mm resolution. A gray matter
restriction mask was obtained by selecting voxels at 3x3x3 mm
resolution where the SPM8 grey.nii image showed intensity >
0.3. Beginning with the right, inferior, posterior corner of the
image, voxels were retained in the image if they were greater
than or equal to 5 mm Euclidean distance from previously
retained voxels. This yielded 7266 seed voxels, each
separated by at least 5 mm. The gray matter restriction mask
was then parcellated into 7266 ROIs, based on which of the
seed voxels was closest to any given voxel in the restriction
mask[35,36]. The ROIs ranged from 2 to 12 voxels in extent
(mean 4.9 +/- 1.3 voxels at isotropic 3 mm resolution). ROI’s
had no voxels in common. Because many of the publicly
available datasets used in the analysis did not include BOLD
data at the vertex or inferior cerebellum, brain voxels with MNI
coordinates z<-35 or z>70 were not included in the 7266 ROIs.
Centroid locations of each of the ROIs have been previously
described[36].

A subset of 264 of these 7266 ROIs containing the MNI
coordinates of functional brain network nodes was used as a
set of seed regions. These coordinates were derived from a
large meta-analysis of functional connectivity data and include
hubs of distributed brain networks relevant to the network
architecture of the brain[3]. These two sets of ROIs defined a
7266 x 264 matrix of “connections” between each point in the
gray matter and key functional regions of the brain.

Granger Causality Estimates
For each subject, preprocessed BOLD data was used to

extract time series for each of the 7266 ROIs, of which 264
seed region time series were a subset. Then for each
connection of one of the seed regions to one of the 7266 target
regions, Granger causality was measured in both directions to
obtain a metric of the extent to which the seed ROI Granger
causes the target ROI and the extent to which the target ROI
Granger causes the seed ROI. Granger causality estimates
were performed in Matlab (Natick, MA) using the Granger
Causal Connectivity Toolbox[37], using the
cca_granger_regress.m function and a model order of 3 lags. A
model order of 3 was chosen based on 500 randomly selected
pairs of time series, for which cca_find_model_order.m was
calculated using a Bayesian Information Criterion. The optimal
model order results had a mode of 1, with a few connections
showing 2 or 3 as an optimal model order, followed by some
connections indicating an optimal model order of greater than
20 lags, which was thought biologically implausible.

To estimate significance of Granger causality estimates, we
calculated separately for the entire dataset (n=1240) as well as
for each subset (n=620) of subjects a two-tailed nonparametric
sign test as to whether the seed ROI Granger caused the
target ROI more than the target ROI Granger caused the seed
ROI. For the set of 7266 x 264 connections, those connections
were significant exhibiting acceptable false discovery rate
q<0.05 over all connections.
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A similar procedure was performed on the HCP dataset, with
calculation of Granger causality estimates for a 7266 x 264
matrix of ROIs for each of the 4 fifteen minute resting state
sequences and each of the two task-based sequences for each
of 7 tasks for each subject. The Granger causality estimates
were averaged for all sequences for the same subject (average
of 4 acquisitions for resting state data and 2 acquisitions for
each task), and statistical significance was assessed across
subjects using nonparametric sign tests resulting in a 7266 x
264 matrix of Z-scores for resting state condition and for each
of 7 tasks. Prior to preprocessing, the first 10 volumes of all
HCP acquisitions were discarded to prevent artifacts from
stabilization of the BOLD signal.

Regression of Age and Head Motion
Recent work has indicated that even small head movements

can significantly affect functional connectivity
parameters[32,38]. Although it is not intuitive how head motion
would selectively phase advance one ROI compared to another
in our data, we performed an additional step to minimize the
chance of such influence. For each “connection” consisting of a
pair of ROIs, we calculated correlation between the difference
in Granger causality between seed and target ROIs and age
and motion covariates across subjects. We included subject
age, mean head motion (the sum of 6 realignment parameters
calculated in the realign step, averaged across volumes), and
maximal head motion (maximal displacement of any volume
during realignment) as covariates[32]. None of these
measurements showed significant covariation using Spearman
correlation coefficients with Granger causality differences
across subjects after false discovery rate correction.

Calculation of Arterial and Venous Density Maps
We hypothesized that differences in Granger causality might

be influenced by the distribution of vascular structures in the
brain. To assess for this possibility, we obtained a retrospective
sample of 33 magnetic resonance arteriograms (MRA) and 34
magnetic resonance venograms (MRV) obtained at the
University of Utah between 2009 and 2011 which were read as
showing no pathology by a board-certified, certificate of added
qualification (CAQ) neuroradiologist. The average age of
subjects from whom arteriographic and venographic images
were analyzed were older than for the fMRI sample (MRA:
mean age 53.8 +/- 16.1 years s.d.; MRV: mean age (43.1 +/-
16.4 years s.d.)

Both MRA and MRV images were obtained using a standard
clinical time-of-flight angiographic sequences (Siemens,
Erlangen) without the use of gadolinium contrast. MRA images
were acquired with a 768 x 696 matrix size and 0.5 mm slice
thickness in the axial plane and MR images were acquired with
512 x 416 matrix size and 1.5 mm slice thickness in coronal
plane. TE, TR, and flip angle varied between scans, which
were performed on a combination of 1.5 Tesla and 3 Tesla
Siemens scanners. MRV images included the entire brain, and
MRA images included only the cerebellum through the
cingulate gyrus, designed to image arterial inflow through the
pericallosal arteries. For each subject, MRA or MRV source
images were normalized to the MNI template brain (T1.nii in

SPM8), with resampling of the normalized images to 3x3x3 mm
spatial resolution, and manual inspection for appropriate
coregistration. Mean signal was normalized for each subject by
dividing each voxel's value by the standard deviation of signal
intensity across in-brain voxels. These images were averaged
to obtain a mean venous and mean arterial density image
which was thresholded at 2 standard deviations of signal for in-
brain voxels to obtain masks of high arterial and venous
density across a population. It is noted that the MRA and MRV
images used for analysis are effective only at showing
relatively large arteries, veins, and venous sinuses, and do not
show vessels of smaller diameter throughout the brain
parenchyma.

Evaluation of Stationarity of BOLD Time Series
To assess the effects of nonstationarities present in the

BOLD time series data, we employed a Kwiatkowski-Phillips-
Schmidt-Schin (KPSS) test[39] and augmented Dickey Fuller
test[40] for stationarity on each subject’s preprocessed BOLD
time series in each of the 264 seed ROIs. Analysis was
performed using the cca_kpss.m function of the Granger
Causal Connectivity Toolbox[37], with a p=0.05 threshold for
rejecting the null hypothesis of stationarity (KPSS test) or unit
root (Dickey-Fuller test). Although most data passed the KPSS
test, a majority of the data did not pass the more stringent
Dickey-Fuller test requiring rejection of a null hypothesis of unit
root. To more completely evaluate whether potential
nonstationarities contributed to the results, the entire dataset
was reanalyzed using the difference time series, for which a
large proportion of the dataset was stationary by both KPSS
and Dickey-Fuller tests. Data subsamples that passed all
stationarity tests (41.6% of difference time series) were
compared to those that failed one or more tests (58.4%, almost
always the Dickey-Fuller test). Across the dataset, consistency
values from Granger causality estimates were relatively low,
averaging 37.4 +/- 8.6 s.d.

For HCP data, greater than 99% of resting time series
passed both KPSS and Dickey-Fuller tests, and only data
passing all stationarity testing was included in the analysis. For
task-based data, where many fewer volumes were available,
between 30% and 70% of the data passed both KPSS and
Dickey-Fuller tests, and thus differenced time series were used
instead for all tasks. In all 7 tasks, greater than 99% of the
differenced time series passed both KPSS and Dickey-Fuller
tests for stationarity, and only data that passed both tests was
used in analysis.

Replication in Single Subject Dataset
To assess for the possibility that the results obtained were a

consequence of a large heterogenous dataset, in which the
only factor consistently observed in Granger causality metrics
was vascular confounds, we also analyzed a replication
dataset previously obtained that consisted of 100 five-minute
fMRI scans in a single subject (male, 39 years old). These
were obtained as ten five-minute BOLD sequences obtained in
ten separate sessions over a 3-week interval. Half of the
sessions were obtained in the resting state with eyes open, and
half (5 sessions) were obtained during passive viewing of a

BOLD Granger Causality

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e84279



cartoon stimulus (Bugs Bunny, Looney Tunes Golden
Collection, volVol. 1, Warner Bros.) Scan details have been
previously described (TR = 2.0 s, TE = 28 ms, 155 volumes per
scan) [19]. The difference time series for each of the 10
sessions was analyzed with KPSS and ADF tests for stationary
and only stationary time series were used in the analysis.
Granger causality estimates were computed for each of the 50
resting state and 50 cartoon viewing epochs that passed
stationarity tests and analogous Granger causality metrics
were obtained to those in the larger, more heterogenous
dataset, using difference time series for improved stationarity.

Results

Reproducibility of Granger Causality
For each of 1240 subjects, Granger causality (GC) was

estimated between each pair of 7266 target and 264 seed gray
matter ROIs. This resulted in 1,918,224 region pairs. For each
of these region pairs, a nonparametric sign test was computed
for the difference of target ROI Granger causes seed ROI and
seed ROI Granger causes target ROI across 1240 subjects
and across each subset of 620 subjects in the test and
replication samples. To assess the reproducibility of GC
measurements, Z-statistics were compared in the two subject
samples (n=620 subjects each). A positive Z-statistic implies
that the seed ROI is Granger caused by the target ROI greater
than the opposite direction, and a negative Z-statistic implies
that the target ROI Granger causes the seed ROI to a greater
extent.

A scatter plot of all the connections tested is shown in Figure
1. The measurements show reproducibility between the two
subject samples, as indicated by clustering of the Z-statistics
along the main diagonal. The Spearman correlation coefficient
of Z-statistics for the 2 samples was r=0.30, with p-value
vanishingly small. In the full sample of 1240 subjects, 1.4%
(26602) of possible connections showed significant differences
in Granger causality between target and seed ROI with
acceptable false discovery rate q<0.05 across all possible
connections. Of these, all but 4 connections had the same
polarity in both samples. For example, if for a given connection
the target ROI Granger caused the seed ROI to a significantly
greater extent than the seed ROI Granger caused the target
ROI, this was also true in the other sample of subjects.

Among connections showing significant differences in
Granger causality between seed and target ROI, there is a
homogeneous progression from Granger sources (which
Granger cause other ROIs) to Granger sinks (Granger caused
by other ROIs). This is shown by a simple reordering of the
seed and target ROIs based on the mean Z-statistic of each
ROI with the 264 seeds (including significant connections only),
shown in Figure 2. Essentially all of the significant connections
below the main diagonal have negative Z-statistics, and all of
the connections above the main diagonal have positive Z-
statistics. An ROI is Granger caused by other ROIs with more
source-like behavior, and Granger causes ROIs with more
sink-like behavior.

Spatial Distribution of Granger Causality Differences
The spatial distribution of Granger sources and sinks is

informative. Figure 3 demonstrates regions with significant
Granger causality relationships to seven seeds selected to
represent different functional brain networks. Seeds tend to
show either significant relationships to source ROIs (warm
colors) or to sink ROIs (cool colors) but not to both, and
significant differences tend to be in the same regions for all of
the seeds rather than varying by functional network
architecture. The seeds included in the figure are: precentral
gyrus (sensorimotor network, MNI: x=-21 y=-31 z=61 ), insula
(salience or auditory network, MNI: -38 -33 17 ), intraparietal
network (dorsal attention network, MNI: -44 -65 35 ), posterior
cingulate (default mode network, MNI: -2 -37 44 ), thalamus
(MNI: 6 -24 0), occipital (visual network, MNI: 17 -91 -14), and
dorsolateral prefrontal cortex (executive network, MNI: -39 51
17).

The regions shown in Figure 3 strongly suggest a vascular
etiology for Granger causality differences. Granger sources
tend to be located centrally within the brain adjacent to the
Circle of Willis, and Granger sinks tend to be located
peripherally with a spatial distribution that closely matches
large venous sinuses such as the transverse and sagittal
sinuses. For reference, an MR venogram and MR angiogram
for one subject each are shown in Figure 4, with major arterial
inflow distributions and venous outflow distributions labeled.

Large arteries and veins are conserved across individuals in
their location, and although there are minor anatomic variations
between individuals, the anterior, middle, and posterior
cerebral artery territories, and locations of the venous outflow
pathways are reproduced from individual to individual. To
illustrate the position of these vessels in relationship to Granger
sources and sinks noted above, we averaged normalized MRI
arteriograms from 33 healthy subjects and MRI venograms
from 34 healthy subjects to identify consensus positions of
large arteries and veins. We then superimposed the mean Z-
statistic of each target ROI with seeds to which it exhibited
significant Granger causality differences. The result is shown in
Figure 5.

Target regions acting as Granger sources (warm colors)
reproduce precisely arterial inflow distributions of the anterior,
posterior, and middle cerebral arteries, labeled in the figure.
Relative Granger sinks (cool colors) in contrast are situated at
the periphery of the brain, close to dural venous sinuses. The
characteristic spatial distributions of the transverse, straight,
and superior sagittal sinuses are faithfully reflected by Granger
sink behavior.

Since an ROI appears well-characterized by its ordering from
Granger sources to Granger sinks relative to the seeds,
dividing the ROIs into deciles allows an animation of the
progression of source to sink ROIs, illustrated in the video
Figure S1 in Supporting Information. This sequence shows a
uniform progression from the Circle of Willis to dural venous
sinuses that matches closely what would be expected from
blood flowing from arteries to veins in the brain.

Since the dataset studied was obtained from multiple
different sites with different acquisition parameters such as
repetition time (TR), we evaluated the results for pairs of the
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Figure 1.  Reproducibility of Granger causality measurements in two subject subsamples.  Difference in Granger causality
(seed to target minus target to seed) was computed for 7266 target ROI x 264 seed ROI pairs in two subject samples of 620
subjects each. Scatter plot compares Z-statistics for each subject sample across all connections. Dots shown in red exhibited
significant Granger causality difference for entire 1240 subject dataset. Dots in blue show connections that were significant in both
subject samples after false discovery rate correction for multiple comparisons.
doi: 10.1371/journal.pone.0084279.g001
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264 seed ROIs at model orders 1, 2, and 3, with results shown
in Figure 6. More significant differences in Granger causality
were observed for model orders 1 and 3 than for model order
2, but the results were similar in all 3 cases. Significant
differences in Granger causality progressed from source ROIs
to sink ROIs in all 3 cases, and the spatial distribution of mean
Z-statistic to the 264 seed ROIs showed a similar spatial
distribution in all 3 cases with sources located near the Circle
of Willis and sinks located near dural venous sinuses and
venous outflow territories.

To confirm that the observed results are not a consequence
of nonstationarities in the data, we performed a Kwiatkowski-
Phillips-Schmidt-Schin test and augmented Dickey-Fuller test
for stationarity on each subject’s preprocessed BOLD time
series for each of the 264 seed ROIs and for model order 1.
For model order 1, 95% of the time series were stationary; 98%
were stationary for model order 2; and 98% were stationary for

model order 3, by KPSS test. But a Dickey-Fuller test could not
exclude a unit root for nearly all of the time series tested.

To further evaluate the possibility that nonstationarities may
underlie the observed results, we additionally computed the
difference time series between each adjacent time point in
each of the preprocessed BOLD time series, and repeated all
of the Granger causality analyses on the difference time series.
For these difference time series, 100% of the data were
stationary by KPSS test and 41.6% of the difference time
series could exclude a unit root by augmented Dickey-Fuller
test. We compared the Granger causality results for difference
time series that passed all stationarity tests with those that did
not and found equivalent results among the two subsets of data
with respect to the spatial distribution of Granger causality
differences. These data are shown in Figure 7, with a
scatterplot and axial images showing mean Z-statistic for
forward – reverse Granger causality with 264 seed ROIs with

Figure 2.  Significant Granger causality differences among seed and target ROIs.  Colored squares indicate connections
where seed ROI Granger causes target ROI more than target ROI Granger causes seed ROI (blue colored squares) or vice versa
(red/orange colored squares), significant across 1240 subjects with false discovery rate correction for multiple comparisons.
doi: 10.1371/journal.pone.0084279.g002
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Figure 3.  Significant Granger causality differences for 7 seed ROIs to the rest of the gray matter.  Seed locations are shown
in the leftmost column. Slice locations are reported below the figure in MNI coordinates. Images are in radiologic format with subject
left on image right. False discovery rate correction was performed for each seed separately.
doi: 10.1371/journal.pone.0084279.g003
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Figure 4.  Representative MRI arteriogram (above) and MRI venogram (below) from one subject, with major arteries and
venous sinuses labeled, shown in maximum intensity projection for axial and coronal views.  
doi: 10.1371/journal.pone.0084279.g004
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Figure 5.  Mean Z-statistic for significant Granger causality differences to seed ROIs.  Z-statistics were averaged for a given
target ROI with the 264 seed ROIs to which it exhibited significantly asymmetric Granger causality relationship. Masks are overlaid
for MRI arteriograms (white) and MRI venograms (green) for voxels with greater than 2 standard deviations signal intensity of in-
brain voxels in averaged images from 33 (arteriogram) and 34 (venogram) subjects. Major arterial inflow and venous outflow
distributions are labeled.
doi: 10.1371/journal.pone.0084279.g005
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the remaining 263 ROIs. In both cases, sources are present in
the center of the brain near the Circle of Willis, with sinks
present near the dural venous sinuses and in the periphery of
the brain. We also tested, for time series passing all stationarity
tests only, whether the width of the bandpass filter used in
preprocessing could affect the Granger causality results[41]
and found that mean Z-statistics (source or sink behavior) was
similar for both filter widths (Figure 7D).

As an additional test, we evaluated whether similar results
could be obtained from a much more tightly controlled dataset,
consisting of 100 5-minute fMRI acquisitions from a single
subject over 3 weeks. These data are shown in Figure 8. Half
of the data was obtained with the subject in a resting state and
half while the subject passively viewed Bugs Bunny cartoons.
For both resting and passive viewing acquisitions, a distribution
from source ROIs to sink ROIs was found that was equivalent
to that seen in Figure 2 in the larger dataset. The spatial
organization of the source ROIs were again seen centrally, with
sink ROIs present peripherally, particularly near dural venous
sinuses. For the single subject analyses, only difference time

series were used that passed both KPSS and Dickey-Fuller
stationarity tests (92.1% of the time series).

Given that temporal undersampling may affect Granger
causal inferences[22], we tested an independent resting state
dataset released by the Human Connectome Project that was
acquired using a multiband BOLD sequence with much higher
temporal resolution (TR=720 ms). As an additional evaluation
of stationarity in this dataset, autocorrelation functions are
shown averaged across all time series by subject and by region
with standard deviations at each lag reported in Figure 9A.
Autocorrelation returns to baseline over about 8 seconds. For
the same 264 x 7266 matrix of ROIs, an equivalent progression
from Granger causal sources to Granger causal sinks was
observed (Figure 9B). By evaluating the mean Z-score of each
of 7266 ROIs to the 264 seed ROIs for Granger causal
difference, images of the brain were obtained with sources in
the center of the brain in arterial inflow distributions and sinks
at the periphery of the brain where large venous structures are
present.

Finally, an analogous procedure was performed on HCP
data from the same 80 subjects for each of 7 task paradigm

Figure 6.  Effect of model order on significant differences in Granger causality.  A. Significant differences in Granger causality
for pairs of 264 seed ROIs were obtained for model orders 1, 2, and 3. Colored squares show pairs of ROIs that significantly differed
in forward vs. reverse Granger causality with uncorrected p-value of 0.001 for display. ROIs were ordered from sources to sinks by
mean Z-statistic in each case. B. Spatial distribution of the mean Z-statistic for Granger causality difference to the other 263 ROIs.
Regions shown in red behaved as sources relative to other ROIs and regions shown in blue behaved as sinks relative to other
ROIs. Results are shown for model orders 1, 2, and 3. A gray matter mask was colored based on which of the 264 seed ROIs was
closest to a given voxel.
doi: 10.1371/journal.pone.0084279.g006
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Figure 7.  Stationarity of difference time series from preprocessed BOLD data.  A. Scatterplot shows the mean Z-statistic for
264 seed ROIs with each of the other 263 ROIs for forward – reverse Granger causality. The x-axis values were obtained only from
time series satisfying both KPSS and Dickey-Fuller tests of stationarity. The y-axis values were obtained only from time series in
which the Dickey-Fuller test could not exclude a unit root. B. Mean Z-statistic for each of 264 ROIs with each of the other 263 ROIs
for forward – reverse Granger causality, illustrated in 2 axial slices. These data were obtained only from time series that passed
stationarity tests. C. Similar to above, but obtained from time series that did not pass Dickey-Fuller tests. D. For stationary data,
comparison of mean Z-statistic for each of the 264 seed ROIs that was obtained using two different bandpass filter widths during
preprocessing.
doi: 10.1371/journal.pone.0084279.g007
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acquisitions, shown in Figure 10. For all 7 tasks, a progression
from sources to sinks was seen with sources in the center of
the brain and sinks along the periphery, similar to the resting
state data. Although the Z-scores were smaller for task
acquisitions due to many fewer volumes used in the analysis
than for resting state analysis, the spatial distribution mirrors
exactly what was seen in the resting state condition,
suggesting the dominant Granger causal effect is explained by
the progression from sources to sinks following a vascular flow
pattern.

Discussion

We demonstrate that BOLD Granger causality differences
can be reproducibly measured in large samples of resting state
fMRI data between brain regions. Gray matter regions can be
uniformly ordered from “Granger sources” that Granger cause

other ROIs to “Granger sinks” that are Granger caused by
other ROIs with more sourcelike behavior. These Granger
causal differences show a consistent spatial relationship, with
sources near regions associated with arterial inflow, and sinks
near regions associated with venous drainage.

These data can be explained by considering that the BOLD
signal is fundamentally a measurement of blood flow.
Moreover, the BOLD signal underlying functional connectivity
MRI likely represents synchronized amplitude modulation[42]
or power fluctuations in neural activity over time[43,44] of brain
regions aliased through a hemodynamic filter, resulting in very
slow[45] but temporally correlated signals. It is therefore
plausible that the pattern of blood flow observed in any one
brain region will be recapitulated but temporally delayed at
various points along the venous drainage pathway of the brain,
since the venous drainage will reflect to some extent the same

Figure 8.  Single subject estimates of Granger causality.  Above, Z-statistic for forward – reverse Granger causality for 264 seed
ROIs compared to 7266 target ROIs. ROIs were ordered by mean Z-statistic with the remaining ROIs. The left column shows data
obtained from 50 5-minute resting state fMRI acquisitions, and the right column shows data obtained from 50 5-minute fMRI
acquisitions during passive cartoon viewing. Pseudocolor plot images were thresholded at p<0.001, uncorrected, for display. Below,
mean Z-statistic with the 264 seed ROIs for each of 7266 Target ROIs for 3 axial slices with MNI z-coordinate indicated below the
images.
doi: 10.1371/journal.pone.0084279.g008
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Figure 9.  Human Connectome Project multiband resting BOLD Granger causality.  A. Autocorrelation of time series with error
bars indicating standard deviation across subjects (left) and across brain ROIs (right). B. Average Z-scores for forward – reverse
Granger causality for 80 subjects in 264 seed regions by 7266 target regions matrix. Colored squares show region pairs where a
significant difference was obtained with acceptable false discovery rate q<0.05 across all region pairs. C. Axial slices at MNI z=-10,
10, 30, and 50 showing mean Z-score of each ROI for forward- reverse Granger causality compared to 264 seed ROIs. Images are
in radiological format with subject left on image right.
doi: 10.1371/journal.pone.0084279.g009
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Figure 10.  Human Connectome Project task paradigm data.  Axial slices at MNI z= -10, 10, 30, and 50 showing mean Z-score
of each ROI for forward – reverse Granger causality compared to 264 seed ROIs. The number of volumes used in the analysis for
each subject and the task name are shown at the left. Color scale shows mean Z-score for each ROI.
doi: 10.1371/journal.pone.0084279.g010
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temporal pattern of blood oxygenation seen in the brain regions
drained by the veins.

Previous reports have noted that systematic variations in
end-tidal CO2 associated with depth of respiration can have
significant effects on functional connectivity. For example, it
has been shown that clamping end-tidal CO2 artificially can
improve the specificity of functional connectivity metrics[46].
Attempts to regress out the effects of fluctuations in depth of
respiration have similarly shown improvements in accuracy of
functional connectivity measures[47,48]. Such fluctuations may
be transmitted to the BOLD signal at a variable latency,
resulting in artificial sources of lag in the BOLD signal[49].
Indeed, a map of latency obtained using a breath-hold task [49]
(Chang et al., 2008, Figure 5) identifies similar brain regions to
Granger sinks in Figure 5 of the present report. Our results
extend this literature to indicate that such non-neural lag
sources may be a dominant feature in Granger causality
results.

Such vascular effects are problematic to correct through
preprocessing. In our data, the largest lags are for BOLD
Granger causality differences for regions close to large veins
and dural venous sinuses. Such arterial inflow and venous
drainage has a highly reproducible pattern across individuals
where major arterial and venous distributions are largely
invariant across subjects, giving the illusion of reliable timing
differences between brain regions that may be completely
unrelated to actual differences in effective connectivity.
Significant Granger causality differences in our analysis
persisted despite regression of CSF, white matter, and soft
tissue time series from each voxel designed to reduce the
effects of vascular contamination[28], using a separate
independent component analysis correction technique[34], and
using only minimal preprocessing[31].

Attempts to use measured heart rate and respiratory
waveforms as regressors for BOLD data may improve the
accuracy of directed functional connectivity measurements, but
inherent in these approaches is the problem that the vascular
timing differences on the order of seconds that it takes for
blood to flow from arteries to sinuses are likely greater in
magnitude than neural timing differences for spontaneous brain
activity, so correction must be very precise to allow resolution
of neural timing differences. Lags between BOLD time series
for regions with suspected underlying neural connectivity tend
to be close to zero[50]. Even more problematic, measured
heart rate and respiratory waveforms are recapitulated
throughout the brain at different lags and these lags must be
precisely known in order to remove vascular confounds. The
use of breath-hold techniques to estimate lags may provide
one possible avenue for correction of physiologic artifacts at
varying lags[49]. Large-sample resting fMRI data with relevant
physiologic waveforms are not currently available to test this
possibility.

We also note that this effect is distinct from the previously
described heterogeneity of the hemodynamic response
function(HRF) in the brain[51]. Problems such as variability of
the hemodynamic response function, temporal undersampling
of fMRI data, and sparsely acquired data can likely be
overcome by Granger causality techniques given sufficient

data[22,52,53]. But even if an HRF were perfectly estimated at
each voxel in the brain, the mechanism implied in our data is
that similarly oxygenated blood arrives at variable time points in
the brain independently of any neural activation and will affect
lag-based directed functional connectivity measurements.
Moreover, blood from one region may then propagate to other
regions along the venous drainage pathways also independent
of neural to vascular transduction. It is possible that the
consistent asymmetries in Granger causality measured in our
data may be related to differences in HRF latency in different
brain regions, but we consider this less likely given the simpler
explanation of blood moving from arteries to veins given the
spatial distribution of our results.

Attempts to use lag-based differences in the BOLD signal
have been attempted as a solution to establishing directed
functional connectivity relationships in the brain. There has
been great recent interest in Granger causality methods in
particular, which make use of lag-based information, with over
300 citations per year making use of the techniques[14]. Yet
the use of Granger causality and vector autoregression has
been highlighted as controversial given the difference in timing
of neural activity compared to the slow acquisition rates of
fMRI[13]. Nevertheless, In a study measuring theoretical limits
of temporal accuracy of the BOLD signal, electrical noise was
added to measured BOLD data (TR =1.2 s, 1.5 T scanner),
with results indicating that as signal to noise ratio (SNR)
increased, temporal uncertainty approached 50 ms[54].
Temporal undersampling of the data may present an additional
challenge to Granger causality analysis in fMRI data[22]. The
application of Granger causality techniques to resting fMRI
data has been in increasingly common application in the
literature[55-58], with rapidly developing methodological and
application studies.

Simulations using lag-based methods have proven
ineffective in contrived data at establishing correct directed
functional connectivity relationships[20]. Additional work,
however has shown that the use of group analyses may
alleviate some of these methodological concerns by exploiting
small statistical relationships in BOLD phase, allowing
detection of neural phase differences as small as 100 ms[21].
A subsequent comment noted that although technically
feasible, differences in vascular delays between brain regions
may confound efforts to establish directed functional
connectivity relationships[59]. Our data demonstrate precisely
this scenario, that the dominant feature seen in maps of
directed functional connectivity in the resting state may be
vascular anatomy rather than sequential neural activation,
which may not be simply corrected by regression of vascular
time courses, larger sample sizes, or region-specific
hemodynamic response modeling.

We emphasize that while the use of large-sample datasets
can be a powerful tool for elucidating small statistical
relationships, it also carries the possibility of amplifying sources
of bias. Multisite data such as those studied in this report
include many sources of variability. TR, number of volumes,
experimental conditions, slicing, head motion, magnetic field
strength, and subject population are all variable across sites.
This heterogeneity is both advantageous and problematic
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because some variables may “average out” due to
heterogeneous acquisitions, while others may be reinforced.
For example, we cannot exclude the possibility that a more
controlled dataset may find consistent differences in resting
state Granger causality primarily attributable to sequential
neural activation, whereas only the vascular effects were
robust enough to be seen in our analysis. We have tested this
possibility by additionally examining data from repeated scans
from a single subject, with essentially equivalent results.

Furthermore, it has been demonstrated that temporal
correlations between brain regions are variable over time, as
demonstrated by sliding window correlation methods[60]. There
may be robust Granger causal asymmetries that are temporally
unstable, and may average out during extended acquisitions or
large datasets. Indeed we find that much of typical resting fMRI
data cannot pass the most rigorous tests of stationarity. This
pitfall can be overcome to some extent by considering Granger
causality of the first order difference of BOLD time series, with
essentially equivalent results to the original time series. Further
work will be needed to quantify the magnitude of the vascular
effect we describe in relation to other acquisition strategies,
including resting and additional task paradigms. In data from a
single subject we show that the vascular-derived artifacts we
observed were present in both resting and task-related data,
although the task data was from passive cartoon viewing and
the effects may differ in a task where a simpler paradigm is
repeated consistently. Yet in acquisitions from 7 different task
conditions, the effect was invariant, with strong reproducible
spatial distribution of Granger causal inferences.

It should be noted that much of the data used in this analysis
was acquired in an undirected resting state. It is possible that
during particular cognitive tasks, there may be more consistent
phase delays between brain regions than in the resting state.
For example, in a task paradigm where one brain region tends
to be activated several seconds after another, Granger
causality may more accurately reflect the temporal dynamics of
neural activity while it does not in undirected resting. Other task
based implementations of Granger causality emphasize
differences in lag between two experimental states[11,61] that
may not be as susceptible to the vascular artifacts highlighted
in this report. Still other reports have made conclusions about
sequential network activation using Granger causality in an

explicit task where temporal differences in activation may be
larger than vascular confounds[62]. Nevertheless, these
changes may be superimposed on vascular effects such as
described in this report and require explicit activation of a brain
region, with results only applicable to the particular regions
activated by the task. Such an approach may be difficult to
apply towards generating a directed functional connectome of
the brain. Moreover, in all 8 task conditions we tested, similar
results were obtained to the resting state analyses. Further
work will be required to determine the extent to which explicit
tasks may alleviate the artifacts observed in this report.

Conclusions

We demonstrate using large, publicly-available resting state
and test-retest single subject BOLD datasets that reliable
Granger causality differences in BOLD signal can be measured
between any two brain regions. Nevertheless, these
relationships primarily reflect phase differences attributable to
vascular drainage pathways. Granger causality analyses using
resting state fMRI to evaluate effective connectivity between
BOLD time series in different brain regions should consider the
possible effects of systematic differences in arteriovenous
anatomy and drainage.

Supporting Information

Figure S1.  Granger causality sources and sinks. Target
ROIs were divided into deciles based on mean Z-statistic with
the 264 seeds and shown in animation from Granger causal
sources to Granger causal sinks.
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