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Abstract

Background: Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for
vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be
applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for
vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates.

Methods and Findings: Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might
be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine
could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-
effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized
all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates
included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were
not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other
candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion,
but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using
diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the
most important risk factor.

Conclusion: Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis.
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Introduction

Burkholderia pseudomallei has been the subject of intensive research

over the past decade following its classification by the CDC as a

category B select agent [1]. The potential for this bacterium to

cause clinical disease (melioidosis) after inhalation, coupled with

the low infective dose by this route and the ease with which the

bacterium can be obtained and cultured are characteristics of a

pathogen that might be used for malevolent purposes. Much

recent research on B. pseudomallei has focused on identifying ways

in which the bacterium causes disease with a view to devising

biodefense vaccines, and significant progress has been made in

demonstrating the feasibility of immunization against melioidosis

in animal models [2].

Unlike many of the other biothreat organisms, B. pseudomallei is

also an important cause of naturally acquired human infection.

This organism is present in the environment across much of SE

Asia and N Australia, and infection results from bacterial

inoculation, inhalation or ingestion. Most cases are reported from

NE Thailand and N Australia, although melioidosis has been

increasingly reported in the Indian subcontinent, China, the

Middle East, Africa and South America [3,4]. In NE Thailand,

melioidosis is the third most common cause of death from

infectious diseases, exceeded only by HIV and tuberculosis [5]. In

Darwin, N Australia, melioidosis is the commonest cause of fatal

community-acquired septicemic pneumonia [6]. B. pseudomallei is

inherently resistant to many antibiotics, including first, second and

third generation cephalosporins, aminoglycosides, penicillins and

www.plosntds.org 1 January 2012 | Volume 6 | Issue 1 | e1488



polymyxin [7], making the treatment of melioidosis difficult. The

associated mortality rate is 43% in NE Thailand [5] and 14% in N

Australia [8]. Against this background, there may be an

opportunity to use vaccines devised for biodefense purposes for

the control of naturally acquired infection. Here, we discuss target

populations for vaccination, consider the cost-benefit of different

vaccination strategies, and review potential vaccine candidates.

Methods

Cost-effectiveness analysis of vaccination against
melioidosis

We considered the cost-effectiveness of vaccination against

melioidosis in NE Thailand, though our models could be applied

to other areas of the world where the disease is endemic. We used

a Markov model to estimate cost and quality adjusted life years

(QALYs) as patients transition between different health states

(Figure 1). Table 1 lists the values used for the variables in the

model. Our analysis considered the potential benefits of a

melioidosis vaccine to reduce (i) disease incidence, and (ii)

mortality with varying degrees of protective efficacy for each of

these actions. The protective efficacy (PE) and protective duration

(PD) of the vaccine were assumed to be homogenous for all routes

of disease acquisition. Health benefits were assessed in terms of

QALYs gained [9]. The incremental cost-effectiveness ratio

(ICER) for a QALY gained was compared with the GDP per

capita, which is a proxy measure for the assumed willingness to

pay for a QALY gained [10,11]. We assumed that Thailand was

willing to pay (WTP) $3,000 for an additional QALY gained which

approximates the Thai GDP/capita [10]. Given the uncertainties

surrounding the PE and PD of a potential vaccine together with its

costs and disease incidence in different target populations, results

are presented for a broad but plausible range of estimates for each

of these parameters. The cost-effectiveness analysis was carried out

using Treeage Pro (TreeAge Software Inc., Williamstown, MA,

USA).

Search strategy and selection criteria
We performed a PubMed (MEDLINE) search of the literature

using the keywords ‘‘pseudomallei’’, ‘‘vaccine’’, ‘‘immunity’’ and

‘‘protect’’, and reviewed the available references published

between January 1911 and Oct 2011. The inclusion criterion

used was publication of the vaccine efficacy in humans or in

animal models of melioidosis. Initially, titles and abstracts were

screened. Articles identified as possibly relevant were reviewed as

full text. The reference lists of included articles were assessed for

further relevant publications. To inform discussion on the

development of vaccine candidates, the animal models used for

the vaccine trials were also reviewed.

Results and Discussion

Target population for a melioidosis vaccine
Countries that might consider using a biodefense vaccine for the

control of endemic melioidosis include Thailand and Australia,

where the most reliable estimates of the incidence of melioidosis

are available [4]. The annual incidence of human melioidosis in

NE Thailand and the Top End of N Australia are currently 21.0

and 19.6 per 100,000 population, respectively [5,12]. However,

incidence rates are not uniform within the population, with certain

populations at particularly high risk, including those with diabetes

mellitus, chronic lung disease or chronic kidney failure [5,12]. For

example, the annual incidence rates in diabetics have been

estimated to be 145.7 and 260.4 per 100,000 population in NE

Thailand and N Australia, respectively [5,12]. The annual

incidence rates in patients in N Australia with chronic lung

disease or chronic kidney disease have been estimated to be 102.0

and 119.6 per 100,000 population, respectively [12]. People older

than 35 years are also at higher risk (26.2 versus 4.3 per 100,000

population per year for over or under 35 years of age, respectively)

[5].

High-risk groups could be considered as primary targets for

melioidosis vaccine trials. One disadvantage may be that

generating protective immunity in individuals with such underly-

ing diseases may be difficult to achieve. Furthermore, limiting

vaccination to people with diabetes, chronic lung disease or

chronic kidney failure would only capture around 60% to 70% of

all melioidosis cases [5,12]. In addition, around 15% of patients

presenting with melioidosis have previously undiagnosed diabetes.

An alternative target group would be all people over 35 years of

age residing in an area where melioidosis is known to occur.

Vaccinating this much larger group would be predicted to be less

cost-effective, but would capture the majority of possible

melioidosis patients.

Routes of B. pseudomallei infection and implications for
vaccine development

The commonest routes of B. pseudomallei infection are thought to

be inoculation, inhalation and ingestion [13]. The prevailing

assumption is that most naturally occurring disease results from

percutaneous inoculation [13]. This is largely based on the

observation that people at high risk such as agricultural workers do

not wear protective clothing, work with bare feet, and suffer

repeated minor injuries. In addition, disease incidence increases

during the rainy season when rice farmers have regular and

prolonged contact with contaminated soil and water [8,14].

Although entirely feasible, this association is not supported by

published evidence. A retrospective study performed in N

Australia found that less than one quarter of people presenting

with melioidosis recalled an injury in the preceding weeks [6], and

a case-control study conducted in the same setting found that

exposure to soil was not associated with melioidosis [15].

Inhalation of B. pseudomallei suspended in aerosols generated from

the environment was considered to be an important mechanism

for infection in US combatants during the conflict with Vietnam,

particularly in helicopter crewmen [16]. Published evidence for

inhalation as a route of infection in the general population is

Author Summary

The designation of Burkholderia pseudomallei as a category
B select agent has resulted in considerable research
funding to develop a protective vaccine. This bacterium
also causes a naturally occurring disease (melioidosis), an
important cause of death in many countries including
Thailand and Australia. In this study, we explored whether
a vaccine could be used to provide protection from
melioidosis. An economic evaluation based on its use in
Thailand indicated that a vaccine could be a cost-effective
intervention if used in high-risk populations such as
diabetics and those with chronic kidney or lung disease.
A literature search of vaccine studies in animal models
identified the current candidates, but noted that models
failed to take account of the common routes of infection in
natural melioidosis and major risk factors for infection,
primarily diabetes. This review highlights important areas
for future research if biodefence-driven vaccines are to
play a role in reducing the global incidence of melioidosis.
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limited to several studies from N Australia that reported a shift

towards a higher frequency of pneumonia and severe disease

during the rainy season or following heavy monsoon rains and

winds [17,18]. There is also evidence for ingestion as an important

route of B. pseudomallei infection. Several clusters of melioidosis

cases have been reported from Australia in which a strain of B.

pseudomallei isolated from a common water source was a genetic

match for the strain causing disease in the cluster [19,20]. The

probability of this occurring by chance is small since B. pseudomallei

is genetically extremely diverse [21]. B. pseudomallei has also been

isolated from public water supplies in 11 locations in the Northern

Territory of Australia, genotyped and implicated as a source of

infection in 6 locations [22]. In addition, acute suppurative

parotitis, which is common in pediatric melioidosis patients in NE

Thailand, is presumed to result from direct entry of organisms

present in the mouth. In the absence of information on the relative

importance of each route of infection it is clear that a melioidosis

vaccine for public health purposes should protect against oral,

inhalational and percutaneous challenges.

Cost-effectiveness of vaccination against melioidosis
The model used was based on the effect of a full course of

vaccine, which could be either a single inoculation or multiple

inoculations. Two target populations were considered: (i) all

individuals older than 35 years of age; or (ii) a high-risk group with

diabetes mellitus, chronic lung disease or chronic kidney failure.

We considered situations where protective efficacy (PE) of a

vaccine course ranged from 0 to 100%, protective duration (PD)

ranged from 1 to 15 years, and the cost of a full vaccine course

ranged from $1 to $50 (Table 1). PE was assumed to be

homogenous across the target population.

Figure 2 shows some situations where a vaccine would be

predicted to be cost-effective. With a PD of one year, a vaccine

was only cost-effective in the group with major risk factors

(estimated annual incidence of 150 per 100,000 persons) and

provided that the PE was over 50% and cost was less than $2. If

the PD was 3 years, a vaccine at the same price and PE would be

cost effective in all adults with an average incidence of 25 per

100,000. If the PD was 3 years, PE was 100%, and only high risk

group were targeted, the full vaccine course could rise to $10, and

still represent a cost-effective intervention. A vaccine course that

reduced both incidence rate and mortality of melioidosis by 50%

with a PD of at least 10 years could cost up to $10 in the general

adult population and over $ 25 in diabetics and maintain its cost-

effectiveness.

The potential number of deaths averted and costs associated

with different vaccine target populations in NE Thailand assuming

that the PE of a vaccine was 50% are shown in Table 2. The

estimates are for a single cycle, and so both the costs and potential

number of deaths averted would repeat themselves at the end of

the duration of PE.

Vaccine candidates
We identified 29 studies that examined the following vaccine

types: live attenuated (n = 11), whole cell killed (n = 5), subunit

(n = 9), plasmid DNA (n = 2) and dendritic cell (n = 2) (Figure 3).

All of the vaccine candidates were evaluated in mouse models, but

the B. pseudomallei strains used, doses and routes of lethal challenge

were highly variable (Table S1). Sterile immunity was rarely

reported. Vaccines being developed for biodefence purposes would

need to protect primarily against an inhalation challenge. The

available experimental evidence indicated that this might be

challenging, since the protective efficacy of tested vaccines was

greater against intraperitoneal challenge compared with inhalation

or intranasal challenge (Table S1). Studies of protection following

an ingestion challenge have not been reported.

Live attenuated vaccines
A wide range of attenuated B. pseudomallei mutants have been

reported, and immunization of mice with some of these has

resulted in the induction of protective immunity [23,24,25,26,27,

28,29,30,31,32,33]. Live attenuated mutants of B. pseudomallei have

been shown to be capable of inducing protection against either an

injected or an intranasal challenge, but protection was strongly

dependent on immunization by the same route as challenge (Table

S1). A potential advantage of a live attenuated vaccine is the likely

ability to induce long-term protection against disease [34]. For

example, the live attenuated tularemia vaccine induces cell-

mediated responses which persist for at least 3 decades [35] and

immunity after vaccination with vaccinia virus persists for decades

[36] and possibly for the lifetime of the individual [37]. A live

Table 1. Data used in the cost-effectiveness model.

Inputs Value Sources

Incidence of melioidosis in NE Thailand [5]

- In the general population 21.0 per 100,000 person yrs

- In people older than 35 years old 26.2 per 100,000 person yrs

- In people with diabetes 145.7 per 100,000 person yrs

Mortality rate of melioidosis in NE Thailand 43% [5]

Population of NE Thailand 21.4 million [5]

Willingness to pay for a quality-adjusted life year (QALY) gained in Thailand $3,000 [10]

Parameters Range of parameters

Vaccine efficacy

- Reduction in incidence of melioiodosis 0 to 100% reduction

- Reduction in mortality from melioidosis 0 to 100% reduction

Protective duration 1 to 15 years

Cost of vaccine $1 to $50

doi:10.1371/journal.pntd.0001488.t001

Melioidosis Vaccines

www.plosntds.org 3 January 2012 | Volume 6 | Issue 1 | e1488



attenuated vaccine against melioidosis that induced long-term

protection is likely to be highly cost-effective. However, it may

prove difficult to license a live attenuated mutant for use in

humans in endemic areas. This bacterium has the potential to

cause a potentially life-threatening disease that is difficult to treat,

and one would need confidence that reversion of an attenuated

mutant to virulence was not possible. In addition, there is a

concern that an attenuated mutant might become established as a

latent infection. This is found on observation that B. pseudomallei

can survive for extend periods in the human host, the longest

reported duration of naturally acquired latency prior to clinical

symptoms being 62 years [38]. Concerns over the use of a live

attenuated meliodosis vaccine are heightened by the knowledge

that most naturally occurring cases of disease occur in individuals

who are likely to have some degree of immune dysfunction.

Inactivated whole cell vaccines
Inactivated vaccines are used widely to protect against viral

infections, but there are few examples of inactivated bacterial

vaccines in current use. Inactivated vaccines are relatively easy and

cheap to produce and are capable of inducing protective immunity

that persists for several years. For example, protective immunity

after immunization with inactivated Salmonella enterica serovar

Typhi is reported to persist for at least 30 months [39,40]. A

potential advantage of killed cell vaccines is their ability to present

a wide range of antigens to the immune system. This might be

important when considering the genetic and immunological

diversity of B. pseudomallei. Kill B. pseudomallei has resulted in the

induction of protective immunity [41,42,43]. Killed B. thailandensis,

a closely related but avirulent organism, was able to induce

comparable protection against killed B. pseudomallei [44], and

intranasal inoculation of killed B. pseudomallei plus adjuvant CLDC

(cationic lipid-DNA complex) gave protection from lethal

pulmonary challenge [45]. The main disadvantage of killed cell

vaccines is the potential for short-term but undesirable side effects.

In other killed cell vaccines, these side effects are largely attributed

to the pyrogenic effects of the lipid A portion of lipopolysaccharide

(LPS) [46]. However, B. pseudomallei LPS is reported to be at least

ten times less potent in eliciting nitric oxide and tumor necrosis

factor a from macrophages than LPS from Escherichia coli or

Salmonella enterica [47,48]. In addition, B. pseudomallei LPS is less

potent than enterobacterial LPS in the induction of pyrogenic

activity in rabbits and lethality in galactosamine-sensitized mice

[49]. Thus some of the concerns over the use of killed cell vaccines

for melioidosis may not be justified, although detailed studies with

a killed cell vaccine would be required to confirm the safety and

lack of reactogenicity of such a preparation in animal models and

humans.

Sub-unit vaccines
Sub-unit vaccines incorporate specific molecules derived from a

microorganism and are the aspiration of most vaccine research

programmes. The potential advantages of these vaccines lie with

their increased safety and ability to evoke immune responses only

to the protective antigen rather than to the entire microorganism.

The duration of protection elicited after immunization with a sub-

unit vaccine may differ markedly from vaccine to vaccine and

between different population. For example, polysaccharide

vaccines often elicit short-lived responses, especially in infants

[50]. However, many protein-based vaccines, such as tetanus

toxoid and hepatitis B vaccine, can elicit protective immunity

which persists for at least a decade [51,52].

A range of proteins and polysaccharides have been identified that

induce different degrees of protection against an intraperitoneal B.

pseudomallei challenge in mice [53,54,55,56,57,58,59,60,61]. Of

these, the most protective appear to be LPS, capsular polysaccha-

ride (CPS), LolC protein (an inner membrane protein which forms

part of a lipoprotein export system), an outer membrane protein

Omp85, and Hcp2 (integral surface-associated component of

T6SS). A minority of B. pseudomallei strains produce LPS with an

immunologically distinct O-antigen [62], raising the possibility that

LPS may not induce protective immunity against all strains. There

are no reports of the ability of these individual sub-units to induce

significant protection against an inhalation challenge, which would

be essential for a biodefense vaccine. However, immunization of

mice with outer membrane vesicles, which are likely to contain a

combination of sub-units, can provide protection against a low-level

(5 LD50 doses) inhalation challenge [61]. There is accumulating

evidence, therefore, that subunit vaccines devised for biodefence use

may be suitable for use in populations in melioidosis endemic areas.

Naked DNA and dendritic cell vaccines
There are two reports on the protection afforded by immunisa-

tion with DNA vaccines encoding the B. pseudomallei flagellar subunit

gene, fliC [63,64]. These showed that immunization of mice with

these constructs provided modest levels of protection. However, in

general naked DNA vaccines against infectious diseases have been

weakly immunogenic in humans even though they have promoted

vigorous and effective immune responses in mice [65]. To overcome

these limitations prime-boost strategies have often been adopted to

allow the development of protective immunity [65]. Two studies

have been published on dendritic cells pulsed with heat-killed whole

cell B. pseudomallei [66,67]. Dendritic cell vaccines have been

increasingly evaluated in clinical trials for cancer [68], and there is

still a need to undertake more proof of principle studies evaluating

their utility as vaccines for infectious diseases [69].

Table 2. Cost and deaths averted if a melioidosis vaccinea was implemented in NE Thailand.

Target group Population in NE Thailand Protective duration Deaths prevented Cost (single cycle)

people older than 35 years old ,9.5 million 1 year 612 $48 million

3 years 1838

10 years 6127

people with diabetes ,250,000 1 year 121 $1.3 million

3 years 363

10 years 1209

aThe melioidosis vaccine was assumed to have 50% protective efficacy (reduction of disease incidence by 50% and reduction of mortality rate in diseased patients by
50%) and cost 5 dollars.

doi:10.1371/journal.pntd.0001488.t002

Melioidosis Vaccines

www.plosntds.org 4 January 2012 | Volume 6 | Issue 1 | e1488



Animal models
Suitable animal models of infection will be central to any

melioidosis vaccine development programme. A myriad of

different infection models are available, reflecting the different

forms of disease in humans. Acute disease occurs in some mouse

strains (e.g. BALB/c), and in hamsters with death typically

occurring within 7 days of challenge by the intraperitoneal route.

Challenge of BALB/c mice by the inhalation or intranasal route

results in hyperacute disease, with death within a few days.

C57BL/6 mice are typically 104-fold more resistant to disease than

Figure 1. The Markov model used to assess costs and health gains for a melioidosis vaccine. M denotes a Markov node where individuals
can transition into the subsequent states in each monthly cycle. In each cycle a susceptible patient can be infected and develop a melioidosis
episode, from which they can recover and return to the susceptible state in the next cycle, or die. Patients can also die from natural causes according
to their age specific mortality rates.
doi:10.1371/journal.pntd.0001488.g001

Figure 2. Cost-effectiveness of melioidosis vaccines as determined by incidence, cost, protective efficacy and protective duration. It
was assumed that policy makers in Thailand were willing to pay $3,000 for an additional QALY gained. Areas in blue indicate where the vaccine is
considered cost-effective in the Thai context. The protective efficacy (PE) and protective duration (PD) of the vaccine were considered as
homogenous for all routes of disease acquisition. Percentage reduction of PE in this figure was considered as a combination of reduction in both
disease incidence and mortality rate.
doi:10.1371/journal.pntd.0001488.g002
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BALB/c mice [31], and are more likely to develop a chronic form

of the disease which shows similarities with chronic melioidosis in

humans [70]. Chronic melioidosis can also be observed in BALB/

c mice after low-dose exposure [71,72]. There are two reports of

disease after enteral challenge of mice with B. pseudomallei [73], but

there is a clear need for the further development of animal models

of disease following ingestion of the bacteria.

Diabetic mouse models of melioidosis have not been well

described [74,75], but are highly desirable for evaluating vaccines

for natural infection. Mice can be made diabetic for extended

periods of time by dosing with streptozotocin, and dendritic cells

and macrophages isolated from streptozotocin-induced diabetic

mice have altered abilities to ingest and kill B. pseudomallei [76].

Young diabetic rats were found to be susceptible to B. pseudomallei,

but not adult diabetic rats [74,75], which is not comparable to the

natural situation in humans in which diabetics with melioidosis are

predominantly adults.

Efficacy studies in non-human primates are also likely to be

required for approval of melioidosis vaccine in human clinical

trials. Although mouse models may be useful to screen vaccine

candidates, the patterns of disease and immune responses are often

different from those seen in human. A range of different non-

human primate infection models including marmoset and

macaque are currently being developed, but there are currently

no reported data on the suitability of these models for testing

vaccine candidates.

The form of the disease may also be dependent on the infecting

strain. B. pseudomallei is a genetically diverse genus, and there are

significant differences in the virulence of different strains of B.

pseudomallei, at least in BALB/c mice. There is some evidence of

genetic variation in strains from different continents, suggesting

that it will be important to test vaccines with strains typical of those

encountered by the target population. The finding that some

strains produce an atypical and immunologically distinct O-

antigen means that it may be desirable to test these strains in

efficacy studies. However, the low frequency with which naturally

occurring disease caused by these strains is encountered also

indicates that such testing could be relatively limited. It is of

undoubted importance, however, to identify a panel of B.

pseudomallei isolates that are representative of the genetic diversity

of the bacterium in the range of countries in which the vaccine will

be used. Vaccine efficacy should then be evaluated using this test

panel with the same standard dosages and multiple routes of

inoculation.

Figure 3. Study flow diagram.
doi:10.1371/journal.pntd.0001488.g003
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Concluding comments
We have demonstrated that within a plausible range of

estimates for cost and efficacy, it is possible that a vaccine would

be cost-effective for the prevention of naturally acquired

melioidosis. In Thailand, a vaccine is more likely to be a cost-

effective intervention if used in high-risk populations such as

diabetics and possibly in other at-risk groups such as those working

in rice fields. In countries with a higher GDP, it might be cost

effective to immunize the entire population in endemic areas as

well as tourists or military personnel deploying to melioidosis

endemic areas. The finding that a range of candidate vaccines

achieved partial protection against disease in mice suggests

potential for human use. Reduction in disease severity alone

would be predicted to improve outcome in view of the high

mortality rate and the fact that half of all in-patient deaths in

Thailand occur within the first 48 hours as a result of septic shock.

Additional research is required to investigate the potential

synergies between vaccination, early antimicrobial treatment and

improved care of sepsis in resource-restricted settings. Further

studies are also required to determine whether immunization with

the best vaccine candidates protects against multiple routes of

disease acquisition, is effective in diabetic patients, and not

accompanied by unacceptable side effects.
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