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Abstract

Background: Claudins are membrane proteins that play critical roles in tight junction (TJ) formation and function. Members
of the claudin gene family have been demonstrated to be aberrantly regulated, and to participate in the pathogenesis of
various human cancers. In the present study, we report that claudin-11 (CLDN11) is silenced in gastric cancer via
hypermethylation of its promoter region.

Methodology/Principal Findings: Levels of CLDN11 methylation and mRNA expression were measured in primary gastric
cancer tissues, noncancerous gastric mucosae, and cell lines of gastric origin using quantitative methylation-specific PCR
(qMSP) and quantitative reverse transcriptase-PCR (qRT-PCR), respectively. Analyses of paired gastric cancers and adjacent
normal gastric tissues revealed hypermethylation of the CLDN11 promoter region in gastric cancers, and this
hypermethylation was significantly correlated with downregulation of CLDN11 expression vs. normal tissues. The CLDN11
promoter region was also hypermethylated in all gastric cancer cell lines tested relative to immortalized normal gastric
epithelial cells. Moreover, CLDN11 mRNA expression was inversely correlated with its methylation level. Treatment of
CLDN11-nonexpressing gastric cancer cells with 5-aza-29-deoxycytidine restored CLDN11 expression. Moreover, siRNA-
mediated knockdown of CLDN11 expression in normal gastric epithelial cells increased their motility and invasiveness.

Conclusions/Significance: These data suggest that hypermethylation of CLDN11, leading to downregulated expression,
contributes to gastric carcinogenesis by increasing cellular motility and invasiveness. A further understanding of the
mechanisms underlying the role of claudin proteins in gastric carcinogenesis will likely help in the identification of novel
approaches for diagnosis and therapy of gastric cancer.
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Introduction

Gastric cancer (GC) remains the second most-common cause of

cancer deaths globally. It is one of the most lethal malignancies

and a leading cause of cancer deaths in developing countries, with

overall 5-year survival rates below 20% [1,2].

Studies of GCs and their preneoplastic precursor lesions have

identified several genetic and epigenetic alterations, including

microsatellite instability, point mutations, and loss of heterozygos-

ity (LOH) affecting tumor suppressor genes (TSGs) [3–6].

Nevertheless, the molecular pathogenesis of GC is still incom-

pletely understood.

Epigenetic alterations are extremely important in cancer

development and progression [7]. Transcriptional inactivation of

tumor suppressor genes via aberrant promoter hypermethylation

of CpG islands, causing permanent gene silencing, is a major

epigenetic mechanism of TSG inactivation.

Previously, studies have been published on promoter hyper-

methylation in GCs and their premalignant precursors [8–10].

p16INK4A and p15INK4B were among the first genes to show

hypermethylation in GCs [11]. Our group and others subsequent-

ly discovered hypermethylation of the hMLH1 DNA mismatch

repair gene in GCs exhibiting frequent microsatellite instability

(MSI-H) [12–14]. We also showed that hypermethylation of the E-

cadherin (CDH1) gene occurs frequently in GCs [15].

A pilot microarray-based genome-wide search conducted by our

group, performed to discover novel epigenetically silenced genes in

gastric carcinogenesis, identified claudin-11 (CLDN11), a tight

junction (TJ) protein, as a potential target of epigenetic

inactivation in gastric cancers (unpublished data).

Claudin-11 belongs to the family of claudin proteins, which

contains more than 23 members. Members of the claudin family are

expressed in a highly tissue-specific manner in a variety of normal

and neoplastic tissues [16]. Claudins are transmembrane proteins
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that play crucial roles in TJ formation and function. TJs are

intercellular junctions critical in the paracellular transport of solutes,

as well as in maintaining cell polarity. Tumor cells commonly

exhibit structural and functional deficiencies in their TJs [17].

In recent years, a number of studies have demonstrated aberrant

expression of claudin proteins in various cancer types [18], [16].

Several of these studies found dysregulation of claudin protein

expression via promoter hypermethylation. Hypermethylation-

induced silencing of claudin-7 expression was previously reported

in breast [19] and colorectal [20] carcinomas. Claudin-6 is also

epigenetically silenced in breast cancer [21], while claudins -3 and -

4 are epigenetically regulated in ovarian cancer cells [22,23].

The current study identifies and reports, to our knowledge for

the first time, that the CLDN11 promoter region is hypermethylated

in GC tissues and cell lines. Moreover, while CLDN11 mRNA was

expressed in all primary noncancerous gastric mucosal tissues, as

well as in an immortalized normal gastric epithelial cell line, it was

silenced in all GC tissues and cell lines examined. Interestingly,

siRNA-mediated downregulation of CLDN11 in CLDN11-express-

ing gastric cells was also associated with cancer-related phenotypic

changes, specifically increased cell motility and invasiveness.

Materials and Methods

Cell Lines and Clinical Tissue Specimens
Immortalized human normal gastric epithelial cells (HFE145)

were obtained from Dr. Duane T. Smoot (Howard University) and

GC cell lines AGS, SIIA, MKN28, KATOIII, and SNU-1 were

obtained from ATCC. All cell lines were cultured and maintained

in RPMI 1640 medium supplemented with 10% fetal bovine

serum and 1% antibiotic-antimycotic solution (Invitrogen).

Paired primary gastric normal and tumor tissues were collected

at the Johns Hopkins Hospital (JHH). Specimens were snap-frozen

immediately after resection.

Ethics Statement
Johns Hopkins University (JHU) Institutional Review Board

(IRB) approval was obtained for all the cases included in the study.

Cases were obtained from JHU surgical pathology under JHU IRB-

approved exemption 02-07-19-05e under rule 45 CFR 46.101(b),

which waives the requirements for obtaining patient consent.

Purification and Preparation of Genomic DNA and Total RNA
Genomic DNA was extracted from snap-frozen tissue samples

or cell lines using a DNeasy Blood & Tissue Kit (QIAGEN,

Valencia, CA) according to the manufacturer’s protocol. Total

RNA was extracted with Trizol reagent (Invitrogen). Extracted

DNA and RNA were quantified using a NanoDrop ND-1000

Spectrophotometer (NanoDrop, Wilmington, DE).

Quantitative Methylation-Specific PCR (qMSP) for Claudin-11
Genomic DNAs obtained from 36 patient samples comprising

18 GC and 18 matched noncancerous stomach mucosal (NS)

tissues, as well as from various gastric cell lines, were subjected to

qMSP. qMSP was performed as described previously, with minor

modifications [24]. In brief, bisulfite treatment of genomic DNAs

was performed using an EpiTect Bisulfite Treatment Kit

(QIAGEN, Valencia, CA). An MSP amplicon and TaqMan

probe to detect completely methylated DNA were designed to

include multiple CpG sites in the 59-UTR region of CLDN11 gene.

CLDN11-specific primers and probe sequences used were: forward

primer 59 CGCGATTGGTCGGCGCGTTTC 39; reverse prim-

er 59 GACGAAAACAACAACGCTACT 39; TaqMan probe

59TCGGAGTCGCGGGGTTTAAAGAG 39. CpGenome Uni-

versal Methylated DNA (Chemicon International, Temecula, CA)

served as a positive control, and serial dilutions of it were used to

plot a standard curve. qMSP with TaqMan probe were performed

on an iQ5 thermal cycler (BioRad, Hercules, CA) using iQ

Supermix (ibid.). Fifty cycles of PCR amplification starting with

50 ng of bisulfite-treated genomic DNA were performed in

triplicate, according to the manufacturer’s protocol. Duplex

PCR with b-actin (ACTB) primer and probe sequences containing

no CpGs were performed for normalization. The primer and

probe sequences used were as published previously [24].

Normalized methylation value (NMV) was defined as follows:

NMV = (CLDN11-S/CLDN11-FM)/(ACTB-S/ACTB-FM) * 100,

where CLDN11-S and CLDN11-FM represent CLDN11 methyla-

tion levels in the sample and fully methylated DNAs, respectively,

while ACTB-S and ACTB-FM correspond to b-actin in the sample

and fully methylated DNAs, respectively. Whole-genome ampli-

fied DNA (WGA) was used as an unmethylated negative control.

Quantitative Reverse Transcription-PCR Analysis
The CLDN11 RT-PCR amplicon was designed to overlap an

intron-exon boundary in order to exclude genomic DNA (gDNA)

amplification. Primer sequences were as published previously [18].

One-step qRT-PCR was performed as described previously [24],

using a Quantitect SYBRA RT-PCR kit (QIAGEN, Valencia, CA),

according to the manufacturer’s protocol. CLDN11expression was

normalized to b -actin expression. Total RNA from HFE145 cells

was used for the standard curve. (CLDN11-S/CLDN11-C)/(ACTB-S/

ACTB-C), where CLDN11-S and CLDN11-C represent CLDN11

mRNA expression levels in the test sample and control mRNAs,

respectively, while ACTB-S and ACTB-C correspond to b-actin

expression levels in the test sample and control mRNAs, respectively.

5-Aza-29-Deoxycytidine (5-Aza-dC) Treatment
AGS is a GC cell line manifesting hypermethylation of the

CLDN11 promoter in conjunction with absent CLDN11 mRNA

expression. 5-aza-29-deoxycitidine (5-aza-dC) treatment of cells

was performed as described previously [24]. In brief, the GC cell

line AGS (ATCC catalog number CRL-1739) was seeded at a

density of 26105 cells/ml in a T-75 flask. Twenty-four hours later,

cells were treated with 1 mM 5-aza-dC for 72 hours. Media

containing 5-aza-dC was replaced with freshly prepared media

every 24 hours. Cells were then harvested for total RNA

extraction. Total RNAs from AGS cells before and after 5-aza-

dC treatment were subjected to quantitative real-time RT-PCR

analysis.

Small Interfering RNA Knockdown Experiments
CLDN11-specific siRNA oligos were purchased from Ambion,

Inc. (Austin, TX). The HFE145 cell line, which is CLDN11

positive, was selected to study the effect of claudin-11 knockdown

on migration and invasion properties of gastric cells. Experiments

were conducted as described previously (Agarwal et al., 2005). Cells

cultured in 6-well plates were transfected with siRNA duplexes

using LipofectAMINE 2000 (Invitrogen), following the manufac-

turer’s instructions. Mock-transfections and nonspecific siRNA

duplexes were used as negative controls. Cells were treated for 48

to 72 hours to allow maximum knockdown, after which they were

either harvested for Western blot analysis or used for migration

and invasion assays.

Western Blot Analysis of Claudin-11 in Gastric Cell Lines
Confluent cell cultures were washed with HBSS (Invitrogen)

and whole cell lysates were made using lysis buffer: 62.5 mmol/L

Claudin-11 and Gastric Cancer
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Tris-HCl (pH 6.8), 10% glycerol, and 2% SDS. Protein

concentration was determined using a bicinchoninic acid (BCA)

assay kit (Pierce, Rockford, IL). Twenty micrograms of total

proteins were separated by 10% to 20% SDS-PAGE on Tris-

Glycine gels (Invitrogen) and transferred to polyvinylidene

difluoride membranes (Millipore Corp., Bedford, MA). The

membranes were blocked with 5% nonfat dry milk, washed in

TBST buffer, and probed with an anti-claudin-11 antibody

(Zymed, San Francisco, CA). Blots were then washed and

incubated in horseradish peroxidase-conjugated secondary anti-

body (anti-rabbit IgG: 1:10,000; Amersham Pharmacia Biotech,

Piscataway, NJ). For detection, chemiluminescence was carried

out using an enhanced chemiluminescence kit (Amersham

Pharmacia Biotech).

Cell Invasion and Migration Assay
Invasiveness of siRNA-transfected cells was determined using

Matrigel-coated invasion chamber inserts (24-well-format with 8-

mm pores, BD Biosciences) using a modified Boyden chamber

assay [25]. Cells were cultured to approximately 80% confluency

Figure 1. Promoter methylation and mRNA expression levels of claudin-11 (CLDN11) in clinical specimens. This figure illustrates the
promoter methylation and mRNA expression levels of CLDN11 in paired gastric cancer (GC) and noncancerous gastric mucosal (NS) tissues. A)
Quantitative methylation-specific PCR (qMSP) for CLDN11 in primary tissues. Genomic DNA extracted from 18 GC and 18 matched NS tissues were
subjected to qMSP analysis using MSP amplicon and TaqMan probe designed to include multiple CpG sites in the 59-UTR region of CLDN11 gene.
CpGenome Universal Methylated DNA (Chemicon International, Temecula, CA) was used as a fully methylated positive control. Duplex PCR with b-actin
(ACTB) primer and probe sequences containing no CpGs were performed for normalization. Normalized methylation value (NMV) was defined as
follows: NMV = (CLDN11-S/CLDN11-FM)/(ACTB-S/ACTB-FM) * 100, where CLDN11-S and CLDN11-FM represent CLDN11 methylation levels in the sample
and fully methylated DNAs, respectively, while ACTB-S and ACTB-FM correspond to b-actin in the sample and fully methylated DNAs, respectively. This
one-dimensional scatterplot demonstrates significantly high CLDN11 promoter methylation levels in the GC specimens when compared to the NS
specimens (P,0.001). Whole-genome amplified DNA (WGA) used as an unmethylated negative control did not show any amplification. The P value was
calculated using the paired Student’s t-test. B) CLDN11 mRNA expression in gastric tissues. Total RNA extracted from 18 paired NS and GC specimens
were subjected to CLDN11 specific RT-PCR. CLDN11 mRNA expression was normalized to b -actin mRNA expression in each sample. The P value was
calculated using the paired Student’s t-test. This plot demonstrates that the CLDN11 mRNA expression levels were significantly lower to non-detectable
in the GC specimens, while most of the corresponding NS specimens had detectable CLDN11 mRNA levels (P,0.001). C) 2D-scatter plot of promoter
methylation and mRNA expression values in GC tissues. CLDN11 mRNA expression silencing is associated with promoter hypermethylation in GC
patients. This two-dimensional scatterplot demonstrates NEV values (Y-axis) and NMV values (X-axis) in the 18 paired NS and GC specimens.
doi:10.1371/journal.pone.0008002.g001
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and serum-starved overnight. On the day of the assay, cells were

trypsinized and viable cell counts taken. Approximately 50,000

cells were plated onto the top of each of each filter in serum-free

medium. An equal volume of the same medium containing 20%

FCS was placed in the lower chamber (i.e., the well beneath the

filter) to act as a chemoattractant. Assay plates were incubated at

37uC for up to 48 hrs. Cells that did not migrate or invade

through the pores of the Transwell inserts were manually

removed with a cotton swab. Cells present at the bottom of the

membrane were fixed in cold methanol for 10 min and then

stained with 0.01% crystal violet in 20% ethanol. After 10 min

incubation, the filters were washed thoroughly in water and

suspended in 200 mL of 5% acetic acid and 5% methanol.

Colorimetric readings were taken at OD595. Experiments were

repeated at least three times, with triplicates in each experiment.

To assess cell migration, assays were carried out essentially as

above, except that cells were plated on top of uncoated (Matrigel-

free) inserts.

Statistical Analysis
Statistical analyses were performed using Student’s t-test (SPSS,

version 16), with p,0.05 considered statistically significant.

Results and Discussion

We first tested our hypothesis that the CLDN11 promoter is

hypermethylated and that this hypermethylation correlates inverse-

ly with CLDN11 mRNA expression in primary GC tissues. Paired

primary gastric normal and tumor tissues were collected at the Johns

Hopkins Hospital (JHH). Specimens were obtained immediately

after resection and snap-frozen until use. Only cases obtained with

informed consent as approved by the Institutional Review Board

(IRB) were included in this project. Genomic DNAs were obtained

from 36 clinical specimens, comprising 18 GC and 18 matched

noncancerous gastric mucosal (NS) tissues. CLDN11 promoter

methylation levels in these samples were analyzed using quantitative

real-time methylation-specific PCR (qMSP). Figure 1A displays the

Figure 2. Analysis of promoter methylation, mRNA and protein expression of claudin-11 in gastric cell lines. This figure illustrates the
claudin-11 promoter methylation, mRNA expression levels and protein expression in gastric cells lines. A) Quantitative methylation-specific PCR
(qMSP) for CLDN11. Genomic DNAs isolated from immortalized human normal gastric epithelial cells (HFE145) and GC cell lines AGS, SIIA, MKN28,
KATOIII, and SNU-1 obtained from ATCC were analyzed by qMSP. This Figure illustrates that the promoter region of CLDN11 gene is hypermethylated
in all GC cell lines relative to HFE145 cells. B) CLDN11 mRNA expression in gastric cell lines. Total RNAs from different gastric cell lines were subjected
to quantitative real-time RT-PCR analysis. As can be seen in this figure, HFE145 cells expressed very high levels of CLDN11 mRNA, while all five cancer
cell lines tested had very low or undetectable CLDN11 mRNA expression. C) Western blot analysis of claudin-11 expression in gastric cell lines. Total
cell lysates obtained from various gastric cell lines were probed with the anti-claudin-11 antibody. This figure illustrates that while the immortalized
normal gastric epithelial cell line, HFE145, expressed abundant claudin-11 protein, it could not be detected in various GC cell lines. Anti-b-actin
antibody was used as a loading control.
doi:10.1371/journal.pone.0008002.g002
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normalized methylation value (NMV), i.e., the ratio of methylated

value of the CLDN11 promoter region in each specimen to a fully

methylated control DNA. CLDN11 NMVs were significantly higher

in GC specimens than in their matching NS tissues (P,0.001). To

assess whether CLDN11 promoter hypermethylation in GCs was

associated with silencing of CLDN11 expression, CLDN11 mRNA

levels were measured using quantitative real-time (qRT–PCR) in

RNAs extracted from the 36 specimens used for methylation

analysis. As demonstrated in Figure 1B, normalized expression

values (NEVs) of CLDN11 in GC specimens were significantly lower

than in paired NS samples (P,0.001). This data establishes that

CLDN11 promoter hypermethylation correlates with diminished or

silenced CLDN11 mRNA expression in primary GCs.

Next, we evaluated CLDN11 promoter methylation and

expression in gastric cell lines. Immortalized human normal

gastric epithelial cells (HFE145) and GC cell lines AGS, SIIA,

MKN28, KATOIII, and SNU-1 were studied. All GC cell lines

tested (AGS, SIIA, MKN28, KATOIII, and SNU-1) demonstrat-

ed promoter hypermethylation, whereas no methylation was

observed in immortalized normal HFE145 cells (Figure 2A).
CLDN11 mRNA levels were assessed using qRT-PCR on RNAs

purified from the cell lines, while claudin-11 protein expression

was analyzed by Western blotting. As shown in Figure 2B, all 5

cancer lines exhibited no detectable expression of CLDN11 mRNA

or protein, while HFE145 cells manifested high CLDN11

expression levels. This finding establishes that CLDN11 is

coordinately hypermethylated and downregulated in GC cell lines

relative to normal gastric epithelial cells (NGECs).

To further validate silencing of CLDN11 expression by

hypermethylation, we treated the GC cell line AGS with the

demethylating agent, 5-aza-2-deoxycytidine (5-aza-dC, 1 mM), for

varying time intervals. Total RNAs extracted before vs. after

treatment were subjected to qRT-PCR for CLDN11. As can be

seen in Figure 3, at each time point, CLDN11 mRNA became re-

expressed upon treatment with 5-aza-dC, confirming that CLDN11

is silenced by promoter hypermethylation in AGS GC cells.

Members of the claudin protein family have been implicated in

the regulation of cell adhesion, invasion and migration of cancer

cells [25–27]. Therefore, we next investigated whether CLDN11

influences cell motility or invasiveness. HFE145 cells, which

express abundant CLDN11, were chosen to study effects of

CLDN11 knockdown on the invasive and migratory properties of

gastric epithelial cells. Transient siRNA transfections were carried

out using CLDN11-specific siRNA duplexes. Transfection with

CLDN11-specific siRNA duplexes efficiently repressed claudin-11

protein levels by.90%, whereas expression remained unchanged

in mock- or control siRNA-treated cells (Figure 4A). Cell motility

and invasion assays were conducted on siRNA-transfected cells

using a modified Boyden-chamber assay system [25]. Interestingly,

as shown in Figures 4B and 4C, inhibition of CLDN11

expression in HFE145 cells significantly increased the migratory

and invasive potentials of these cells, respectively.

The current study thus confirms the hypothesis that CLDN11, a

tight junction protein, is silenced in GC via promoter hyper-

methylation, and these data support the involvement of CLDN11

in the control of GC cell invasion and migration.

Promoter hypermethylation is known to be associated with

transcriptional silencing of certain genes. DNA methylation can

interfere with binding of transcription factors whose binding sites

contain CpG dinucleotides. Using the TFSEARCH software

program, we scanned the CLDN11 sequence found to be

hypermethylated in gastric cancer tissues and cell lines, i.e., the

qMSP amplicon (-104 to +4 bases relative to the transcriptional

start site for CLDN11). This scan identified putative binding sites

for Sp1 and GATA-1 and GATA-2. Previous studies have shown

that hypermethylation of promoter DNA contributes to silencing

of CLDN3 and CLDN4 in ovarian cell lines, in part via methylation-

induced disruption of binding of Sp1 to its cognate binding site

(22, 23). In addition, members of the GATA family have been

shown to be positive regulators of CLDN11 transcription [28].

Further studies are now warranted to evaluate whether hyper-

methylation of these sites interferes with the binding of

transcription factors, and how such disruption may influence

CLDN11 gene transcription.

Tumor cells typically exhibit structural and functional deficien-

cies in their TJs [17]. These deficiencies are associated with a loss

of polarity and differentiation. Another important link between

TJs and cancer is a loss of TJ integrity, with consequent leakage or

transport of pro-tumorigenic substances (such as growth factors or

nutrients) into developing tumor cell primordia, promoting tumor

growth [29]. In addition, the loss of polarity, differentiation, and

adhesive properties associated with impaired TJ function in cancer

may be critical in acquiring a metastatic phenotype [30]. Studies

have suggested that anomalies in TJ-associated proteins may

represent epithelial-mesenchymal transition (EMT), thereby

changing the invasiveness and motility of cancer cells.

Modulations in expression of TJ-associated proteins, particularly

claudin proteins, have been shown in a number of cancers. Recent

studies by us and others have shown alterations in claudin protein

regulation in various epithelial cancers [18]. Members of the

claudin gene family are expressed in a highly tissue-specific, as well

as a very developmental stage-specific, manner. In addition,

depending on cancer type, the expression of claudin proteins can

be either upregulated or downregulated in cancer cells. For

example, several claudin proteins are upregulated in colon,

Figure 3. CLDN11 mRNA re-expression in AGS GC cells after 5-
aza-29-deoxycytidine (5-aza-dC) treatment. AGS is a GC cell line
manifesting hypermethylation of the CLDN11 promoter in conjunction
with absent CLDN11 mRNA expression. These cells were treated with 5-
aza-dC, a global demethylating agent. Total RNA from AGS cells before
and after 5-aza-dC treatment were subjected to quantitative real-time
RT-PCR analysis for CLDN11 mRNA expression. The Y-axis represents the
average fold change in expression levels of CLDN11 mRNA after 5-aza-
dC treatment at various time points, when compared with the
untreated cells. AGS cells, when treated with 5-aza-dC, exhibited a
time-dependent increase in CLDN11 mRNA expression up to 72 hrs of
treatment. This restoration of CLDN11 expression after 5-aza-dC
treatment supports our hypothesis that claudin-11 is silenced by
promoter hypermethylation in GC cells.
doi:10.1371/journal.pone.0008002.g003
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ovarian, pancreatic and prostate cancers, while some are

downregulated in breast cancer and head and neck cancers [16,18]

Studies have previously reported changes in expression profiles

of members of the claudin family to be associated with GC. Serial

analysis of gene expression (SAGE) identified the CLDN18 gene as

downregulated in GCs possessing an intestinal phenotype [31]. The

CLDN23 gene is also downregulated in intestinal-type GCs [32].

Conversely, Cunningham et al. reported CLDN4 expression to be

increased in intestinal metaplasia and gastric epithelial dysplasia,

identifying this gene as a marker of GC precursor lesions [33]. In

the current study, we found CLDN11 expression to be downreg-

ulated or silenced in GC via hypermethylation of its promoter

region. Moreover, we found that unlike CLDN18 and CLDN23,

CLDN11 expression was downregulated in GC patient specimens as

well as in cell lines, irrespective of diffuse vs. intestinal subtype.

Claudin-11, also known as oligodendrocyte-specific protein, was

first identified to be specifically expressed in the tight junction

strands of oligodendrocytes in brain and in Sertoli cells of rats and

mice [34,35]. Loss of claudin-11 expression, leading to disruption

of the TJ barrier, is associated with neurological and reproductive

deficits [36]. A recent study reported overexpression and

mislocalization of CLDN11 from the blood–testis barrier in Sertoli

cells to be associated with testicular intraepithelial neoplasia in

men [37]. Data in the current study establishes that CLDN11 is

expressed in normal gastric tissues and immortalized NGECs.

However, its complete functions in normal stomach as well as in

gastric carcinogenesis remain unclear.

In an attempt to explore the possible involvement of CLDN11 in

GC, we studied phenotypic changes associated with silencing of

CLDN11 expression in CLDN11-expressing gastric epithelial cells

Figure 4. Small interfering RNA knockdown experiments. HFE145 cell line, which is claudin-11 positive was selected to study the role of
claudin-11 knockdown on migration and invasion properties of gastric cells. Cells were transfected with CLDN11 specific siRNA oligos. Mock
transfections and nonspecific siRNA duplexes were used as the negative controls. A) Western blot analysis of siRNA mediated claudin-11 knock-down
in HFE145 cells. HFE145 cells were transfected with CLDN11- specific and non-specific control siRNA duplexes, as described in Materials and Methods.
After 48 to 72 hours, total cell lysates were prepared and analyzed for claudin-11 expression. Transfection of claudin-specific siRNA oligos resulted
in.90% reduction in expression of the protein, whereas the levels of claudin protein in the control cells were not significantly altered. B) Boyden
chamber cell invasion assay. The invasiveness of the siRNA-transfected cells were determined using matrigel coated invasion chamber, using a
modified Boyden chamber assay. Experiments were repeated at least three times, with triplicates in each experiment. The data represented here is
the average fold change in invasion of the siRNA-transfected cells when compared with the mock transfections. As is demonstrated in this figure,
siRNA knockdown of claudin-11 leads to an increase in cell invasion of HFE145 cells. C) Two-chamber cell migration assay. The effects of claudin-11
knockdown on migration of the HFE145 cells were compared by measuring the number of cells migrating through the uncoated filters (instead of
matrigel-coated filters). The bars in this figure represent mean fold change in migration of siRNA-transfected cells compared with the mock-
transfected control cells. As can be seen in this figure, a reduction in claudin-11 protein levels is associated with increased motility of the cells.
doi:10.1371/journal.pone.0008002.g004
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(HFE145). Very interestingly, siRNA-mediated knockdown of

CLDN11 resulted in increased cell motility and invasion.

Previous studies have reported cancer-specific phenotypic

changes to be associated with modulations in claudin expression

in various cancer types. Overexpression of claudin-3 and claudin-4

proteins in ovarian cancer cell lines results in increased invasion by

these cells [25]. In colon cancer, increased expression of claudin-1

has been reported, and changes in claudin-1 expression exert

significant effects on the growth of xenografted tumors and

metastases in athymic nude mice [27]. On the other hand,

claudin-7 downregulation in breast cancer has been associated

with increased cellular discohesion and the ability of breast cancer

cells to disseminate [19]. In addition, experiments in pancreatic

cell lines showed that expression of claudin-4 leads to reduced

invasiveness, tumorigenicity, and metastatic potential of these cells

[38]. The reasons for these discrepancies in effect are presently

unclear, but may be related to tissue-specific differences in claudin

function or even to variations in response of different cell lines.

Clearly, members of the claudin family are known to be expressed

in a tissue-specific manner and may exercise divergent effects.

Although in recent years it has become clear that TJs and TJ-

associated proteins have extensive and diverse functional and

physiological activities in normal and cancerous conditions,

molecular mechanisms underlying these activities remain unclear.

TJs are sophisticated intercellular apparatuses capable of recruit-

ing signaling proteins, thereby regulating various cellular processes

including cell growth, differentiation, and tumorigenesis [39], [40].

Claudin proteins directly associate with discrete signal transduc-

tion pathways by interacting with signaling molecules, such as

atypical protein kinase C and Rho proteins, as well as with other

PDZ domain-containing proteins. In ovarian cancer, claudins

modify tumor invasion by regulating MMP activity [25].

In summary, data from the current study identify CLDN11 as a

target of epigenetic modification, as well as a promising biomarker

for gastric cancer early detection, diagnosis, and therapy. These

findings also suggest involvement of CLDN11 downregulation

in carcinogenesis via promotion of cell invasion and motility.

The mechanisms for this phenomenon are subject to further

investigation.
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