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Epigenetic profiles signify cell fate plasticity in
unipotent spermatogonial stem and progenitor cells
Ying Liu1,2, Eugenia G. Giannopoulou3,4, Duancheng Wen5, Ilaria Falciatori6, Olivier Elemento7,8, C. David Allis2,

Shahin Rafii1 & Marco Seandel9

Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During

in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult

spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process

through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters

essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with

histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are

maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like

promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in

SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression

and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic

characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate

plasticity through the epigenome and that both conversion of promoter chromatin states and

activation of cell type-specific enhancers are prominent features of reprogramming.
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A
s the precursors of germ cells, mammalian spermatogo-
nial stem and progenitor cells (SSCs) undergo unipotent
differentiation in the adult male gonad, while still

possessing the ultimate developmental potency to propagate
across generations. During in vitro expansion, mouse SSCs,
despite being unipotent, are uniquely capable of abrogating
lineage commitment and spontaneously converting to multi-
potent adult spermatogonial-derived stem cells (MASCs), which
share many features with pluripotent embryonic stem cells (ESCs)
derived from the inner cell mass (ICM), including the capacity to
induce teratomas and contribute to chimeric animals (Fig. 1a)1,2.
To date, this is the only known spontaneous reprogramming
event that converts unipotent adult stem cells back to a near-
pluripotent state without delivery of exogenous genes or gene
products, which distinguishes it from transcription factor-driven
conversion of fibroblasts to induced pluripotent stem (iPS)
cells3,4. These observations indicate that intrinsic genetic and
epigenetic features are responsible for reprogramming of SSCs.
However, SSC conversion into MASCs is a rare event, and the
underlying mechanisms remain largely unknown.

One possible explanation for the spontaneous loss of lineage
commitment is that SSCs may preserve a latent ESC-like gene
expression programme. Indeed, upon germline specification in
the mouse embryo, somatic genes are mainly repressed in
primordial germ cells (PGCs), while several ESC signature
transcription factors exhibit transcriptional activation and their
expressions are preserved at modest levels in spermatogonia,
which include SSCs in the adult testis5–7. For example, SSCs
express Pou5f1 (also known as Oct4), which forms the core
pluripotency circuitry with Sox2 and Nanog in ESCs to sustain
stem cell self-renewal and control the expression of many
differentiation genes8,9. As the precursors of all subsequent germ
cells, SSCs also express spermatogenesis-specific genes (for
example, Zbtb16, Piwil2, and Piwil4) but repress regulators of
somatic cell development (for example, Foxd3 and Lhx2)10–12.

Among other potential regulators that enable spontaneous
conversion of SSCs into MASCs, the covalent modification of
histones plays a key role in cell-type specification13–16. Extensive
studies have shown that histone modifications are closely
associated with transcription17,18. Notably, trimethylation on
histone H3 lysine 4 (K4me3) at promoters associates with gene
expression, while polycomb repressive complex 2 (PRC2)-
mediated trimethylation on histone H3 lysine 27 (K27me3)
associates with gene silencing18. In ESCs, K4me3 and K27me3 co-
localize at promoters of many developmental genes that control
stem cell differentiation to both somatic and germline
lineages19,20. Therefore, the K4me3þK27me3 ‘bivalent’
modification is suggested to place promoters in a poised state,
while its resolution to a K4me3 or K27me3 univalent
modification state is generally believed to direct gene activation
or complete silencing, respectively, during stem cell
differentiation20. Enhancers also confer cis-regulation to gene
expression by recruiting specific transcription factors, and
enhancer activity is tightly controlled in a cell-type-specific
manner21. The presence of the acetylation on histone H3 lysine
27 (K27ac) at genomic regions is considered to denote active
enhancers21,22.

On the basis of these observations, we hypothesize that the
epigenetic landscape of SSCs is plastic, and under certain yet
unrecognized conditions may cause conversion back to an ESC-
like state. Here we perform transcriptome sequencing (RNA-seq)
and find that MASCs are distinguished from SSCs by reactivation
of somatic lineage-specific genes and repression of spermatogen-
esis regulators. To elucidate the epigenomic regulation underlying
SSC conversion, we describe the results of chromatin immuno-
precipitation followed by sequencing (ChIP-seq) on SSCs and

MASCs to identify changes in transcription-associated histone
modifications at both promoters and enhancers of reprogrammed
genes. This genome-wide study reveals that long-term in vitro-
cultured SSCs, which are capable of unipotent differentiation to all
germ cells in mouse testicular transplantation, closely align with
MASCs and ESCs in global gene expression and histone
modification. In SSCs and differentiating germ cells, unlike
differentiated somatic cells (for example, fibroblasts), K4me3 and
K27me3 co-localize to a significant number of developmental gene
promoters, and half of these promoters are bivalently modified in
both MASCs and ESCs. Notably, in MASCs, which function like
pluripotent stem cells (for example, in blastocyst chimerism),
K27me3 is erased from many genes crucial to early embryogenesis
and stem cell maintenance but is acquired at promoters of most
germ cell-specific genes. These selective epigenetic alterations
closely correlate with gene expression changes and endow MASCs
with an ESC-like promoter chromatin. This phenomenon
distinguishes SSC conversion from fibroblast to iPS cell repro-
gramming, which involves global epigenetic changes and recon-
stitution of promoter bivalency. At enhancer loci, we note that the
germ cell epigenetic ‘signature’ is largely lost in MASCs compared
with SSCs, while ESC-specific enhancers are partially activated
after reprogramming. Notably, unipotent SSCs share substantial
enhancer activity with multipotent MASCs and pluripotent ESCs.
These shared active enhancers are predicted targets of many ESC
signature transcriptional regulators, including the core pluripo-
tency regulators, such as Pou5f1, Sox2 and Nanog. Taken together,
our results reveal the topography of global histone modifications in
mouse SSCs and MASCs, and indicate developmental lineage-
associated epigenetic signature changes before and after sponta-
neous SSC cell fate transitions.

Results
MASCs share their transcriptome and epigenome with ESCs.
We first compared global gene expression among MASCs, ESCs
and iPS cells using hierarchical clustering of RNA-seq results
collected from each cell type (Supplementary Data 1). To ensure
consistent transcriptional profiling, six MASC lines and two ESC
lines of different genetic backgrounds were subcloned and
analysed. The iPS cell lines were generated by doxycycline
induction in E13.5 mouse embryonic fibroblasts (MEFs)
engineered with a polycistronic OSKM 4F2A cassette
(tetO-4F2A)23. Both MASC and iPS cell lines could efficiently
form tri-lineage teratomas, a key criterion for pluripotency.
Consistent with previous studies1,2, MASCs were trans-
criptionally similar to ESCs and iPS cells, but distinct from
differentiating germ cells pachytene spermatocytes24,25 and round
spermatids24,26,27, as well as from cells committed to somatic
lineages, like MEFs28 and haematopoietic stem and progenitor
cells (HSCs) (Fig. 1b and Supplementary Fig. 1A).

To study the epigenetic characteristics of different cell types, we
performed ChIP-seq for selected histone modifications that are
closely associated with transcriptional activation (K4me3 and
K27ac) and repression (K27me3). ChIP-seq results from MASCs,
ESCs29–31, completely reprogrammed MEFs (iPS_MCV81, iPS.1
and iPS.2)32, incompletely reprogrammed MEFs (PiPS_MCV6
and PiPS_MCV8)32 and differentiated somatic29,32–34 or germ
cells24,26,27,35 were collected from our lab or public databases
(Supplementary Data 2). In each cell line, promoters were
interrogated for significant K4me3 or K27me3 modification peaks
with ChIPseeqer-2.0 (false discovery rate (FDR)o0.05)36. We
then generated a statistical vector that evaluates the epigenetic
likelihood of transcription at each promoter, represented by the
peak intensity ratio between the two modifications K4me3 and
K27me3 at the same promoter (see Methods). This vector was
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referred to as the promoter ChIP-seq read intensity ratio for
histone modification (PRIM). Principal component analysis
(PCA) analysis with PRIM values showed that MASCs, like iPS
cells, closely resembled ESCs in terms of global promoter K4me3
and K27me3 modifications (Fig. 1c). This epigenomic similarity
was also identified in PGCs isolated from E12.5–E14.5 embryos
(Fig. 1c (pink)), which have the capability to achieve pluripotency
during in vitro expansion37,38. For comparison, incompletely
reprogrammed MEFs (PiPS_MCV6 and PiPS_MCV8) were
epigenomically closer to MEFs than to iPS cells, MASCs and
ESCs (Fig. 1c and Supplementary Fig. 1B (light green)). Similar
results were observed when we repeated the analyses with only
our in-house cell lines (Supplementary Figs 1 and 2). The
robustness of transcriptomes and epigenomes of individual cell
types was confirmed by the Pearson’s correlation coefficients (r)
between in-house and published data (Supplementary Fig. 3).
Thus, our results demonstrate that MASCs, like fully
reprogrammed MEF-derived iPS cells, closely resemble ESCs
with respect to not only global gene expression but also promoter
histone modification and relative K4me3/K27me3 enrichment.

SSCs are epigenomically similar to multipotent cell types.
In comparison with differentiated somatic or germ cells
in our study, we noticed that the SSC transcriptome was
very close to MASCs, ESCs and iPS cells, irrespective of
genetic background or source of data (Fig. 1b and Supplementary
Fig. 1A (red)). Intriguingly, similar associations were also iden-
tified in our study of the epigenome. PCA analysis with PRIM
from all promoters revealed that in vitro-cultured SSCs were
epigenomically distant from any adult germ cells, including
pachytene spermatocytes24,27, round spermatids24,26,27 and
mature spermatozoa26, as well as from somatic cells like HSCs,
macrophages, quiescent/activated-hair follicle stem cells and hair
follicle transient-amplifying matrix cells34. Notably, the promoter
epigenome of unipotent SSCs closely aligned with multipotent
and pluripotent cells, including ESCs29–31, MASCs and iPS cells32

(Fig. 1c). Similar to SSCs, incompletely reprogrammed MEFs
(PiPS_MCV6 and PiPS_MCV8) were positioned in the PCA
analysis at an intermediate point between MEFs and iPS cells
(Fig. 1c), consistent with their partial reprogramming status, as
has been reported32.
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ESC-like bivalent promoter modifications in SSCs and MASCs.
By using peak detection, we found that K4me3þK27me3
bivalent histone modifications were significantly enriched at
many promoters in SSCs, the precursors of MASCs. In contrast,
this ESC pluripotency-associated epigenetic signature was mark-
edly less prevalent in the adult somatic stem and differentiated
cell types we analysed (Supplementary Fig. 4A and Supple-
mentary Data 3). Notably, bivalent promoters made up over 90%
of the K27me3-marked promoters in SSCs, in stark contrast to
other somatic cell types (Fig. 2a). Similarly, prominent coex-
istence of K4me3 and K27me3 histone modifications was detected
only in multipotent and pluripotent cells (ESCs, MASCs and iPS
cells) or in differentiating germ cells, but not in somatic cells
(Fig. 2a). In somatic and germ cells, bivalent promoter mod-
ifications were mainly enriched at developmental genes that
regulate their committed lineages, respectively. However, a broad
range of embryonic developmental functions were identified in
the bivalent genes in unipotent SSCs, as had been found in ESCs,
MASCs and iPS cells (Supplementary Fig. 4B).

We noticed that over half (1,546/3,016) of SSC bivalent genes
also possessed bivalent promoter modifications in MASCs and
ESCs (Fig. 2b and Supplementary Data 4); such genes regulate
embryonic development into both germline and somatic lineages
(Fig. 2c). Although SSC bivalent genes mainly exhibited low
expression in MASCs, a few were significantly activated in
MASCs (Fig. 2d,e and Supplementary Data 4). Conversely, we
only identified 396 promoters with bivalent modifications shared
among ESCs, MEFs and iPS cells (Supplementary Fig. 5A and
Supplementary Data 4). There were several pluripotency and
early development regulators that carried both K4me3 and
K27me3 modifications in SSCs but only possessed K27me3
modification in MEFs (for example, Fgf4, Foxd3 and Wnt4;
Fig. 2f). Unlike MASCs, iPS cells did not completely establish
bivalency for differentiation, as had been suggested by the
substantial enrichment of developmental functions in the 2,958
bivalent genes only identified in ESCs (Supplementary Fig. 5B).
During cell reprogramming, MEF bivalent genes displayed less
transcriptional bias than those in SSCs (Supplementary Fig. 5C,D
and Supplementary Data 4). These results suggest both that
unipotent SSCs possess a plastic chromatin configuration
characterized by bivalent histone modifications, a feature
conserved with pluripotent cell types, and that bivalent genes in
SSCs are generally poised for activation before converting to
MASCs. These epigenetic characteristics make SSC reprogram-
ming distinct from iPS formation.

Transcriptional alterations following SSC reprogramming. To
elucidate the genomic regulation underlying spontaneous
reprogramming of SSCs, we then focused on 1,651 genes
differentially expressed (42-fold change) among SSCs, MASCs
and ESCs (Supplementary Data 5). Hierarchical clustering based
on gene expression assigned them into two major classes: class I,
738 genes activated in MASCs and ESCs (and relatively
repressed in SSCs); and class II, 913 genes repressed in MASCs
and ESCs (Fig. 3a and Supplementary Data 5). Class I genes
were mainly involved in ESC self-renewal and early embryonic
development towards both somatic and germline lineages
(for example, Pou5f1, Nanog and Fgf4; Fig. 3). Conversely, class
II genes were highly expressed in SSCs and enriched with
regulators of germ cell differentiation and meiosis (for example,
Zbtb16, Piwil2, and Piwil4; Fig. 3). Thus, SSC reprogramming
involved induction of early embryonic genes that function in
ESC self-renewal and differentiation into both somatic and
germline lineages, while expression of spermatogenesis-specific
genes was reduced in MASCs.

Bivalent promoter modification poises gene activation in SSCs.
To understand how the transcriptomes and epigenomes coordi-
nated for cell reprogramming, we then investigated K4me3
and K27me3 modifications at promoters of the differentially
expressed genes among SSCs, MASCs and ESCs. To distinguish
epigenetically repressive promoters (PRIMlow, either K4me3þ
K27me3 or univalent K27me3) from active promoters (PRIMhigh,
univalent K4me3), a specific PRIM cutoff was identified for each
cell type (Supplementary Fig. 6).

We hypothesized that reprogramming of SSCs without
enforced expression of transcription factors would be associated
with concomitant chromatin changes. Strikingly, genes that were
transcriptionally activated in MASCs (class I) largely shared
K4me3- and/or K27me3-marked promoter chromatin between
SSCs and MASCs (Pearson’s correlation with PRIM¼ 0.82;
Fig. 4a). Despite significantly increased expression after SSC
reprogramming, we found that over half of the promoters
that were epigenetically repressed in SSCs maintained low
PRIM in MASCs (107 promoters, referred to as MASCStable I;
Fig. 4a (yellow dots), 4b and Supplementary Data 5). These
MASCStable I genes included many of the bivalent genes found in
SSCs by peak detection (Fig. 4e and Supplementary Data 5), and
mainly function in stem cell differentiation and embryonic
organ development into somatic lineages (for example, Foxd3;
Fig. 4f,g).

We also found a small subset of class I gene promoters that
either changed from a repressive state (SSCs) to an active state
(MASCs), with complete erasure of K27me3 (100 promoters,
MASCActive; Fig. 4a (dark green dots), 4e and Supplementary
Data 5), or acquired de novo modifications, particularly K4me3,
in MASCs (40 promoters, MASCModified; Fig. 4a (light
green dots), 4e and Supplementary Data 5). The MASCActive

and MASCModified subsets included many ESC signature genes
associated with stem cell identity, such as Fgf4 (MASCActive) and
Nanog (MASCModified; Fig. 4f,g). Compared with MASCStable I

genes, MASCActive and MASCModified genes were highly
expressed in MASCs and ESCs, consistent with a strong impact
of chromatin state changes on transcriptional regulation
(Supplementary Fig. 7B). These three types of gene clusters
included the majority of the pluripotency and developmental
regulators activated in MASCs (Supplementary Fig. 7C).

Therefore, chromatin state changes were restricted to only ESC
signature genes (class I, MASCActive and MASCModified), indicat-
ing that promoter chromatin state-associated transcriptional
activation is both selective and gene specific. However, genes
functioning in embryonic differentiation to somatic lineages
maintained their bivalent promoter modifications in both SSCs
and MASCs, consistent with recent observations in freshly
isolated mouse spermatogonia35. Regulation of such genes
during SSC reprogramming could be dominated by
mechanisms that do not affect promoter histone modifications
(for example, transcription factor binding at cell-type-specific
enhancers).

K27me3 marks germ cell-specific gene repression in MASCs. In
contrast to class I, class II included 913 genes that were highly
expressed in SSCs but downregulated in MASCs and ESCs
(Fig. 3a). Correspondingly, most class II gene promoters shifted
from an active towards a more repressive chromatin state after
reprogramming (Fig. 4c). In particular, nearly half of the class II
gene promoters were modified with concomitant de novo K27me3
and decreased K4me3 marks in MASCs (444 promoters,
MASCRepressive; Fig. 4c (dark red dots), 4e and Supplementary
Data 5), encompassing three-fourths of class II gene promoters
that were epigenetically active in SSCs (Fig. 4d). Significant

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11275

4 NATURE COMMUNICATIONS | 7:11275 | DOI: 10.1038/ncomms11275 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


MASC
(3,620)

SSC
(3,016)

ESC
(5,022)

1,546 

1,553 

Bivalent genes 

Reproductive developmental process, GO:0003006  
Ear development, GO:0043583  
Endocrine system development, GO:0035270  
Lung development, GO:0030324 
Heart development, GO:0007507  
Cell–cell signalling, GO:0007267  
Gland development, GO:0048732  
Morphogenesis of an epithelium, GO:0002009  
Embryonic organ development, GO:0048568  
Skeletal system development, GO:0001501  
Pattern specification process, GO:0007389  
Vasculature development, GO:0001944 
Brain development, GO:0007420  
Urogenital system development, GO:0001655  
Eye development, GO:0001654  
Kidney development, GO:0001822 

0

0.2

0.4

0.6

0.8

1
E

S
C

 (
3)

iP
S

 (
3)

M
A

S
C

 (
2)

S
S

C
 (

4)

P
G

C
 E

12
.5

P
G

C
 E

13
.5

P
G

C
 E

14
.5

A
G

S
C

P
S

 (
2)

R
S

 (
3)

S
pe

rm

M
E

F
 (

3)

LS
K

H
S

C
 (

2)

M
ac

ro
ph

ag
e

qH
F

S
C

aH
F

S
C

H
F

TA
CF

ra
ct

io
n 

of
 K

27
m

e3
-r

ep
re

ss
ed

 p
ro

m
ot

er
s 

 

SSC + – + + + – –
MASC + + – – + + –

ESC + + + – – – +

0%

2%

4%

6%

8%

Bivalent genes Univalent and
unmodified genes

%
 S

el
ec

te
d 

ge
ne

s 

Expression change in MASC 

Increase

Decrease
P value < 2.2e–16

SSC

M
A

S
C

Expression of SSC bivalent genes

K4me3 occupancy at K27me3-repressed promoters

Germline Soma Pluri–/multipotent 

5

E
nr

ic
hm

en
t

–5

D
ep

le
tio

n

Promoter bivalent 
Promoter univalent or unmodified 

+
–

SSC 

MASC 

ESC 

MEF 

iPS 

K4me3

K27me3

K4me3

K27me3

K4me3

K27me3 

K4me3

K27me3

K4me3

K27me3

Wnt4 Foxd3 Fgf4 5 kb 

12

10

8

6

4

2

0

0 2 4 6 8 10 12

a c

b d e

f

Figure 2 | ESC-like bivalent promoter modifications are largely preserved in SSCs and selectively activated in MASCs. (a) Fraction of

K4me3þK27me3 bivalent promoters within K27me3-marked promoters. For each cell type with at least three biological replicates (Supplementary Data

2) from different cell lines or resources, results are presented as mean values and s.d.’s. Number in brackets, sample size. Grey dashed line, fraction¼0.9.

(b) Overlap of bivalent genes identified by peak detection in SSCs, MASCs and ESCs (see Methods). (c) GO enrichment in bivalent genes shared in or

unique to SSCs, MASCs and ESCs. ‘þ ’ denotes promoter bivalency detected in each cell type. Enrichment and depletion of specific GO functions (shown

on the right) were measured by hypergeometric P values (log10-transformed). The first column contains genes that do not belong to any of the measured

classes and is used as a control gene list. Red, over-representation; blue, under-representation. (d) Comparison of global gene expression profiles between

SSCs and MASCs. Black dots, SSC bivalent genes identified by peak detection; dashed line, cutoff of two-fold (log2) expression difference between SSCs

and MASCs. (e) Percentage of genes with expression increase (black) or decrease (grey) in MASCs compared to SSCs for SSC bivalent genes (3,016 genes

with both K4me3 and K27me3 modifications at promoters) and SSC univalent and unmodified genes (29,565 genes modified with either K4me3, K27me3

or neither of the two modifications at promoters). P value o2.2e-16 by Fisher’s exact test (one-sided). (f) Promoter modification at selected genes. Green,

K4me3; red, K27me3. K4me3 track range, 0–1; K27me3 track range, 0–0.5.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11275 ARTICLE

NATURE COMMUNICATIONS | 7:11275 | DOI: 10.1038/ncomms11275 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


increases in K27me3 were also observed at promoters that
exhibited both repressive chromatin states and relatively low
expression in SSCs and MASCs (82 promoters, MASCStable II;
Fig. 4c (yellow dots), 4e, Supplementary Fig. 8B and
Supplementary Data 5). These transcriptionally poised genes
(MASCRepressive and MASCStable II) typically regulate embryonic
differentiation towards both germline and somatic lineages
(for example, Zbtb16 and Lhx2; Fig. 4f,g). Furthermore, many
spermatogenesis regulators exhibited substantial reductions in the
K4me3 mark, yielding unmodified promoter chromatin in
MASCs, such as Piwil4 (MASCUnmodified; Fig. 4c (black dots),
4e–g and Supplementary Data 5). Expression of MASCUnmodified

and MASCStable II genes were generally much lower than the
average class II genes in MASCs (Supplementary Fig. 8B).

Thus, the majority of somatic genes with bivalent promoter
modifications in SSCs remained epigenetically repressed in MASCs,
irrespective of their transcriptional activities (MASCStable I

and MASCStable II) after reprogramming. However, most ESC
signature genes and germ cell-specific genes varied their K27me3
modifications at promoters, while a few of them either acquired
or erased K4me3 modification in MASCs. These two histone

modifications significantly affected the promoter
chromatin states of only a small subset of transcriptionally
activated genes (class I), but more prominently affected the
repressed genes (class II).

Reciprocal alterations in enhancer activity in MASCs. We
extended our analysis of epigenetic regulation beyond promoters
by using K27ac ChIP-seq, which marks active enhancers, defined
as intergenic regions with K27ac modification and without
K4me3 modification (K27acþ /K4me3� ).

A total of 5,383 enhancers were found to be active in at least
one of the three cell types (SSCs, MASCs and ESCs) and
were associated with 1,651 differentially expressed genes
(Supplementary Data 6). As predicted, MASCs, having lost
lineage commitment, shared more active enhancers with
pluripotent ESCs (808, ME enhancers) than with unipotent SSCs
(124, SM enhancers; Fig. 5a). These ME enhancers, together with
those only active in ESCs (E enhancers), dominated around
somatic and ESC signature genes activated in MASCs (class I;
Fig. 5b). Conversely, germ cell-specific genes that were repressed
in MASCs (class II) mainly associated with enhancers uniquely
active in SSCs (S enhancers; Fig. 5b).

Of note, over one-third of enhancers active in both MASCs and
ESCs were also active in SSCs (477, SME enhancers; Fig. 5a).
A DNA motif search with HOMER revealed that many ESC
signature transcription factors (for example, Sox2 and Pou5f1)
could bind at these common active enhancers, indicating that an
ESC-like transcriptional programme might be partially active in
SSCs (Fig. 5c and Supplementary Data 7). This notion was
supported by comparison with published ChIP-seq data in
ESCs39,40, demonstrating that the ME and SME enhancers we
identified were highly occupied by many ESC expressed
transcription factors, particularly those at the centre of the
pluripotency circuitry (Pou5f1, Sox2 and Nanog; Fig. 5d,
Supplementary Fig. 9 and Supplementary Data 6). Based on the
ESC data, these transcription factors had the potential to bind at
enhancers near both active genes (Class I) and repressed genes
(Class II) in MASCs, but could preferentially occupy the
promoters of active genes (Class I) (Fig. 5c,d). Conversely, the
promoters of repressed genes (Class II) were potential targets of
ESC differentiation regulators that lose expression in MASCs
(for example, Egr1/2, Rfx1) (Fig. 5c and Supplementary Data 7),
as well as the PRC2 subunit Suz12 that mediates K27me3
modification (Fig. 5d and Supplementary Fig. 9)39,40.

Unlike shared active enhancers in MASCs and ESCs (ME and
SME enhancers), the 1,581 ESC-specific enhancers (E enhancers)
were potential targets of many regulators of late embryogenesis
(for example, Usf1/2 and Gata2/4) but not the core pluripotency
transcription factors (Pou5f1, Sox2 and Nanog), suggesting that
the ESC differentiation apparatus rather than the pluripotency
circuitry could be responsible for the activation of such enhancers
(Fig. 5c,d). We also found the motifs of several transcription
factors (for example, Prdm14 and Foxh1) or signalling regulators
(for example, Smad3) enriched at MASC-specific enhancers
(M enhancers), indicating their potential roles in SSC conversion
(Fig. 5c).

In summary, MASCs underwent erasure of germline-specific
enhancers and partial establishment of enhancers that resemble
those of ESCs. This process would be prospectively enabled by
binding of ESC signature transcription factors. The change in
enhancer activity closely correlated with alterations in expression
of nearby genes and could support SSC reprogramming along
with changes in promoter chromatin state. In contrast to the
regulation at enhancers, bivalently marked somatic gene promo-
ters could be modulated by both PRC2 (Suz12) and target-specific
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Figure 3 | Activation of early embryonic genes and silencing of

spermatogenesis-specific genes in MASCs. (a) Differential gene
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selected and subjected to hierarchical clustering. Right, average expression
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transcription factors, with cooperative effects on active transcrip-
tion or silencing of these genes, respectively, in a cell-type-specific
manner.

Promoter bivalency shared between SSCs and germ cells
in vivo. Recently, global profiling of the germline epigenome
revealed that the K4me3þK27me3 bivalent histone modification
remains stable from the development of embryonic progenitors
through to postnatal germ cells24,41,42. In addition to germ cell-
specific genes, many developmental regulators functioning in
somatic lineages are poised with both K4me3 and K27me3
histone modifications at promoters in PGCs24,42, adult germline
stem cells35, pachytene spermatocytes24,27, round
spermatids24,26,27 and mature spermatozoa26. This epigenetic

feature is therefore suggested to be essential for germ cell identity
and function43. To understand whether long-term in vitro-
cultured SSCs preserve similar poised chromatin as germ cells
in vivo, we compared our K4me3 and K27me3 ChIP-seq results
from cultured SSCs with results of other published studies.

We focused on 3,016 SSC bivalent genes, which were selected
by peak detection as genes with significant K4me3 and K27me3
marks at promoters in at least two SSC cell lines (Supplementary
Data 4). PCA analysis using PRIM values for these promoters
showed that cultured SSCs not only shared similar K4me3- and
K27me3-defined chromatin states with cultured MASCs and
ESCs but also with PGCs directly isolated from embryonic gonads
(E12.5–E14.5)24 (Fig. 6a and Supplementary Fig. 10). We next
investigated histone modification changes at each promoter
within the germline lineage. Using k-means clustering function in
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seqMINER44, SSC bivalent genes were grouped according to
similarity of promoter K4me3 and K27me3 profiles in PGCs
(E12.5, E13.5 and E14.5)24, adult germline stem cells35, pachytene
spermatocytes24,27, round spermatids24,26,27 and mature
spermatozoa26 (Fig. 6b and Supplementary Data 4). Notably,
we found that nearly 90% of SSC bivalent genes (2,644, cluster I)
maintained relatively high K4me3 and K27me3 modifications
from PGCs to spermatozoa (Fig. 6b,c). The increase in K27me3
modification initiated as early as on E13.5 in PGCs, the time point
of sex determination in the embryonic gonad, accelerated in
postnatal testes and persisted at significant levels in spermatozoa
(Fig. 6c). Furthermore, this class of genes was significantly
enriched for developmental regulators that direct the
differentiation of both germ and somatic cells, including Sox2,
Cdx2 and Gata6, among others (Fig. 6d and Supplementary
Fig. 11). The K4me3 and K27me3 patterns at these developmental
genes remained stable in different types of germ cells, but some of
them resolved to K4me3 or K27me3 monovalent chromatin in
somatic cells (MEFs; Supplementary Fig. 11). Importantly, these

germline-poised developmental genes shared similar K4me3 and
K27me3 modification patterns with cultured SSCs, providing
support for the concept that germ cell identity is maintained in
long-term in vitro-cultured SSC cell lines.

Discussion
Here we provide comprehensive genome-wide maps of
transcription-associated histone modifications in cultured
mouse SSCs and their spontaneously converted counterparts
(MASCs). In-depth analysis of the SSC epigenome, coupled with
transcriptional profiling by RNA-seq and motif analysis,
suggested that while the chromatin of somatic gene promoters
exhibits stable bivalency, promoters and enhancers of signature
genes for ESCs and germ cells undergo significant chromatin
state changes after SSC conversion into a multipotent state
(Fig. 7). This epigenomic alteration could play a critical role in
SSC reprogramming. There are several important points that
emerge from our study.

Pattern specification process, GO:0007389  
Morphogenesis of an epithelium, GO:0002009  
Embryonic organ development, GO:0048568  
Vasculature development, GO:0001944 
Brain development, GO:0007420  
Gland development, GO:0048732  
Heart development, GO:0007507  
Endocrine system development, GO:0035270  
Ear development, GO:0043583 
Skeletal system development, GO:0001501  
Lung development, GO:0030324  
Eye development, GO:0001654  
Reproductive developmental process, GO:0003006  
Urogenital system development, GO:0001655  
Kidney development, GO:0001822 
Cell–cell signalling, GO:0007267 

5

E
nr

ic
hm

en
t

–5

D
ep

le
tio

n

Cluster – I II
K4me3
K27me3

PGC

E12.5 E13.5

Spermatogenesis 

SSC
(in vitro culture) 

Common SSC bivalent gene promoters in germ cells (cluster I)

H
is

to
ne

 m
od

ifi
ca

tio
n 

(r
ea

d 
co

un
ts

)

0

1

2

3

4

5

6

P value< 2.2e–16

E14.5
AGSC PS RS Sperm

K4 K27 K4 K27 K4 K27 K4 K27 K4 K27 K4 K27 K4 K27 K4 K27

E12.5 E13.5 E14.5

I 

II 

PGC 
AGSC PS RS Sperm SSC 

Pluripotent / 
multipotent cells

Germ cells

Somatic cells

ESC 
MASC 
PiPS
iPS 

SSC 
PGC 
AGSC 
PS 
RS 
Spermatozoon 

MEF 
HSC, LSK 
Macrophage 
q/a-HFSC, HFTAC 

0.20.180.16

0.2

0.1

0

–0.1

–0.2

0.3
0.1

0.140.12

0–0.2 –0.1–0.3–0.4

SSC.1 
    SSC.2 

SSC.3 

  SSC_SHS15

MASC.3 

MASC.1/2 

PC2 

PC1 

PC3 

Promoter chromatin states (PRIM) of SSC bivalent genes 
ba

dc

Figure 6 | SSCs maintain consistent promoter bivalency with germ cells in vivo. (a) Three-dimensional (3D) PCA plot based on PRIMs of all promoters

with K4me3þK27me3 bivalent histone modifications in SSCs. Different cell types are distinguished by colours as in Fig. 1. (b) k-means clustering of SSC

bivalent genes by similarity of K4me3 and K27me3 profiles at promoters. Green, K4me3; red, K27me3. Cluster I, 2,644 genes; cluster II, 372 genes.

(c) Histone modification profiling at promoters of all cluster I genes as grouped in b. Germ cells include those isolated from testis by fluorescent-activated

cell sorting (left) and SSCs cultured in vitro (right). y axis, average read count within promoter region. Green box, K4me3 modification; red box, K27me3

modification. The bottom and top of the boxes indicate the 25th and 75th percentiles, the central bars indicate medians and whiskers indicate non-outlier

extremes. P values were calculated using Wilcoxon tests. Dashed green line, average read count of K4me3 modification at all promoters in each cell type;

dashed red line, average read count of K27me3 modification at all promoters in each cell type. (d) GO enrichment using iPAGE. Genes are grouped by

promoter K4me3 and K27me3 profiles as in b.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11275 ARTICLE

NATURE COMMUNICATIONS | 7:11275 | DOI: 10.1038/ncomms11275 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


First, transcriptome analysis revealed that SSC reprogramming
involves not only activation of somatic cell- and ESC-expressed
genes but also repression of germ cell differentiation regulators.
During early embryogenesis, many of these activated genes are
expressed in the inner cell mass, the embryonic origin of ESCs,
and are considered to be hallmarks of stem cell pluripotency. This
suggests that SSCs reach a multipotent developmental state
through both recovery of broad embryonic developmental
programmes and erasure of adult germ cell characteristics.

Second, SSCs preserve ESC-like epigenetic features at both
promoter and enhancer regions. In contrast to the differentiated
cell types that we analysed, promoters of regulatory genes
involved in embryonic differentiation maintained K4me3þ
K27me3 bivalent modifications in SSCs as in ESCs. Moreover,
many ESC signature genes were also poised with bivalent
modifications in SSCs. Furthermore, our motif study of active
enhancers shared among SSCs, MASCs and ESCs suggests that
the core pluripotency circuitry is partially active in SSCs. This
unique epigenetic milieu could facilitate a transcriptional switch
in the presence of internal or external stimuli and endow SSCs
with unusual developmental flexibility with respect to lineage
development beyond the germline.

Third, after SSC reprogramming, most pluripotency-associated
gene promoters switch to active chromatin states through erasure
of K27me3 modification (MASCActive) or acquisition of the
K4me3 modification (MASCModified). Conversely, promoters of
germ cell differentiation genes are largely repressed by K27me3
modification (MASCRepressive) or silenced through loss of K4me3
modification (MASCUnmodified). Such a pattern suggests that
H3K4- and H3K27-specific methyltransferases and demethylases
may play active roles in SSC reprogramming, by facilitating
chromatin state changes at selected promoters. Further study of
enzymes that mediate H3K4 and H3K27 covalent modifications,
particularly those specifically expressed in SSCs, may be useful to
improve reprogramming efficiency.

Fourth, somatic genes generally retain bivalent promoter
modifications in MASCs, despite changes in expression after
SSC reprogramming (MASCStable I and MASCStable II). Tran-
scription of these poised genes is potentially regulated by both
PRC2 (Suz12)-mediated K27me3 and by transcription factors at
both promoters and enhancers. Many such transcription factors
undergo significant increases in expression (class I) or decreases

in expression (class II), as well as chromatin state changes during
reprogramming, for example, the core pluripotency regulators
(Pou5f1, Sox2 and Nanog) and several ESCs differentiation
factors. Our results suggest that epigenetic switches could
associate with the expression changes of key transcription factors
and initiate SSC reprogramming, while somatic genes represent
downstream targets of this hierarchical network45. However,
we cannot exclude the possibility that epigenetically poised
somatic genes respond directly to the signalling associated with
reprogramming, and these somatic genes change their expression
levels before the chromatin state changes at pluripotency-
and spermatogenesis-associated genes. Stepwise observations
throughout the entire SSC reprogramming process, together
with in-depth analysis of the transcriptome and associated
epigenome, will be necessary to fully understand the
mechanism of this unique reprogramming event.

Fifth, MASCs are depleted of germ cell-specific epigenetic
signatures at most cis-regulatory regions, instead acquiring
ESC-like promoter chromatin modifications and partially activat-
ing pluripotent ESC-specific enhancers. Because MASCs are
capable of differentiating into all germ layers during teratoma
formation, this finding suggests that promoter histone modifica-
tions, together with enhancers shared between MASCs and ESCs,
are sufficient to support ESC-like tri-lineage differentiation, while
those enhancers that remain silent in MASCs are not essential to
the core pluripotency circuitry but could be induced during
long-term culture. Thus, it will be important to investigate
whether the establishment of fully embryonic-like enhancer
activity improves developmental potency of cells to multiple
lineages. As ESC-like cells derived from SSCs are known to be
inefficient in both chimera contribution and germline trans-
mission, and completely lack tetraploid complementation
ability1,2, one possible solution is to improve the K27ac-defined
global chromatin state in culture by histone deacetylases
inhibitors (for example, valproic acid (VPA))46.

Finally, our study in different types of somatic and germ cells
shows that ESC-like epigenetic characteristics are not only
preserved in long-term in vitro-cultured SSCs but also in
differentiating germ cells and mature spermatozoa in vivo. This
result reinforces the recent reports that a set of developmental
gene promoters are poised with K4me3þK27me3 bivalent
modifications in mammalian germline, from PGCs, the
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but exhibit partially active ESC-specific enhancers (E). In summary, MASCs acquire an ESC-like epigenome at promoters and a subset of ESC-specific

enhancers. Dark blue box, completely active enhancer; light blue box, partially active enhancer; white box, silent enhancer; TSS, transcription start site.
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embryonic progenitors of SSCs, to mature spermatozoa24,41,42.
Our findings in SSCs further confirm the developmental plasticity
of the adult germ cells. Furthermore, our data show that long-
term in vitro-cultured SSCs preserve chromatin modifications at
selected promoters as do germline progenitor cells in vivo.
The remarkable chromatin consistency at developmental gene
promoters suggests that germline epigenome could ensure stable
transfer of epigenetic ‘memory’ to the next generation, despite the
global epigenomic changes in the embryonic gonad and during
meiosis. Further study of these genes with germline-stable and -
specific epigenetic marks will shed light on our understanding of
the initiation of embryogenesis.

Our results offer insight into transcription factor-independent
epigenetic regulation during mammalian cell reprogramming
from a unipotent to a multipotent state and suggest several
strategies to increase SSC reprogramming efficiency. Develop-
ment of novel, transcription factor-free, enforced reprogramming
strategies will greatly benefit stem cell application in the clinic,
and will also shed light on the origin of totipotency during
development.

Methods
Mice. SSCs were prepared from mice over 3 months old from the following strains:
Pou5f1-GFP JAXR (stock number 004654) (OG)47; C57Bl6 (B6), C57Bl6/129S mix
(129mix)2; and Gt(ROSA26)Sor-lacZ (Rosa). All mouse experiments were
performed in accordance with institutional and national guidelines and regulations
including the Weill Cornell Medical College Institutional Animal Care and Use
Committee.

Cell culture. Mouse SSCs were cultured with standard protocol2. In brief,
seminiferous tubules were collected from detunicated testes and minced on ice. The
tissue was enzymatically dissociated with agitation for 30 min at 37 �C in a buffer
containing 0.017% trypsin (Cellgro), 17 mM EDTA (Cellgro), 0.03% collagenase
(Sigma-Aldrich) and DNase I (100mg ml� 1; Sigma-Aldrich). The cell suspension was
then collected and plated in gelatin-coated plate in SSC medium containing StemPro-
34 (Invitrogen) and supplements as follows: D(þ ) glucose, 6 mg ml� 1; BSA, 0.50%;
insulin, 25mg ml� 1 (Sigma-Aldrich); MEM nonessential amino acids, 1� (Gibco);
MEM vitamin solution, 1� (Gibco); penicillin (100 U ml� 1)/streptomycin
(100mg ml� 1)/amphotericin (0.2mg ml� 1) (Media-tech); fetal bovine serum, 1%; L-
glutamine, 2 mM (Media-tech); bovine holo-transferrin, 100mg ml� 1 (Sigma-
Aldrich); b-oestradiol, 30 ng ml� 1 (Calbiochem); progesterone, 60 ng ml� 1

(Calbiochem); putrescine, 60mM (Research Organics); sodium selenite, 30 nM
(Sigma-Aldrich); pyruvic acid, 30mg ml� 1 (Sigma-Aldrich); D(L)-lactic acid,
1mg ml� 1 (Baker); b-mercaptoethanol, 50mM (Gibco); ascorbic acid, 100mM
(EMD); D-biotin, 10mg ml� 1 (Calbiochem); human glial cell-derived neurotrophic
factor (GDNF), 10 ng ml� 1 (R&D Systems); human basic fibroblast growth factor,
10 ng ml� 1 (Cell Signalling); and mouse epidermal growth factor, 20 ng ml� 1 (R&D
Systems). SSC colonies start to appear after about 1 week. The primary SSCs were
then transferred to MEF (Millipore #PMEF-CF)-coated plate and expanded. The SSC
identities of cultured cells were evaluated by several cell surface antigens
(Supplementary Fig. 12). After at least 10 passages, SSCs were collected by gentle
trituration of colonies attached to feeder cells or floating in the medium. To remove
residual feeder cells in the collection, SSCs were plated in gelatin-coated plates in fresh
SSC medium for 2 h. All the floating cells were then gently collected, washed once in
PBS and subjected to ChIP experiments or frozen for RNA isolation.

MASCs were derived from SSC conversion after long-term in vitro expansion with
standard SSC culture procedures. iPS cell lines were generated from E13.5 tetO-4F2A
MEFs as previously described23. Briefly, 5� 105 MEF cells were seeded in each well of
a six-well plate and maintained in standard ESC culture medium with 2mg ml� 1

doxycycline for over 20 days for reprogramming. To establish MASC or iPS cell lines
from corresponding primary reprogrammed cell culture, colonies with typical
undifferentiatied ESC morphology were identified by phase microscopy and
mechanically separated from the plate using Pasteur pipettes. MASCs, ESCs and iPS
cells were maintained using standard ESC culture procedures. In brief, cells were
cultured with MEFs in standard ESC medium containing KnockOut DMEM (Gibco)
and supplements as follows: KnockOut Serum Replacement, 10% (Gibco); penicillin
(100 U ml� 1)/streptomycin (100mg ml� 1)/amphotericin (0.2mg ml� 1) (Media-
tech); L-glutamine, 2 mM (Media-tech); MEM nonessential amino acids, 1� (Gibco);
b-mercaptoethanol, 50mM (Gibco); and ESGRO leukaemia inhibitory factor,
1,000 U ml� 1 (Millipore). All the cells applied to further experiments were serially
passaged and collected within 20 passages.

To expand mouse Lin� HSCs, whole bone marrow cells from C57BL/6J mice
were isolated and Lin� cells were enriched by mouse Lineage Cell Depletion Kit
(Miltenyi Biotec). Purified cells were plated with E4ORF1-HUVECs in X-Vivo
serum-free media (Lonza) supplemented with 10 ng ml� 1 of soluble Kit Ligand

(sKitL) (Biosource)48. Total expanded cells were collected, enriched for Lin� cells
and plated with new E4ORF1-HUVECs feeders every 7 days. Total haematopoietic
cell expansion was enriched for Lin� cells by mouse Lineage Cell Depletion Kit
before collection.

ChIP and antibodies. ChIP was performed as previously described49. Briefly,
1� 107 cells per experiment were crosslinked for 15 min in 1% paraformaldehyde,
washed and lysed. Chromatin was sheared using a Bioruptor to create fragments of
B150 bp (base pairs), incubated with about 2–5 mg antibody bound to 75ml
Dynabeads M-280 (Invitrogen) and rotated overnight at 4 �C, then washed and
eluted. The eluted chromatin was reverse-crosslinked and column-purified.
ChIP was performed using the following antibodies: H3K4me3 (Abcam ab8580);
H3K27me3 (Abcam ab6002); and H3K27ac (Abcam ab4729).

ChIP-seq library construction and sequencing. ChIP samples were prepared for
sequencing using Illumina TruSeq DNA Sample Preparation Kit according to the
standard preparation protocol (http://www.illumina.com/). Sequencing service was
performed on an Illumina Hiseq 2000 sequencer according to the standard Illu-
mina protocol.

RNA-seq library construction and sequencing. RNA was isolated using
QIAGEN RNeasy kit. RNA samples were prepared for sequencing using Illumina
TruSeq RNA Sample Preparation Kit and were sequenced on an Illumina
HiSeq 2000.

ChIP-seq data processing and analysis. ChIP-seq reads were aligned to the
reference mouse genome (mm9, NCBI Build 37) using the BWA programme
(version 0.5.9)50, and PCR duplicates were removed by Picard (version 1.69;
http://picard.sourceforge.net/). Unique reads that mapped to a single best-
matching location with no more than 4% of the read length of mismatches were
kept and used to study genome-wide enrichment of specific histone modification.
Sequence data were visualized with IGV by normalizing to 1 million reads51.
Referenced data sets from publications: GEO repository: GSE12241, GSE47950,
GSE42155, GSE11074, GSE69946, GSE55060, GSE49621, GSE42629, GSE22075,
GSE29278, GSE31239, GSE24165, GSE11431 and GSE19019; Sequence Read
Archive (SRA) repository: SRA097278.

The software ChIPseeqer-2.0 was applied to the ChIP-seq data with sequencing
data from input DNA as control to identify genomic enrichment (peak) of specific
histone modifications36. Promoters were defined as ±2 kb from transcription start
site. The promoter chromatin state was determined by overlapping with significant
K4me3 and/or K27me3 peaks (t¼ 5, with t as the significance negative log P value
(ratio) threshold for peaks) (FDRo0.05). Cell-type-specific bivalent genes were
identified as promoters carrying both K4me3 and K27me3 peaks in at least two
biological repeats of certain cell type. PRIM K4me3 and K27me3 (PRIMs) was
calculated as PRIM ¼ log2 K4me3þ a

K27me3þ a, with K4me3 and K27me3 as average read
counts from K4me3 and K27me3 sequences at the same promoter region and
constant ‘a’ equals to 0.001. Only promoters with detectable K4me3 or K27me3
peaks were evaluated by PRIMs.

An enhancer region was defined as any genomic locus with H3K27ac
enrichment but without K4me3 enrichment (K27acþK4me3� ). To identify
enhancer loci, K4me3 peaks were extended 1 kb each way. All H3K27ac peaks not
overlapping with extended K4me3 peaks, known gene body, transcription start and
end site were selected. Selected H3K27ac peaks within a 500-bp interval were
merged together as enhancers. Enhancer regions identified from SSC, MASC and
ESC21 were merged together. Each enhancer was annotated with all transcripts
within a distance of 100 kb from their transcription start or end sites. Any enhancer
overlap with K27ac peaks in a given cell type was considered to be active in that
cell type.

RNA-seq data processing and analysis. Reads from RNA-seq were aligned to
mouse genome version mm9 using TopHat52, and fragments per kilobase of
transcript per million fragments mapped (FPKM) were identified using Cufflinks
with upper-quartile and GC-normalization53. Duplicate reads and reads aligning
to more than one location were excluded. Gene expression was reported as
log2-transformed FPKM value for a total of 32,581 unique transcripts. With
Limma R package and expression profiles generated in our labs, lists of the
differentially expressed genes in the pair-wise comparisons among SSC, MASC and
ESC were generated. A total of 1,651 genes with at least two folds (log2) of
expression differences and statistical significances (P value o0.05) between any
pair of the three cell types were selected. These gene expression values were used as
input for hierarchical clustering (centred on gene, uncentered on cell type, centroid
linkage) by Cluster 3.0 (ref. 54).

Gene Ontology analysis. Gene Ontology (GO) analysis was done using iPAGE
with mouse GO annotation database55. In all, 31,881 GO terms were examined.
Only non-electronic annotations were used in iPAGE and only categories with
o300 genes were analysed. IPAGE used randomized simulations to ensure
FDRo5%.
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Motif analysis. Enrichment of known motifs within promoter and enhancer
regions was analysed with HOMER with default parameters and a fragment size of
200 bp. All known motifs used in our study were defined by HOMER.

Statistical analysis. Statistical analysis was performed in R (version 3.2.1)
statistical framework56. R packages applied for analysis and graph include limma
(3.20.8), rgl (0.95.1247), gplots (2.14.1), ggplot2 (1.0.0) and VennDiagram (1.6.7).
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