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Abstract

The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the
complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the
network’s topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such
as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have
proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons
in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in
recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons
in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing
activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of
recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees
are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural
network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e.,
firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions
under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic
connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real
data recorded from multiple hippocampal areas in rats.
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1 Introduction

Action Editor: Liam Paninski

The code and the data related to this paper is available at http://rr.

epfl.ch/paper/KSV2017 Reconstructing the connectivity of neuronal networks has

been a major challenge for the past decade. Currently,
the only reliable way to map the underlying synaptic
connectivity of neuronal networks is by using invasive
procedures, which are prohibitively complex and time-
consuming: it took more than 10 expert-year to map the
whole connectome of C. Elegans, comprising only 302
neurons and 7283 synaptic connections (Watts and Strogatz
1998). Similarly, a 10 expert-year effort was required
to capture the connectome of fruit fly medulla columns,
with only 379 traced neurons and 8637 synapses (Plaza
et al. 2014). To map the whole brain of a fruit fly, with
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around 10,000 neurons, we would have to spend around
4700 expert-year (Plaza et al. 2014; Chiang et al. 2011).
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Following the same approach and using the current tech-
nology, it is estimated that it will take around 14 billion
man/year to completely map the human brain’s connectome
(Plaza et al. 2014). Although there is an increasing effort to
make some parts of the invasive procedures automated, such
approaches remain impractical even for mid-sized networks.
Furthermore, the current invasive techniques cannot be
applied to live specimen.

In contrast, inverse methods with the focus on mapping
the functional connectivity from the activity of the neurons
have received more attention in recent years. These
approaches are non-invasive (or minimally invasive) so they
can be applied to live specimen and they require much
less time and labor to identify the functional network.
Furthermore, rapid advances in recording technologies has
made it possible to simultaneously monitor the activities of
tens (Perin et al. 2011) to hundreds of neurons (Buzsaki
2004; Grewe et al. 2010). Upcoming technologies will
significantly improve the accuracy and scale of recording
neurons’ activities. It is worth mentioning that there has
also been significant progress in simultaneously recording
and stimulating a set of neurons (Khodagholy et al. 2014;
Herrera and Adamantidis 2015; Bertotti et al. 2014). These
advancements provide an abundance of data for which
computationally efficient and accurate inverse algorithms
would be welcome.

In this paper, we focus on the inverse problem. Our main
goal is to design efficient and scalable algorithms that result
in good approximations of the underlying synaptic graph. In
other words, we are interested in algorithms whose inferred
functional network is a close match to that of the underlying
synaptic connectivities for a group of Leaky Integrate-and-
Fire (LIf) neurons (Gerstner and Kistler 2002).

To this end, we apply a technique, usually known as the kernel
method in the machine learning literature, to map the non-
linear inference problem to a linear equivalent in the kernel
space. Then, we formulate the network inference problem
as an instance of a constrained optimization problem where
the objective function has a simple form and the constraints
are all linear. As a result, we develop an algorithm that
easily scales to large datasets of recorded neural activities.
Moreover, we mathematically analyze this mapping and
derive the conditions under which our proposed algorithm
successfully identifies the type of underlying synaptic con-
nections (e.g. being excitatory/inhibitory) in the limit of
large available data.

We also show that the proposed technique is equally
applicable to networks of both deterministic or stochastic
neurons that follow the widely used LIf model. We
support our theoretical findings with an exhaustive set
of simulations where we validate the performance of our
algorithm with respect to the ground truth networks (in
artificially generated spiking data where the ground truth is
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available). We also report the result of our algorithm applied
to a datatset of firing activities recorded from hippocampal
areas in rats (Mizuseki et al. 2013). We find that our results
are quite in line with previous findings (Mizuseki et al.
2009).

Figure 1 summarizes the main computational framework
of this paper: in Fig. 1a we show that in the limit of large
data, the proposed algorithm can successfully identify the
type of synaptic connections, whereas Fig. 1b demonstrates
the memory/CPU footprint of the proposed approach
compared to that of the approach based on Generalized
Linear Models (GLM) (Zaytsev et al. 2015).!

2 Related work

Solving inverse problems and trying to reverse engineer
neural circuits have long been one of the main research top-
ics in neuroscience. On a single neuron scale, characterizing
neurons response and predicting its output spikes based
on the input stimuli has been one of the highly explored
issues and methods based on white noise analysis have been
used extensively with remarkable results (see Pillow and
Simoncelli (2003) for a recent example). Methods based on
integrate-and-fire model for neurons have also been exten-
sively used to infer mathematical models of neural circuits
using the pre and post-synaptic data. Lazar and Slutskiy
(2014) is a nice example of such approaches, where the
Hodgkin-Huxley model is used to identify the neural circuit.
Nevertheless, this approach requires that the pre and post
synaptic measurements of the target neuron be available.
Moving to identifying the network connectivity, Cross
Correlogram is perhaps the most widely-used method to
identify (functional) connection between pairs of neurons or
regions (Brown et al. 2004). However, approaches based on
Cross Correlogram usually fall short of identifying causal
relation or effective connectivity of neurons. It is very well
established in statistics that the existence of correlation
between two events is neither a necessary nor a sufficient
conditions for inferring causality. This is why statistical
hypothesis tests such as Granger causality measure were
proposed as an alternative in order to overcome the
drawbacks of Cross Correlogram (e.g., Kim et al. (2011)).
Another recent line of work has primarily focused
on inference methods that are tailored to LIf model of
neurons. In particular, Van Bussel et al. (2011) convert
the non-linear firing behavior of LIf neurons into a set of
linear equations, which can be solved given a sufficient
number of recorded samples. While being efficient, this
algorithm is highly sensitive to the accuracy of spike times

I'We sincerely thank Dr. Yury Zaytsev, Prof. Abigail Morrison and Dr.
Moritz Deger for making their data and code publicly available.



J Comput Neurosci (2018) 44:253-272

255

Precision
0.75

0.25

0.75
0.5

0.25

Excitatory  Inhibitory Void

[[] The proposed algorithm (PARALLEL DUAL NEUINF)

- The algorithm proposed in (Zaytsev et al, 2015)

a Precision and Recall

Fig. 1 Performance of our proposed algorithm in identifying the fype
of neural connections in a network of 1000 LIf neurons for a dataset
of artificially generated spiking activities (courtesy of Zaytsev et al.

and relies on the knowledge of model parameters (e.g.
synaptic propagation delays) which are difficult to obtain.
Memmesheimer et al. (2014) and Baldassi et al. (2007)
proposed an inference algorithm based on the Perceptron
learning rule. Furthermore, Memmesheimer et al. (2014)
proved that under accurate estimate of spike times it is
possible to identify a simple n-to-1 feed forward network.
They also proposed a heuristic extension that works with
finite precision in recorded spike times. Nevertheless, their
model does not take the (random) synaptic delays into
account. Moreover, having extra post-synaptic neurons even
in a simple feed forward scenario can have a dramatic
effect on the performance of the inference algorithm when
the structure of the graph (i.e., here being feed-forward) is
not known a priori. In Monasson and Cocco (2011) two
Bayesian approaches are proposed to find the connections
in a network of LIf neurons. Nevertheless, the proposed
approaches do not account for the (random) synaptic delays
as well as the effect of hidden neurons. Furthermore, the
algorithm highly depends on accuracy of the recorded spike
times.

A more complex and accurate family of approaches rely
on Generalized Linear Models (GLM) (Paninski 2004).
These methods consider the collective activity of the neural
group and focus on finding the best functional network
that can explain the activity. GLM was recently used in
reconstructing a real physiological circuit from recorded
neural data (Gerhard et al. 2013) as well as reconstructing
the functional connectivity for the ganglion cells in the
retina (Pillow et al. 2008). The approaches that are based on
GLM are generally accurate (i.e. they identify the correct
set of connections in the underlying graph) provided that
the neural model used to generate the spike data matches
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(2015)) (a) and the memory/CPU footprint of our proposed algorithm
compared to a similar approach proposed in Zaytsev et al. (2015) over
the same dataset

exactly the one used in GLM (Ramirez and Paninski 2014).
Extending these methods to exploit the prior distribution on
the neural connections results in effective Bayesian models
that are especially powerful in the face of limited data. In
particular, Stevenson et al. (2009) proposed a Maximum a
Posteriori (MAP) estimate to infer the neural connections
and reported highly accurate results in limited data regime
at the expense of very high computational costs. Bayesian
approaches have also been used in identifying connections
directly from calcium-imaging data (Mishchenko et al.
2011).

In light of the aforementioned advantages, GLM-
based techniques are among the favorite state-of-the art
approaches. Nevertheless, they are not without limits. The
first and probably most important drawback is scalabil-
ity, which makes handling large datasets, both in terms of
number of neurons and duration of recorded firing activity,
difficult. Recently, however, several approximations have
been suggested to resolve this issue (Ramirez and Paninski
2014; Zaytsev et al. 2015). Nevertheless, these approxi-
mations work only for a particular choice of nonlinearity
(Zaytsev et al. 2015) and similar to GLM-based techniques,
the convergence is only guaranteed when the model for neu-
rons and that of GLM’s closely match each other. Soudry
et al. (2015) have proposed an approach that covers a wider
set of nonlinearties to overcome this issue to some extent.
However, random synaptic delays have not been addressed
and no guarantees are provided on the performance of the
proposed method.

Close to GLM-based methods are recent approaches
that model the stochastic firing rates by a Hawkes point
process. In contrast to a (homogenous) Poisson process,
which assumes that events occur independently of one
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another, in a Hawkes process past events can increase
(e.g., excitation of neurons) or decrease (e.g., inhibition
of neurons) the probability of future events. Based on
this parametric assumption, Moore and Davenport (2015)
identified the connections in a medium-sized network
while assuming that the traffic is generated according to a
Hawkes process. Similarly, Hall and Willett (2016) aimed
at inferring the connections as well as predicting the firing
rate of neurons based on their past firing activity through
an online learning algorithm. Nevertheless, both methods
heavily rely on the assumption that the traffic is generated
according to a Hawkes process, whereas we make no such
statistical assumptions. Moreover, neither of the approaches
take the effect of hidden neurons into account or evaluate
the performance of their algorithms in scenarios where
inhibitory connections are present.

In this paper, we propose a novel learning approach
in identifying the functional connections which offers the
following properties:

1. Scalability: from a practical point of view, it allows
better scalability (in contrast to previous work), i.e.,
it requires less memory and can scale with limited
resources available (see Fig. 1).

2. Performance guarantees: from a theoretical point of
view, its performance guarantees hold under a larger
family of neurons and nonlinearities.

3. Hidden neurons: the simplicity of the approach also
enables us to derive the sufficient conditions under
which the estimated functional network returned by our
algorithm is not affected by the existence of hidden
neurons and matches the underlying synaptic graph in
the limit of large data.

Finally, we should mention that the consistency problem
even for a n-to-1 feed forward network is NP-hard. In
words, determining whether or not there exists a set of
delays and weights such that we can fully match the
set of input firing patterns to the output is very difficult
(Maass and Schmitt 1999) . Although this result does
not necessarily imply that finding such a configuration is
impossible (under the right set of conditions), it shows that
finding provable positive learning results” for the case of
spiking neurons is quite challenging.

3 Model formulation and problem statement
We formally introduce the neural models and the network
structures considered throughout the paper. We also

formally state the network inference problem.

Neurons’ model We first consider a network of determinis-
tic but noisy Leaky Integrate and Fire (LIf) neurons with a
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fixed firing threshold 6 (Gerstner and Kistler 2002) . In this
model, the membrane potential of a given neuron at time ¢
is described by

n
ho)=ho+ ) giKi(t) + (), M
i=1
where hg is the baseline voltage, g; is the actual synaptic
weight (i.e. the ground truth) of the incoming connection
from the pre-synaptic neuron i, K;(¢) is the accumulated
effect of neuron i on the post-synaptic neuron at time ¢, and
v(t) is an additive ’noise” (the noise term can be the result
of different parameters, such as thermal fluctuations).

The form of K;(t) in Eq. (1) depends on the choice
of the kernel (or filter) for the membrane potential of the
considered post-synaptic neuron. For instance, if we choose
an exponentially decaying filter, then

i
K= Y e wm o, )

tf€77,lf§tfdi

where 71, is the membrane time constant, d; is the
propagation delay between neuron i and the post-synaptic
neuron and 7; is the set of firing times for the pre-synaptic
neuron i.

The output, also called the activity, of the post synaptic
neuron at time ¢ will be

y(@) = f(h(t) —0),

where f(-) is the Heaviside step function and 6 is the firing
threshold. We also assume that after a firing, the membrane
potential is reset back to the resting potential /.

Another model of neurons that we also consider in this
paper is the stochastic LIf model where the membrane
potential is explained by Eq. (1) as before but the post-
synaptic neuron’s activity is stochastic and is given by the
following probability:

Pri{y(t) = 1} = fs(h(r) — 0). 3

Here, f;(-) is an increasing function of its argument. There
are several choices for f;(-) proposed in the literature in
which the logistic function is perhaps one of the most
popular. In this paper, however, we do not specify a
particular function and only require that the function f;(-)
is increasing in its argument.

Network model As for the network structure, we do not
assume any specific topology on the neural graph. However,
as is the case in many neural networks, we require a
balanced network in terms of excitatory and inhibitory
connections. This requirement ensures that the excitatory
and inhibitory population act in such a way that the average
activity stays below a threshold.

In that regard, we usually pick 80% of connections
to be excitatory and 20% to be inhibitory. For numerical
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Fig. 2 Network model: a recurrent neural network where we try to
identify the incoming connections of node b by observing the spike
trains x1 (), ..., x5(¢) and y(¢). Here we assume that edges have ran-
domly chosen propagation delays and neurons can be excitatory or
inhibitory. Note that there are some "hidden” neurons (shown in gray)
in the network as well and whose spiking activities are not recorded
but they affect the membrane potential of the observed neurons. After
applying some kernel” to account for the integration and leak in the

results, we set the weights of all excitatory connections to
be +1mV and that of an inhibitory connection to —émV,
where § = nexc/Rinh, and nexe and nj,y, are the number of
excitatory and inhibitory connections in the network. Also,
in accordance with biological data and following Dale’s
principle (Dale 1935), we fix the type of neurons to be
either excitatory or inhibitory, which means all outgoing
connections of a pre-synaptic neuron have the same sign. 2
We also assume that neural connections have intrinsic
delays which represent the time it takes for the information
to propagate through the axons and synapses. The delay for
each link is assumed to be a random number in the interval
(0, dmax], where dmax > 0O is the maximum delay. The
delays do not change, once assigned, they remain fixed.

Problem statement The goal of this paper is to propose
a scalable learning algorithm that infers the (functional)
connectivity matrix only by observing the firing activity of
the neurons. Ideally, such an algorithm should be able to
explain the observed firing activity as accurately as possible.
Nevertheless, the ultimate goal of connectome mapping
approaches is to identify the synaptic connectivity. As a
result, we study the conditions under which the identified
functional connectivity is a close approximation of the
underlying synaptic connectivity. Specifically, we would

2Note that Dale’s law was only applied in generating firing data during
numerical analysis and was not considered in designing the inference
algorithm to identify the functional graph as it makes parallelization of
the algorithm very difficult. Also previous work suggest that the effect
of Dale’s law on the performance of the inference algorithms is usually
marginals

y(t)

k(¢
-
Kernel NN\ — InferQnCC
Technique *3(1) Algorlthm
dob-
vq\l)
NN

ks (2)

membrane potential, we look for the set of weights that result in the
best prediction of the output firing pattern, y(¢). The result will ideally
be as shown in Part 3. Note that in this paper we are not interested in
reconstructing the exact weights (shown in Part 1 through the thick-
ness of the lines), but to tell if two neurons are connected to each other
and, if so, what the connection type is. If we repeat these steps for the
incoming connections to other neurons, which can be done in parallel,
we will get the complete connectivity graph

like to design algorithms in order to identify the fype
of neural connections. In other words, an ideal inference
algorithm should be able to find out if neuron i has a
directed synaptic connection to neuron j, and if so, whether
the connection is excitatory or inhibitory. Furthermore, this
goal should be achieved by only observing the recorded
firing activity. Figure 2 illustrates the model and the
problem considered in this paper.

4 The inference algorithms

We propose an iterative inference algorithm to identify the
functional connections in a network of neurons based on
their firing activity. To better explain the algorithm, we
first study the simpler case of deterministic LIf neurons, as
described in Eq. (1). We then show in a later section that
how the proposed algorithm can be naturally extended to
deal with stochastic neurons as well.

To start, let us assume that we are interested in
identifying the incoming connections to one post-synaptic
neuron (e.g. neuron b in Fig. 2). The following procedure
can be then applied to every single neuron. In that case, note
that we can re-write (1) in a vector form as

u=Kg+v, 4

where u € RT*! is a vector whose z-th entry is u, =
h(t) — ho, K € RT*" is a matrix whose (¢, i)-th entry is
K:i = Ki(t), g € R™! is the vector of actual synaptic
connection weights (i.e., g = [g1, - . ., gn]T) and v € RT*!
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is the noise vector. Without loss of generality, we assume
hp=0and 6 = 03. Now, let us define

+1ify(t) = 1;

—1ify(t) = 0; )

y@) = {
where y(r) is the state of the post-synaptic neuron at time ¢.
This way, we know that

Kig+v() >0, Ve:31) >0

and

K:g+v(t) <0, Vi:3(@) <0,

where K; is the ¢-th row of matrix K. By letting
Yryr = diagG(D), ..., 5(T)),

we can rewrite the above constraints in a matrix form as
follows

l?(Kg+v)>0, (6)

where 0 is the all zero vector and the inequality is entrywise.
Equation (6) is the cornerstone of our proposed algorithm.
In order to find the neural connections, we aim to solve the
following optimization problem

Problem I: H}}}n lwlle st YK'w>0. )

Basically, by knowing the matrix Y and the firing activity
of neurons, we will look for the smallest vector vector w (in
£-norm) that satisfies a set of constraints.

Also note that we used a different kernel matrix K’,
which may or may not be the same as the true kernel matrix
K, depending on our prior knowledge about the underlying
neural model.

We will show that in scenarios where the original
problem is feasible, i.e., when Kg > 0, as long as K’ and K
are close (in some precise algebraic sense) then by solving
Problem I, given by Eq. (7), we will be able to find the
type/sign and the location of non-zero entries in g, the vector
of the underlying synaptic neural connections.

In practice, however, due to incoming traffic from hidden
neurons as well as large membrane noise, Problem I
may be infeasible, i.e., the constraints define an empty
set. Therefore, to design a more practical algorithm we
reformulate the problem as follows:

Problem II: min |wll, + Y  L(Aw), ®)
w p

where A; is the ¢-th row of matrix A, defined as A = YK’ ,
and L is a convex loss function that penalizes unsatisfied
constraints. This way, we look for a regularized solution w*.

3Both these terms can be easily integrated into the weight vector by
appending a separate entry to the vector g and the kernel matrix K. We
focus on the case where 6 = hy = 0 for simplicity.
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Note that for a proper choices of £ (e.g. £ > 1), the above
problem is convex. The regularization helps the algorithm
prevent overfitting as well as obtaining a more biologically-
realistic set of weights, e.g. more sparse. However, the
degree of regularization should be tuned as well since if we
put more emphasize on regularization than the cost function
and regularize the weights too much, the performance in
predicting spikes will suffer.

There are many choices of loss functions used in the
literature. One of the most well-known is hinge-loss, i.e.,

L(x) = max(0,1 — x).

For the rest of the paper, we will use the hinge loss as it is
well-suited for our learning algorithm and there is a wealth
of optimization techniques for efficiently solving the above
regularized optimization problem.

4.1 Centralized inference algorithms

To solve Problem II, given by Eq. (8), we propose two
different online approaches, with emphasis on scalability
and capability to deal with limited memory.

The first approach is an extension of the Perceptron-
based algorithm we proposed in Karbasi et al. (2015) and
focuses on solving the primal problem. In the proposed
approach, we choose ¢ = 1 to favor sparsity in the
connections. Then, by noting that the sub-gradient of the
hinge loss function contains

, _ | —=1if L(x) > 0;
L) = { 0 otherwise;

we derive the following update rule at iteration 7 of the
algorithm:

w(t +1) = w(r) + yL(Aw(t)A],

where y is the learning rate.
Now, to take care of the sparsity regularization, let
F(x, n) be the following soft-thresholding function

x —nifx >n,
x+nifx < —n, ©)]
0 if |x| < n.

Fx,n) =

Previous studies have shown that iteratively applying the
soft-thresholding function above to our estimates w(t) will
result in a sparse solution (Wright et al. 2009; Goldstein
et al. 2014). As a result, and by putting these steps
together, the proposed approach, called NEUINF, is shown
in Algorithm 1.
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Algorithm 1 NEUINF

Algorithm 2 DUAL NEUINF

Input: The observations matrix A over period T, a
maximum number of iterations S, sparsity threshold 7,
learning rate y, initial vector w(0).
Output: Connections belief vector w
fort=1— Sdo
Picki € {1, ..., T} at random
Set (1) = w(t) + y L(Ajw(T)A],
Setw(t + 1) = F(w(r), n).

end for

Return w(S).

The second approach is based on solving the dual form of
Problem II using the (Stochastic) Dual Coordinate Descent
method. This particular formulation is specially interesting
from the scalability viewpoint, as discussed in Jaggi et al.
(2014). To this end, and to facilitate the formulation, we
choose £ = 2 in this approach and use the soft-threshold
function to trim the entries of the returned weight vector.
To formulate the problem in its dual form, we use Fenchel’s
conjugate of the loss function and the regularization term.
The Fenchel dual of the £>-norm is itself and that of the
hinge loss is given by

x if —1<x<0;
oo otherwise.

L*(x) = {

Therefore, we can formulate the dual problem as Jaggi et al.
(2014):

max E(A) = —c|ATAIZ =) L*(=)
T 1Al Z ,

= —cllATAIZ+ D h (10)
t

where A € RT*! is the vector of the dual variables and c is a
positive constant to control the extent of regularization. By
solving the above problem for the optimal dual variables,
A*, we can then find the optimal set of weights as

w* = ATA" (11)

Thus, we can solve Problem II using the Stochastic Dual
Coordinate Descent (SDCD) technique. The details are
given in Algorithm 2 (DUAL NEUINF). One strong point of
the coordinate descent method is that it does not require to
tune the learning rate as the decent step size, indicated by
variable AA, is selected automatically in the algorithm. This
auto-tuning makes DUAL NEUINF particularly attractive
from the practical point of view.

Input: The observations matrix A over period T, a
maximum number of iterations S,sparsity threshold 7,
initial vectors w(0) and A(0).

Output: Connections belief vector w
fort=1— Sdo

Picki € {1, ..., T} at random

Set AL = argminy ;. cpo.1jClw(s)+A; A3 — i+
AM)

Set (1) = w(r) — ArA],

Set w(r + 1) = F(w(r), n).

Sethi(t +1) =A; () + AX.
end for
Return w(S) and A(S).

4.2 Scalable inference algorithms

In practical situations, the matrix of observed neural activity
could be very large, especially due to the large number of
recorded samples, T. For instance, one of the datasets that
we have used to evaluate the performance of the proposed
algorithm has around 7' = 7, 000, 000 rows and n = 1000
columns, i.e., a matrix of size 7000000 x 1000. In some
cases the dataset will be even larger. Fitting such large
matrices into memory (RAM) is usually difficult due to
the limited amount of available resources. Therefore, it is
desirable to design an algorithm that can cope with the limits
on memory. Furthermore, from the computational point of
view, it would also be important to have an algorithm that
can break the problem into smaller sub-problems, solve
those sub-problems in parallel, and merge the results such
that the overall solution is near-optimal.

To this end, we have also designed parallel versions of
NEUINF and DUAL NEUINF that can deal with limited
memory and to fully utilize the available computational
resources. We first divide the data matrix into M non-
overlapping smaller blocks AV A each of size
(around) T/M x n. We can then apply either NEUINF
or DUAL NEUINF to solve the inference problem for
each block and later merge the results. Depending on the
amount of available resources, we either can do this process
in parallel (i.e., if enough RAM is available) or do this
process sequentially, loading one block A® at a time into
the memory (i.e., when RAM is limited). The proposed
computational architecture is shown Fig. 3.

The detailed process for parallelizing NEUINF is given
in Algorithm 3. For algorithms that are based on Dual
Coordinate Descent methods, e.g., Algorithm 2, an elegant
parallelization procedure is proposed by Jaggi et al. (2014),
called Communication-Efficient Distributed Dual Coordinate
Ascent (CoCoA). We will adapt this technique to parallelize
DUAL NEUINF. The details are shown in Algorithm 4.
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Fig.3 Parallelization
architecture: our proposed
algorithm reads smaller blocks
of data from the file that
contains the recorded activity,

process them, updates the Block ¢
weights and move to the next Firing
block. Within each block, the actvity
task of processing and updating file ¢}
the weights is parallelized
among multiple cores and the .

Block i + 1

results are merged afterwards

Algorithm 3 PARALLEL NEUINF

Input: The observations matrix A over period T, a
maximum number of iterations S,sparsity threshold 7.
QOutput: Connections belief vector w
Initialize w(0) = (0, ..., 0)1xx
fors=1— Sdo
Initialize Aw = [0, ..., O], x1
for Each Block m = 1 — M (and in parallel if
possible) do
Let z = NEUINF(A"™, w(s))
Aw=Aw+z
end for
w(s) =w(s — 1)+ 5%
end for

Algorithm 4 PARALLEL DUAL NEUINF

Input: The observations matrix A over period T, a
maximum number of iterations S,sparsity threshold 7.
Output: Connections belief vector w
Initialize w(0) = (0, ..., 0)1xx
fors =1— Sdo
Initialize Aw = [0, ..., 0], x1
for Each Block m = 1 — M (and in parallel if

possible) do
Let z, A = DUAL NEUINF(A"™  w(s), A0 (s5))
Aw = Aw +z
A (s) =AM (s — 1) + £
end for
w(s) = w(s — 1) + 5%
end for

5 Theoretical analysis

In this section, we analyze the performance of the proposed
algorithms in order to identify connections under which
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the returned functional graphs closely approximates the
underlying synaptic connections. We should again remark
that our focus in this paper is to identify the existence and
type of connections and not the corresponding weights.

We start by proving the desired results for a neural network
consists of deterministic (and noisy) LIf neurons specified
by Eq. (1). We also assume that there is incoming traffic
from some unobserved (also called hidden) neurons. We
establish sufficient conditions on both statistical properties
of the noise as well as the inference kernel (denoted by K”)
such that the type of connections in identified functional
graph by the algorithms introduced in the previous section
matches the type of corresponding neural connections in the
underlying synaptic graph. We then extend our results to
show that the same algorithm can be applied to the more
realistic scenario of stochastic LIf neurons.

5.1 Network of deterministic noisy LIf neurons
with hidden traffic

For the network of deterministic noisy LIf neurons, we
first show that as long as the noise term satisfy some
statistical properties, the algorithm yields the desired result.
We then investigate the conditions under which the net
effect of incoming traffic from a set of hidden neurons
can be modeled by the noise term with the specified
statistical properties, which means that the algorithm will
be successful in identifying the connection types even in
presence of unobserved traffic.

To start, let us remind ourselves that the membrane
potential of LIf neurons, define in Eq. (1), is given by

n
h(t) =ho+ Y giKi(t) + v(0),

i=1
where v(¢) is the added noise at time ¢. Intuitively, if the
magnitude of noise is very small, then the set of constraints
YKg > 0 will not be affected by noise. Likewise, if the
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noise has a zero mean, and we have enough firing data for
the pre-synaptic neurons, we should be able to reconstruct
the connections (by averaging out the noise) and in the limit
of large data.

The following assumptions state the above intuition more
rigorously. We then show that as long as these assumptions
hold, we can identify the type of connections in the limit of
large T'.

(A1) Having enough firing data: the observed neurons
fire at arate linear in 7, i.e., neuron i fires o; T spikes
in the interval [0, T'], with amin > 0.

Zero-mean noise: the noise in the membrane
potential {v(¢)} is a zero-mean” random variable and
its samples are uncorrelated if they are more than A,
time slots apart.

(A2)

Note that the first assumption makes sure that each neuron
fires enough spikes for its connection to be successfully
identified and the second assumption basically states that
the noise should have a vanishing correlation, i.e., the
very long future samples should not depend on the current
samples. We also trivially pick the inference kernel K’ in
such a way that it captures the quantity of the firing activity,
i.e., the entries in the inference kernel matrix K’ are all non-
negative and the number of non-zero entries in column i of
the matrix K’ is proportional to the number of spikes fired
by neuron ;. For instance, we could use a kernel K’, based
on the exponential decay function, where the entry K, is
equal to e _’fi), where tf, < t is the last time neuron i
had fired before time . Lemma 1 provides a more general
condition on the required statistical properties of matrix K’
and its relation to matrix K so that our proposed algorithm
is capable of finding the type of connections under certain
conditions.

Lemma 1 Let us assume that we have enough samples such
that the matrix K"K and (K')TK' are invertible. Now,
if the matrix KVK' is positive definite, then, under the
assumption A1-A2 defined above, and in the limit of large T,
we can recover the type of the actual connections, i.e., the
estimated weight vector w* (the output of Algorithm 1 or 2)
has the same sign as the actual connection weights, namely,

Tlim Pr{wfg; > 0} — 1, Vi = 1,...,n, where |gi| # 0.
—00

(The proof is given in Appendix A.1) The above theorem
addresses the case of a deterministic noisy LIf neuron. Now
we can use this result and extend it to a scenario where
we have incoming traffic from a set of unobserved (hidden)
neurons. To this end, suppose there are m unobserved

“Even if the noise has a non-zero mean, it might be possible to
compensate for that by adjusting the firing threshold in such a way that
the mean of noise remain zero.

neurons whose spikes affect the membrane potential of
the post-synaptic neuron in consideration through a set of
connections g’ = [g]. ..., g,]- As a result, we can rewrite
Eq. (4) as,

u=Kg+ Hg, (12)

where H € RT*" is the net effect of m outside neurons
filtered through the neural kernel. Now, given the result of
Lemma 1, we intuitively know that as long as Hg' is a zero-
mean random variable with vanishing correlation, we should
be able to recover the type of connections. The following
assumptions formulate this intuition more rigorously.

(A3) Traffic of two hidden/outside neurons i and j are
independent of each other.

(A4) The incoming weights from the hidden/outside
neurons form a balanced random network (similar
to the incoming traffic from ”visible” neurons), i.e.,
E{g]} = 0.

(AS5) Outgoing traffic of neuron i at time ¢ and ¢ + A are

uncorrelated for sufficiently large A.

In words, assumptions A3 and A4 ensure that Hg' is a
zero-mean random variable with a vanishing correlation.
Assumption A5 requires that the firing activity of each
neuron has a vanishing correlation, i.e., very far ahead
future spikes should be uncorrelated from current spikes.
Out of the three, assumption A3 is probably the most
strict one and assumption A5 is the weakest one as it is
automatically satisfied when there is a post-synaptic spike
in the interval [z, + A) (due to the "reset” effect of the
membrane potential).

Note that a direct consequence of the above assumptions
is that if we sample neurons at intervals that are far apart,
the noise terms should be uncorrelated. This fact is useful in
practice in order to design better algorithms.

Now, the following theorem shows that given the above
assumptions, we can rewrite Hg’' as a zero-mean colored
noise with a vanishing correlation.

Lemma 2 Given assumptions A2-A5 above, the random
variable v(t) = H;g' form a colored random variable with
a vanishing correlation.

(The proof is given in Appendix A.2) Combining the results
of Lemmas 1 and 2, we can prove the convergence of the
algorithm for the case of deterministic noisy LIf neurons
with incoming hidden traffic. This is formally proven in the
next theorem.

Theorem 1 Let us assume that we have enough samples
such that the matrix K"K and (K')TK' are invertible.
Now, if the matrix K T K’ is positive definite, then, under the
assumptions Al through A5 stated above, and in the limit of
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large T, we can recover the type of the actual connections,
i.e., the estimated weight vector w* has the same sign as the
actual connection weights. formally,

Tlim Pr{wfg; > 0} - 1, Vi =1,...,n, where|gi| #0.
—00

(The proof is given in Appendix A.3)
5.1.1 Network of stochastic LIf neurons

In the previous section, we proved that under certain
assumptions our proposed algorithm are guaranteed to
identify the type of connections in the limit of large data
for deterministic LIf neurons (with hidden incoming traffic
as well). In this section, we show that the same can be
proven for stochastic LIf neurons if we slightly modify the
proposed algorithm. The main idea is to show that solving
the problem for stochastic neurons results in the same
solution as solving the problem for deterministic neurons,
defined in Problem II. Therefore, we can solve Problem II
for the stochastic case as well to identify the connections.

To start, recall that the firing rule for stochastic LIf
neurons, defined in Eq. (3), is given by

Pr{y() = 1} = fs(h(t) = 0),

where the membrane potential, /(¢) is given by

h(t) = ho+ ) giKi(1) + v(0).

i=1

From a statistical point of view, we can cast the neural
network reconstruction as an instance of a Maximum
Likelihood estimation: find a vector w that maximizes the
likelihood of observing the output spike pattern {y(¢)},
given the set of pre-synaptic spikes or their “filtered”
effect through the kernel matrix K’. More precisely, we are
interested in solving the following problem:

argmax Pr{y|K’, w}, (13)

w
where y € R7*! is the vector of observed post-synaptic
spikes and K’ € R7*" is the neural kernel matrix that
captures the leaky integrated effect of the pre-synaptic
neurons. This is in fact what traditional GLM approaches do
to identify the vector w (Paninski 2004). However, in this
section, we show that under mild and natural assumptions
on the post-synaptic neuron and its firing pattern, solving
Problem (13) is equivalent to solving Problem II. By
establishing this connection we can solve the above ML
problem at scale, as we explained earlier.

The assumptions are as follows

(B1) The function fi(-) is an increasing function of its
argument.

@ Springer

(B2) The firing pattern of the post-synaptic neuron has a
vanishing correlation, i.e., if two samples are more
than A time slots apart, they becoming conditionally

independent. More precisely, if ' — r > A, then

Pr{y(t), y(")|K', w} = Pr{y()|K'(0, 1), w}
x Pr{y(t)|K'(t, 1), w},

where K'(f1,1;) is the subset of samples in the
interval [t1, t2].

Note that Assumption A2 will be easier to satisfy if the post-
synaptic neuron has fired at least once in the interval [z, t'),
due to the reset effect of neurons.

Under our assumptions, we know that if we only consider
samples that are more than A time slots apart, they are
independent. With slight abuse of notation, let y € RT' 1
and K’ € RT"*" denote the vector of sampled output spikes
that are at least A samples apart and the corresponding
kernel matrix, respectively. Then, one can rewrite the ML
problem (13) as

T/
argmax Pr{y|K’, w} = argmax l_[Pr{y(t)|K’(t), w} (14)
w w =1
or equivalently,
T/
argmax Y log (Pr{y(1)|K' (1), w}). (15)

W=

Let T/ indicate the set of time instances such that V¢ € T
we have y(r) = 1. Likewise, let TO’ be the set of instances
such that y(t) = 0, for V¢ € T;j. By combining Egs. (1), (3),
and (15) we obtain the following optimization problem to
solve

argmax Z log (fs (K{w)) + Z log (1 — fy(K{w)), (16)

/ ’
teT) teTy

where K, is the 7-th row of K’. To simplify the above
equation, let K/ € R'*" be a vector in such a way that the
following holds:

1 — fi(Kjw) = fi(K/w).

Remark 1 For the special case of f; being the sigmoid
function, we have K, = —K ;. This is the form that has been
considered in the context of GLMs (Paninski 2004).

Now, let us define matrix H € RT'*" ag follows
H, — { K| ifr e T}

K/ ift € Ty; 17

where H; is the ¢-th row of H. As a result, we can rewrite
problem (16) as

argmax Y _ log (f;(Hyw)) (18)
w t



J Comput Neurosci (2018) 44:253-272

263

Note that w is bounded in practice. This implies that the
term || Hw]|, is also bounded. Therefore we can formulate
the above optimization problem as follows:

argmax Y _log (f;(Hyw)). (19)

wi|Hwl=1"5

Our main observation is that the optimization problem
given by Eq. (19) and Problem Il are equivalent, meaning
that the maximizer of Eq. (19) is also the minimizer of
Problem 11, as long as we pick a loss function that is

— Decreasing, i.e., L(x) < L(y)ifx > y.
— Satisfies the inequality log( fs;(x)) < —L(x).

For instance, if f;(-) is the sigmoid function, then we can
pick L(-) to be the sigmoid function or a slightly modified
version of the hinge loss, e.g., L(x) = max(e(1 —x), 1 —x),
where 0 < € < 1 is a small.

Theorem 2 Under assumptions BI-B2 above, and with a
proper choice of the loss function, the problems given by
Eq. (19) and Problem II are equivalent in the sense that the
solution w* to Problem II is also the maximizer of Eq. (19).

(The proof is given in Appendix A.4) This equivalency has
significant consequences. First, we can efficiently find the
ML estimator for problem (13). Second, it also suggests
that the convergence results for our deterministic algorithm
(discussed earlier in this section) also apply to the stochastic
family of neurons.

6 Experiments

In this section we validate the performance of the proposed
algorithm via numerical experiments on both artificially
generated data as well as data recorded from real neurons.
For the former, we have used the dataset generated by
Zaytsev et al. (2015).> Testing on artificially generated data
has an advantage in having access to the underlying synaptic
connectivity (ground truth) which allows benchmarking
the performance of the proposed algorithm. We have
also applied the inference algorithm to a dataset of real
recordings from the multiple hippocampal areas in rats
(Mizuseki et al. 2013; MizuseKi et al. 2009).6

SWe sincerely thank Dr. Yury Zaytsev, Prof. Abigail Morrison and Dr.
Moritz Deger for making their data and code publicly available.

OWe sincerely thank Prof. Kenji Mizuseki, Prof. Anton Sirota, Prof.
Eva Pastalkova and Prof. Gyorgy Buzsiki for making the dataset
publicly available.

6.1 Results on simulated data

The dataset of artificially generated spikes contains the
firing activity of 1000 LIf neurons, with a fixed firing
threshold of 20mV and a random (and unknown) synaptic
propagation delay of up to 2ms (Zaytsev et al. 2015). The
network topology was recurrent and randomly generated.

We apply PARALLEL DUAL NEUINF to the dataset and
compare the returned weights for each neuron to the actual
ones. We calculate the accuracy of the algorithm in terms of
three measures:

1. Spike prediction accuracy: we verify the ability of the
algorithm to predict output firing activity of the post-
synaptic neuron (i.e., by solving Problem I), given the
inferred connection weights and the firing activity of its
neighbors (when Problem I is feasible).

2. Average quality: we take an average over all the
returned weights for excitatory, inhibitory and void
connections when solving Problem II. In the ideal case,
these three averages should be well-separated and the
returned weights should be concentrated around the
means (i.e., variance should tend to zero).

3. Precision and recall: we then transform the analog asso-
ciation matrix returned by the algorithm to a ternary
adjacency matrix of the graph. We measure how accu-
rately the algorithm has identified excitatory, inhibitory
and void connections by calculating precision and
recall for each connection type.

We start by evaluating the performance of PARALLEL
DUAL NEUINF in explaining observed firing activity. For
relatively small T, the algorithm is always capable of
finding a set of weights that accurately explain the observed
activity (since Problem I remains feasible). Figure 4

2
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Fig.4 Sample of predicted vs, observed firing activity for neuron 1 in
a recurrent network of 1000 LIf neurons

@ Springer



J Comput Neurosci (2018) 44:253-272

264
[ —e— Hexc —m— fiyoid —o— Hinh |
1 ¢ ¢ L * * —
% 0 —— & & - )
2
S o1
A SO D D G B

|
T T 1]

—0.2 + : : : : . .
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

T(s)

Fig. 5 Average of weights of the incoming connections to neuron 1
returned by PARALLEL DUAL NEUINF for each connection type as a
function of the total number of recorded samples (7")

illustrates a sample of observed vs. predicted spike activity
by the set of weights returned by PARALLEL DUAL NEUINF
when the inference kernel K’ consists of a single decaying
exponential filter with a time constant of 20ms.

Moving to the quality of the returned weights in terms
of matching with the underlying synaptic connections, we
first calculated the average of returned weights for all
excitatory, void and inhibitory connections, respectively.
The desired properties that we are looking for are that,
firstly, there should be an ordering between the average
weights (excitatory to be higher than void, and void to be
higher than inhibitory). Secondly, the variance of weights
for each type should tend to zero as 7 grows, i.e., the
algorithm returns a set of weights where the weights for
each connection type are concentrated around their mean.
Figure 5 shows that both of the desired properties hold for
the proposed algorithm.

We also use the Receiver Operating Characteristic (ROC)
curve to evaluate the quality of the returned weights. To
this end, we normalize the incoming weights of neurons
to zero mean and unit variance. We then gradually adjust

two thresholds, one for excitatory and one for inhibitory
connections, beyond which we declare a connection
excitatory or inhibitory, respectively. For each pair of
selected thresholds, the number of true and false positives
for each connection type is calculated. The closer the area
under the curve is to 1, the better the inference algorithm
is. The results for the incoming connections to neuron 1
are shown in Fig. 6. As shown in the figure, having more
samples result in more accurately inferred graphs. In Fig. 6,
we also report the ROC curve for the “aggregate inferred
weights”, where we have performed the inference algorithm
5 times with different hyper parameters and averaged
over the results. Clearly, this strategy results in a much
better performance and an almost perfect reconstruction of
connection types. We can make a trade off between the
simulation time and RAM depending on the amount of
available resources.

Next, we evaluate the performance of the algorithm
in terms of precision and recall. For this part, we use
the aggregate set of weights discussed above and divide
the set of incoming connections into three categories
(i.e., excitatory, void and inhibitory), using the K-Means
clustering algorithm (with 3 clusters). We then count the
number of true positive/negatives for each connection type
over this ternary adjacency matrix. This way, we can
calculate the precision and recall of the algorithm as a
function of T for the proposed algorithm, as shown in Fig. 7.

We have also examined the effect of hidden neurons on
the performance of our proposed algorithm in identifying
the connection types. Although hidden neurons were also
present in the original dataset provided in Zaytsev et al.
(2015), in order to quantitatively investigate the effect of
hidden neurons, we artificially ”hid” some neurons in the
database by removing their spike times when applying the
proposed algorithm. We then evaluated the performance of
the algorithm in correctly identifying the type of neural
connections among the visible neurons. For a fixed number
of hidden neurons, we generated 5 random graphs by

1 — 1 1 r,,
8 0.75 g 0.75 o 0.75
< 51 IS
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S o S
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0.25 0.25 & 0.25
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= T = 8000s = T = 8000s = T = 8000s
0 0 0
0 0.25 0.5 0.75 1 0 025 0.5 0.75 1 0 0.25 0.5 0.75 1
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a Excitatory b Inhibitory C Void

Fig.6 The ROC curve for the incoming connections to neuron 1 returned by PARALLEL DUAL NEUINF
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Fig.7 Precision and recall of for the incoming connections to neuron
1 in the artificially-generated dataset after transforming the returned
association matrix by PARALLEL DUAL NEUINF to a ternary adjacency

randomly hiding the given number of neurons. The average
results are shown in Fig. 8. In the figure, the horizontal
axis illustrates the ratio of the number of hidden neurons
to the number of visible neurons. The vertical axis show
precision and recall for the excitatory, inhibitory and void
connections. As shown in this figure, the algorithm is quite
robust against the effect of hidden neurons and precision is
less affected than recall. In other words, what the algorithm
returns is quite accurate, but it might not capture all
connections of the specific type when the number of hidden
neurons is increasing.

Finally, we calculated the amount of computational
resources used by our algorithm. Figure 9 shows the
simulation time (in hours) as well as the amount of RAM
(in Gigabytes). As expected, since we divide the data matrix
into smaller blocks and load them one at a time, the amount
of RAM remains fixed and the simulation time scales
(almost) linearly with the amount of available data.
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Fig. 8 Effect of hidden neurons on the precision and recall of for the
incoming connections to neuron 1 in the artificially-generated dataset.
The horizontal axis shows the ration between the number of hidden and
visible neurons in the network.The vertical axes show precision and
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T(s)

b Precision

matrix using the K-Means algorithm. We have averaged over several
association matrices before transforming the results to ternary in order
to reduce the effect of noise and randomness in the algorithm

6.2 Results on real data

After validating the performance of the algorithm on
simulated data, we applied the inference algorithm to
recordings from the multiple hippocampal areas in rats
(Mizuseki et al. 2013; Mizuseki et al. 2009). This dataset
corresponds to 442 recording sessions when the rats were
performing various tasks. In each session, the activity of
tens of neurons were recorded simultaneously (ranging
from 64 to 256 neurons). Here, and for most of available
datasets of recordings from living species, the ground
truth is not available. Therefore, we cannot benchmark the
performance of the algorithm with respect to the underlying
synaptic connectivity. Nevertheless, we can analyze the
results in order to make sure that they are in line with
biological findings about the species and perform sanity
checks on the obtained functional graph. With this in mind,
Fig. 10 illustrates the inferred weights by PARALLEL DUAL

’ Exc. Void Inh. ‘
1
0.8 + \
=1
£ 06|
3
£ 044
02|
0 t t + t t t
0 005 01 015 02 025 03

No. Hidden/No. Visible

b Precision

recall, calculated after transforming the returned association matrix by
PARALLEL DUAL NEUINF to a ternary adjacency matrix using the
K-Means algorithm
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Fig. 9 The amount of CPU and RAM used by the algorithm as a
function of the number of recorded samples (7')

NEUINF for neuron 1 based on the recordings for task
”ec013.18” in the dataset, that contains the firing activity of
94 neurons.

Furthermore, the data providers have also performed
some physiological analysis to determine the type of each
neuron (i.e., being excitatory or inhibitory). To better
evaluate the performance of the proposed algorithm, we
have also compared the “verdict” of our algorithm about the
type neurons against the one found by the data providers.
Note that there are several ways of deciding about the “type”
of a neuron in our algorithm:

— One can calculate the “net” outgoing weight for each
neuron and if it is higher/lower than a threshold, call it
excitatory/inhibitory.

— Alternatively, one can count the number of positive
and negative “peaks” among the outgoing weights and
classify the neuron as excitatory/inhibitory if these two
numbers are significantly different from each other.

We considered the second method and the results are
shown in Fig. 11. To interpret the data given in Fig. 11,

1 -
0.5 L
S
;E/ 0 "1 ,,,._I||__,,,_,I,I,,_, I|I""""""I"" _-..,,,,,_Il -""'-------' .
2o | |
=
—0.5 -
71 | |-

\ T T \
20 40 60 80

Neuron index

Fig. 10 The incoming connections to neuron 1 in the dataset. The
horizontal axis shows the index of the neuron that the connection is
coming from and vertical axis indicates the magnitude of weight (in
millivolts)
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Fig. 11 Comparison of neurons types determined by PARALLEL
DuAL NEUINF and cross correlation performed in Mizuseki et al.
(2009). The results are benchmarked against the topological analysis
made in Mizuseki et al. (2009) to decide the type of the neuron based
on physiological evidence. As for the predictions made by PARALLEL
DUAL NEUINF, two different methods are considered for determining
the type of a neuron based on its outgoing edges

note that not all neurons were classified in Mizuseki
et al. (2009) and we only compare the types for neurons
that were indeed classified. In the figure, we have also
included the results of neuron type prediction using cross
correlation that was performed in Mizuseki et al. (2009).
As shown in Fig. 11, the proposed algorithm performs
quite well in identifying the excitatory neurons but requires
improvements in identifying inhibitory neurons. This might
be partly due to the fact that the firing rates of inhibitory
neurons in the dataset was on average lower than those
of excitatory neurons and the fact that the LIf model we
considered in this paper is more accurate in modeling the
behavior of excitatory neurons than that of inhibitory ones.

7 Conclusion and future work

In this paper, we introduced a novel approach to identify
neural connectivity from the observed firing activity of
neurons. The proposed approach is based on a reformulation
of LIf model for neurons in such a way that facilitates
theoretical analysis and allows scalable implementations.
We theoretically proved the accuracy of our algorithm
and derived the conditions under which the inferred
functional connectivity matches that of the underlying
synaptic network. We also showed that our algorithm is
capable of dealing with both deterministic and stochastic
LIf neurons through the same framework. Finally, using
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numerical analysis, we showed that the proposed algorithm
successfully identifies the synaptic connections over a dataset
of simulated spiking activity (to be able to benchmark against
the ground truth) and is capable of dealing with datasets of
real recordings yielding meaningful interpretations.

Different variations of the inference algorithm were
proposed in this paper and each one is more suitable for
certain scenarios in practice. In particular, for a centralized
solution (when the data is not too big for a single machine),
DUAL NEUINF is a suitable algorithm as it does not require
tuning a step size/learning rate. However, when the database
is large, PARALLEL DUAL NEUINF can be used to obtain
the results more rapidly.

As for future directions, there are several major
challenges that seems deeply intriguing. The first one
concerns the existence of hidden neurons. In this paper
we showed that as long as the incoming traffic from
hidden neurons satisfy some statistical conditions, we are
capable of finding the connectivity for the observed part of
the network. Nevertheless, the more interesting challenge
would be to (partially) identify the connectivity between
the observed and hidden part of the network. The second
challenge involves considering more realistic models of
neurons. In this paper, we considered LIf neurons with fixed
firing threshold. In reality though, the firing threshold is also
adaptive and neurons need more accurate models to describe
their behavior (especially the inhibitory ones). Taking these
dynamical aspects is certainly part of our future work.
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Appendix A. Proofs of Theorems
and Lemmas

Before we proceed to the proofs of the theorems in the
paper, we prove a few auxiliary results that will help us
obtain the desired proofs.

Lemma 3 Ler r € R'™T denote a non-zero vector and
B and E be diagonal matrices with positive diagonal
elements. Then, the matrix Br'rE is positive semidefi-
nite.

Proof To start the proof, let C = rr. Now, note that
BC = B’ () C, where (9 indicates the Hadamard product
and B’ = 1741bx7, with by being the diagonal entries
of the matrix B. Also, let E' = 174 1e1x7, With e|x 7 being
the diagonal entries of the matrix E.

Now, matrices B’ and E’ are positive semidefinite since
their only non-zero eigenvalue is equal to the sum of all
eigenvalues (the rest are zero), which is equal to the trace of
matrix B’ (resp. E'), i.e. Zj b; > 0 (resp. Zj ej > 0).

Furthermore, the only non-zero eigenvalue of matrix C
is equal to 77T > 0, which means matrix C is also positive
semidefinite. Also, from Shcur product theorem (Schur
1911) we know that the Hadamard product of two positive
semidefinite matrices is positive semidefinite. Thus, matrix
D = B’ () C = BC is positive semidefinite. Likewise, the
matrix D’ = D () E’ is positive semidefinite, which proves
the lemma. O

Lemma 4 Consider a banded matrix H in which only
elements that are close the diagonal part are non-zero. More
specifically,

[0 il A,
TE1 0, ifli - jl < A,

for some constant integer A > 0. Furthermore, let h =

max; ; |H;;|. Then,
o i

|H|3 < 8A%h* = cons.
Proof To start the proof, let C = H' H. Then,

|H|3 = max | Hx||3 = maxx "H Hx =x"Cx (20)
X X

where

lxlla =1 ©2))

Now for matrix C we have

oo [0 ifli—jl> 24,
T #0,ifli — | <2A.
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As aresult, and by letting x be the shifted version of the
vector x by d positions to the right and ¢ = max;; C;;, we
obtain

E(x) = ZZ)C,’C,'J')CJ'
i
DD

i—2A<j<i+2A

Cijx;

= Z Cii () + Ciip1XiXip1 + ...
i

+Ciiv2aXiXit2A
+- o+ Ciicixixi—1 + Cii—oaXiXi—2A

2A
c Z .XT.X(d)

d=-2A

2A
d
<c Y lxlalx @

d=—-2A
< 4Ac, (22)

IA

A

where we have used the fact that ||x || = 1. Therefore,
IH|3 < 4Ac. (23)
Now, letting H; denote the i-th column of H, we obtain

-
c=max C;; =max H;' Hj < || H;|2[|Hj||2-
i L

On the other hand, we have

IHjll2 < V2AR2.

Therefore, ¢ < 2Ah?. This implies that
IH |5 < 8A%H?,

which concludes the proof. O
A.1 Proof of Lemma 1

The proof involves two main steps
1. Showing that mean value of w;"gi (over the noise’s
probability distribution) is positive.
2. Showing the variance of wg; tends to zero as T' grows.
To prove the first step, note that from solving Problem
11, given by Eq. (8), we know that there is a vector e with

positive entries where the optimal solution, w*, satisfy (a
subset of) the constraints, i.e.,

YeKlw* =e >0, (24)

where ¥, and K/ correspond to the set of satisfied
constraints. As a result, and by letting F’ = (K é)_l, we will
have

w* = F'EJ,,

@ Springer

where E is a diagonal matrix with positive entries, i.e.,
E = diag(e). Now from Eq. (6) we have

Kg+ v = By, (25)

where B is a diagonal matrix with positive entries. By
focusing only on the time instances where w* satisfy the
constraints, we will see that

Keg+ve = Bcj}c’

where K. and B, are the sub-matrices corresponding to the
satisfied constraints. Therefore,

g = F(Bcje — ve), (26)

where F = K[ I To simplify the notations, let F; (resp.
F!) denote the i-th row of matrix F (resp. F'). Also, let
Crur = Fl.—r F!. As aresult, if g; # 0, we have

giw! = 3] B —v])F,"F/EJ.
5. B.F; F/E$. — v F,' F/E3,. 7)

Therefore,

E{giw}) = 3! BcF;' F{Ej. — E{v]}F;' F/E3c
= 3. BeF; F{Eje, (28)
where the last equality follows from the fact the we had

a zero-mean noise. Now from Lemma 3 we know that the
matrix B Fl.TF,- E is positive semidefinite. Therefore,

3 B.F,TF/E3. > 0,

which means E{g;w}} > 0if g; # 0.7

The second part of the proof relies on the fact that the
variance of g,-w;“ tends to 0 as T — oo. To this end, let
A, denote the time window within which the noise term
samples in the membrane potential remain correlated. Now,
we have

02,0 = E{(wig)?} — (E{w;gi})?

2 2
(37 BFTFES:) + (o] FTFES) )

— 2B((5] B.F FES.) (vl FTFES))

2
(5] BFTFIES.)

3 E(F))T FiB{vv/ }F FE3,, (29)

"Note that we have excluded the case where 3, BfFl.T F/Ey. = 0
because it will happen if ), y.(r) = 0, i.e. if we have the same number
of firing instances as the instances of inactivity. However, in real
neurons the latter event is much more frequent. Therefore, and when
the amount of data increases, the probability of having 3, J.(r) = 0
tends to zero.
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where we have used the fact that {v(¢)} is a zero-mean
random variable. Now let H = E{vchT}. Then, and using
the results of Lemma 4, we will get

2 T T T g
Ogwr = Ye E(Fl-/) F,HF; Fl-/Eyc

IA

IH 21l FT F{EScll3

= V802 AllFT F/ES |13

< VB2 Al FTF 13115131 EN3

= V80 Avema Tl FT F 115, (30)

where T, is the number of satisfied constraints (i.e. the
length of y.), ar%lax is the maximum value in the matrix H
and emax 1S the maximum entry in the diagonal matrix E. At

this point, note that

IFTF/3 < |EI3IF 13
< IFI3IFI3
= (Amax(FTF) (amax (FYTFD) . G3D)

where Amax (F | F) is the maximum eigenvalue of the matrix
FTF. Now, since F is the pseudo-inverse of the kernel
matrix K., we have F = (KCTKC)’lKCT. Therefore,

Amax(FTF) = Amax(FF ")
= tmax (K] Ko T'K K (KT KH™HT)
= Amax (K Ko)™h
1
)\max(KCTKC)-

Likewise, we can show that

INT 1/ 1
)\max((F) F)ZW

As a result, will obtain

ol . < VBomu e A Te
giw; — )‘«max(Kc—-rKc))LmaX((Kc/')TKL/')

(32)

We know that for any real-valued symmetric matrix M, x,,
we have

YweR" vla=1:v"Mv < Anax.
We set v = \/Lﬁl,,xn, and by using M = KCTKC, we get

1 1
)\max = ; ZMij > ;TI'(M),

ij

where the last inequality follows from the fact that entries of
matrix M (and those of K) are all non-negative. Now we have

n T,
Tr(M) = Y Y ((Ke)ji)?

i=1 j=I

n
ZO[,‘TC
i=1

> aminnt T, (33)

v

where the first inequality follows from the fact that the term
Z/T;l((Kc)ji)z is at least as large as the number of spikes
fired by neuron i in the interval [0, 7.]. Combining the
above equations, we obtain

Jmax (K Ke) = otmin T
Similarly, we can also show that
dmax (K TK() = etminTe.
Combined with Egs. (29), (30) and (31), this results in

2 2
2 < “/gamax €max AT,

O ., =
s (OlminTc)2
< (—2‘7“““‘3‘“”)2&. (34)
Omin 1.

This shows the desired result that the variance tends to zero
as T, grows. Given that the number of satisfied constraints
also grow with T, the above steps show that the variance
tends to zero as T grows.

At this point, and with the above results, we can easily
prove the theorem using the Chebyshev’s inequality. We
simply define u = E{g;w} and will have

1
Pr{|giw; — | > ko} < 2
where 0 = E{(g; w;*)z} and k is a constant bigger than one.
Now since we know that limy_, o, 0 = 0, we can select the
constant k arbitrarily large, which is equivalent to having

lim Pr{{w/g; — ul|0} <e, (35)
T—o0

for some arbitrarily small € > 0. This shows that if g; # 0,
the term w; g; will be concentrated around its mean, y > 0,
with probability 1. This proves the theorem.

Remark 2 Note that the above theorem only states that if
there is an underlying synaptic connection, i.e. if g; # 0, we
will identify its sign in the limit of large data. However, it
does not discuss the cases where g; = 0. In those cases, the
additional sparsity regularizes (e.g. in the form of ¢;-norm
minimization) help us prune the connections by removing
those that are close to zero.
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A.2 Proof of Lemma 2

We start by calculating E{v(t)v(f — A)} for some integer
A > 0, noting that v(r) = Y ;" Hyig).

E(v@)v(t — A} = Y > E{HiHa ;gig;}

! J

= Y E{HiHi-1,i(g)*

+ Z Z E{H,th,A,jgl{g}}
i

> "E{H,iH—a.i(g)?)

[I=

+ Y E{Hug)} Y E{H,a jg}},
i Ji

where = follows from assumption A3. Hence,

E{o(t)o(t — A)} = Y E{H;i Hi—a.i()%}

+ Z E{H;ig})ci
;

[

> E{HiiHi-n.i(g)")

— D E{H;ig]YE{H,—aig}},

1

where ¢ = (3 E(Hi a8}l — E(H,_a 8]}

and Z follows from assumptions A3 and A2 since
> E{H,,A,jg}} = E{v(r—A)} = 0. At this point, let & A
denote the event of having at least one post-synaptic firing
in the interval [t — A, t] and 5_,, A denote the event of having
no post-synaptic firing in the interval [r — A, ¢]. Now, if
we assume an exponentially decaying filter for membrane
potential with a decay coefficient of 7, we obtain®

1=t

7A d —_ . -
e ATH 5+ ehlT Zt—A<l,~<te v, if & a,

H;; = t—t; .
edi/t th<,i<te_7, if & A
(36)
Therefore, and by letting
Prire = Pr{a post-synaptic firingin € [t — A, ¢]},
from Eq. (36) we obtain
E{H;i} = (1 — pi)e” *"E{H;—n.i}
+ (1 = prire) E{S1} + prire E{S2}, (37)

8The choice of filter is made for convenience of representation only
and we can extend the proof to other decaying potentials as well.

@ Springer

where
1—t;
S| = &4/t E e T,
=A<t <t
t—t;
Sy = e4/7 E e T,
tr<ti<t

Furthermore, we have
E{H;iH—pi} = (1 — piir)e” *"E{(H;_.1)*}
+ (1 — prire) E{S1 }E{H;—n i}
+ PhieE{S2}E{H; A}, (38)

where we have used assumption AS5. As a result, and
combining Egs. (36), (37) and (38) we obtain

Efu@v(t — A)} = Y E{(Hi—a.)*}c]

i=1

m
- Z(E{HnHz—A,i})ZC;
i=1

= e_A/T(l - pfire) ZaizE{(gz{)z}’ (39

i=1

where
¢, =E{(g)*e " (1 = prire).
and
2 2 2
of =E{(H—a,i)} — E{H;Hi—a i })”.

In the above equation, both ¢ 2/T and 1 — pge are

decreasing functions of A (i.e., the time interval). Therefore,
the correlation is vanishing which proves the lemma.

A.3 Proof of Theorem 1

The proof is actually a direct consequence of Lemmas
1 and 2: Lemma 2 makes sure that, given assumptions
A3-AS5, the contribution of outside traffic satisfies the
assumptions about the noise term in Lemma 1. Combined
with assumptions A1-A2, we can then apply the proof of
Lemma 1 to prove the desired result here.

A.4 Proof of Theorem 2

To start the proof, let e = H;w. Then, we note that we can
rewrite Problem II and the problem defined by Eq. (19) as

max E; =Y log(fs(e)) (40)
ellell2=1 -
and

max E, = — L(e), 1)
ellell2=1 2,:
where ¢ = [e],...,er]" and L(-) is a “suitable” cost

function, i.e., it is decreasing and log( fs(x)) < —L(x).
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Our goal is to show that the above problems have the
same maximizer. The proof consists of two steps

1. Showing that both functions E| and E» are increasing
functions of e.
2. Showing that E| < E».

The first part follows from the fact that

EL _ fio)
de  fi(e) ~

where the inequality follows from the fact that 0 < f,(x) <
1 and f;(x) is an increasing function of x, therefore its
derivative is always positive. Additionally, since L(x) is a
decreasing function, E is also increasing.

Furthermore, note that since we have selected L(x) to be
less than — log( f;(x)), then we will have

)

E| < Es.

All this results in the fact that the maximizer of function E»
will also maximize Ej.

Now, given that the objective functions for both Problem
(40) and Problem (41) are increasing, the maximizer of both
are at the boundaries. Therefore, in order to solve the ML
problem given in Eq. (13), we can focus on solving the
potentially simpler problem, namely Problem II specified
by Eq. (8). This concludes the proof.
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