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Chronic kidney disease (CKD) caused by renal fibrosis is an important public health

concern. It is therefore necessary to understand the molecular pathogenesis of renal

fibrosis in order to develop novel therapeutic strategies. KLF4 is the most extensively

studied factor among the various members of the Krüppel-like factor (KLF) family

of zinc finger-containing transcription factors. Many studies have demonstrated that

KLF4 inhibits the activation of myofibroblasts and exerts an inhibitory effect on fibrosis.

However, other studies have indicated that KLF4 may promote renal fibrosis. These

controversial results suggest that KLF4 may be crucially involved in the development of

renal fibrosis, although the underlying mechanism(s) remain unclear. Here, we summarize

the recent progress made in understanding the role of KLF4 in renal fibrosis. Together,

these findings suggest that KLF4 may participate in the development of renal fibrosis, but

that its inhibition of fibrosis is greater than its promotion of the condition, which suggests

that KLF4 may serve as a novel therapeutic target for renal fibrosis.
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INTRODUCTION

Renal fibrosis is characterized by excessive proliferation of fibroblasts and increased deposition
of extracellular matrix (ECM), which together lead to extensive scarring (fibrotic tubular and
glomerular sclerosis), renal artery stenosis and chronic inflammatory cell infiltration (Li et al.,
2015). The development of renal fibrosis is a complex process that involves the activation of
molecules both intrinsic to the kidney and the infiltrated cells, which results in the deposition of
ECM, ultimately leading to the loss of renal function. Tubulointerstitial fibrosis represents the end
stage of renal fibrosis.

The Krüppel-like factor (KLF) family consists of 17 zinc finger-containing transcription factors,
among which KLF4 is the most extensively studied (Black et al., 2001). KLF4 is essential for
development and regulates a variety of processes, such as cell proliferation and differentiation
(Black et al., 2001). Many studies have reported that KLF4 inhibits the activation of myofibroblasts
and exhibits an inhibitory effect on fibrosis (Yang et al., 2013; Gras et al., 2015). However, in animal
models of cardiac hypertrophy, KLF4 promoted myocardial fibrosis (Liao et al., 2010; Zhang et al.,
2013). The function of KLF4 in the kidney is still not well understood. In this review, we highlight
recent findings on how KLF4 regulates renal fibrosis, with the aim of evaluating the potential of
KLF4 as a novel therapeutic target for renal fibrosis.

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2015.00327
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2015.00327&domain=pdf&date_stamp=2015-11-12
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:xiangdongfang818@sina.com
http://dx.doi.org/10.3389/fphys.2015.00327
http://journal.frontiersin.org/article/10.3389/fphys.2015.00327/abstract
http://loop.frontiersin.org/people/258224/overview
http://loop.frontiersin.org/people/290357/overview
http://loop.frontiersin.org/people/290281/overview


Ke et al. The role of Krüppel-like factor 4 in renal fibrosis

THE BIOLOGICAL CHARACTERISTICS
OF KLF4

KLF4 was first described by Shields et al. (1996) after
identification of the gene from a mouse NIH3T3 cell cDNA
library. KLF4 was formerly known as gut-enriched KLF, or
epithelial zinc finger KLF, and contains several functional
domains, including an N-terminal transcription activation
domain that interacts with other proteins, a C-terminal zinc
finger structure that combines with the DNA binding domain,
and a transcription inhibition zone close to the N-terminal
zinc finger structure (Bieker, 2001). KLF4 is expressed in many
tissues, tumors, vascular smooth muscle cells (VSMC), and
monocytes/macrophages, but it has been reported to be most
highly expressed in colon cancer, the lungs (Yoshida andHayashi,
2014), and the kidneys (Hayashi et al., 2014).

After binding to its specific protein partners, KLF4 activates
or inhibits the transcription of target genes. KLF4 thus
regulates numerous cellular processes, including proliferation,
differentiation, apoptosis, migration, and invasion (Wang
et al., 2015). Furthermore, KLF4 plays a specific role in cell
reprogramming and differentiation, transforming somatic cells
into induced pluripotent stem cells (IPS; D’Anselmi et al., 2013;
Yamaguchi et al., 2014).

KLF4 is abundantly expressed in kidney podocyte cells, and
its expression is decreased in proteinuric states (Hayashi et al.,
2014). In the diabetic kidney, the KLF4mRNA level is remarkably
reduced. In an animal model of diabetic nephropathy, KLF4
expression was significantly decreased in renal tubular cells
(Mreich et al., 2015). Renal fibrosis is considered to be one of
the major pathological changes that occur during the course of
diabetic nephropathy (Arora and Singh, 2013). Together, these
findings suggest that a change in the KLF4 level may be closely
related to renal fibrosis.

KLF4 AND RENAL FIBROSIS

KLF4 and Kidney Inflammation
Inflammation is integral to the body’s defense, although excessive
inflammation is often considered to be the main driving
force of fibrosis (Li et al., 2015). Inflammatory cells release
large amounts of chemokines and vasoactive factors, such as
monocyte chemotactic protein-1 (MCP-1) and angiotensin II,

FIGURE 1 | The role of KLF4 in kidney inflammation.

which contribute to the production of pro-fibrotic cytokines
after kidney injury (Chung and Lan, 2011). At the site of
injury, profibrogenic factors, such as interleukin (IL)-1, MCP-
1, and macrophage migration inhibitory factor (MIF), stimulate
the generation of myofibroblasts and the deposition of ECM,
eventually leading to renal dysfunction (Mack and Yanagita,
2015). Therefore, kidney damage due to persistent inflammation
is the originating factor for renal fibrosis (Meng et al., 2014).

KLF4 is involved in renal fibrosis by regulating inflammation
(Mreich et al., 2015). MIF and MCP-1 are important
inflammatory cytokines associated with kidney disease (Qi
et al., 2006; Lan, 2008). It was recently demonstrated that KLF4
reduced inflammation by abrogating the transforming growth
factor-β1 (TGF-β1)-induced production of MIF and MCP-1 in
human renal tubular cells (Mreich et al., 2015). Consistently, in
endothelial cells, KLF4 has shown anti-inflammatory effects by
increasing the expression of endothelial nitric oxide synthase,
decreasing inflammatory cell adhesion to the endothelial surface
and prolonging the clotting time under inflammatory states
(Hamik et al., 2007). In macrophages, however, the expression of
TGF-β was shown to be regulated by the ratio of the M1 and M2
subtypes of macrophages (López-García et al., 2015), and KLF4
could activate epithelial factors and mediate proinflammatory
signals, thereby exhibiting pro-inflammatory activity (Feinberg
et al., 2005). The mechanism promoting such inflammation
may be related to differentially regulated expression of KLF4
between the two subtypes of macrophages (M1/M2; Liao et al.,
2011).

Nuclear factor-kappa B (NF-κB) is an important participant
in a broad spectrum of inflammatory networks that regulate the
cytokine activity in renal fibrosis (Wu et al., 2015). Upon NF-
κB activation, KLF4 binds to the promoters of inflammatory
cytokines, such as TNF-α and IL-6, to increase their transcription
(Kaushik et al., 2010). In addition, KLF4 interacts with
the p65 subunit of NF-κB to activate the transcription of
proinflammatory genes and trigger inflammation (Autieri, 2008).
KLF4 can also bind to high mobility group box-1 protein,
an important mediator of systemic and local inflammatory
responses, to achieve pro-inflammatory effects (Liu et al., 2008).

However, it remains unclear what function KLF4 plays at
the onset of kidney inflammation. In particular, KLF4 generally
shows anti-inflammatory effects in epithelial and endothelial
cells, while it exhibits pro-inflammatory effects in other cell types
(Figure 1).
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KLF4 and TGF-β
The TGF-β superfamily consists of three subtypes: TGF-β1, TGF-
β2, and TGF-β3 (Piek et al., 1999). TGF-β plays important roles
to promote cell proliferation and differentiation and induce the
synthesis of the ECM. It is also known that TGF-β is a major
cytokine/growth factor involved in renal fibrosis (Meng et al.,
2012). Smad proteins, highly conserved transcription factors,
are central to the signal transduction pathways that mediate
the numerous effects of the TGF-β superfamily (Massagué,
2012). TGF-β1 strongly stimulates the renal tubular epithelial-
to-mesenchymal transition (EMT), which is a crucial process in
the development of tubulointerstitial fibrosis (Carew et al., 2012;
Xiao et al., 2015).

A complex relationship exists between KLF4 and TGF-β,
which plays an important role in the development of renal
fibrosis. It was recently indicated that the regulation of cell
proliferation and differentiation through TGF-β is mediated by
KLF4, which binds Smad3 to modulate TGF-β-induced gene
expression (Hu et al., 2007). Moreover, the overexpression of
KLF4 significantly reduced the production of MIF and MCP-1,
which are important mediators of TGF-β-induced renal fibrosis
(Mreich et al., 2015). Surprisingly, in cardiac fibroblasts, KLF4
binds with TGF-β1 to upregulate the expression of TGF-β1, while
this binding is suppressed by TGF-β signaling in macrophages
(King et al., 2003; Figure 2).

TGF-β impacts KLF4 both directly and indirectly. In an
indirect manner, TGF-β can quickly reduce the expression
of KLF4 by inducing miRNA-143 and miRNA-145 (Davis-
Dusenbery et al., 2011). In a direct manner, TGF-β1 induces
KLF4 phosphorylation via the Smad and p38 MAPK signaling
pathways, and phosphorylated KLF4 can, in turn, interact with
Smad2 to cooperatively activate the promoter of TGF-β type I
receptor (TβRI; Hu and Wan, 2011). Moreover, Cdh1-anaphase
promoting complex (Cdh1/APC), a well-known regulator of
mitosis (Peters, 2002), acts as a putative E3 ligase to control
TGF-β-induced KLF4 degradation. Both depletion of Cdh1 by
RNA interference and stabilization of KLF4 by disruption of
its destruction box significantly attenuated the TGF-β-induced
ubiquitylation and degradation of KLF4. Additionally, depletion
of Cdh1 or stabilization of KLF4 antagonized the TGF-β-induced
activation of target gene transcription (Hu and Wan, 2011).
Meanwhile, KLF4 is degraded in response to TGF-β signaling
through Cdh1/APC, which is catalyzed by KLF4 ubiquitylation

FIGURE 2 | The role of KLF4 in TGF-β signaling.

(Hu and Wan, 2011). Taken together, these findings indicate
that TGF-β plays an instrumental role in inducing KLF4
degradation (Figure 2). On the other hand, the overexpression
of KLF4 inhibits the pro-fibrotic effects of TGF-β1
(Mreich et al., 2015).

EMT has been shown to play an active role in renal tubular
fibrosis (Galichon and Hertig, 2011). DNA methylation, a type
of epigenetic modification in mammals, plays a crucial role in
the regulation of gene transcription, which is closely related
to EMT (Carmona et al., 2014). DNA methyltransferase 1
(DNMT1) is responsible for the maintenance of pre-existing
DNA methylation patterns after replication (Goll and Bestor,
2005). In in vivo and in vitro models of renal EMT, the KLF4
mRNA and protein levels were reduced compared with the
control, and the downregulation of KLF4 was found to be due
to DNMT1-mediated KLF4 promoter hypermethylation, which
contributed to the progression of EMT in renal epithelial cells
(Xiao et al., 2015). In tumor cells, KLF4 also demonstrated
the ability to regulate EMT (Chen et al., 2014). In particular,
KLF4 activated the transcription of the epithelial cell marker E-
cadherin and repressed the expression of a mesenchymal cell
marker, snail 2 (slug), by binding to their respective promoters.

KLF4 and Vascular Damage
In renal fibrosis, the significant changes in the structure
and function of peritubular capillaries and the apoptosis of
peritubular capillary endothelial cells give rise to capillary loss,
tissue hypoxia and oxidative stress. At the same time, the loss
of capillaries causes hypoxia or a reduction in the local nutrient
supply, aggravating the renal fibrosis and resulting in kidney
damage (Cao et al., 2012; Chapal et al., 2013). Moreover, changes
in the renal tubular capillary structure and function lead to
renal interstitial inflammation and a decrease or loss of renal
tubular capillaries, eventually leading to further renal fibrosis.
Thus, vascular damage is an essential factor contributing to renal
fibrosis (Yamaguchi et al., 2012).

Great efforts have been made to understand the role of KLF4
in VSMC, and KLF4 is known to inhibit VSMC differentiation
and proliferation through multiple pathways (Shi and Chen,
2014). For example, it has been shown that TGF-β control
element (TCE), a smooth muscle (SM) alpha-actin promoter
required for the TGF-β inducibility of SM alpha-actin in SM cells,
is needed for gene transcription in VSMC (Liu et al., 2003). KLF4
is a trans-acting factor with TCE (Adam et al., 2000). Specificity
protein (Sp) 1, a ubiquitous transcription factor that mediates
the transcription of ECM genes (Verrecchia et al., 2001), forms
a complex with KLF4 and binds TCE at the promoter of the
angiotensin II type 1 receptor (AT1R) in the absence of TGF-β to
maintain a basal expression level of AT1R in VSMC. Upon TGF-β
activation, the expression of AT1R is suppressed through TGF-
β1-mediated dissociation of the KLF4-Sp1 complex from TCE
at the AT1R promoter (Zhang et al., 2012). Moreover, in VSMC,
phosphorylated KLF4 can activate the TGF-β1 receptor promoter
by interacting with Smad2 (Zhang et al., 2012). Furthermore,
KLF4 exhibited an inhibitory effect on the proliferation of VSMC
via binding to p53 (Yoshida et al., 2008).
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Serum response factor (SRF) regulates the expression of
VSMC differentiation markers by cooperating with its co-
activator, myocardin, or its co-repressor, phosphorylated KLF4
(Wang et al., 2001). KLF4 also suppresses the expression of
VSMC contractile markers by interacting with SRF (Hu et al.,
2014). Therefore, KLF4 plays a catalytic role in renal fibrosis by
inhibiting the differentiation and proliferation of VSMC.

KLF4 in Renal Fibrosis
Recently, Chen et al. showed that KLF4 was indeed involved
in the regulation of renal physiological functions and the
progression of fibrosis (Chen et al., 2015). In two in vivo models
of unilateral ureteral obstruction, a decrease in KLF4 expression
was observed (Chen et al., 2015) and (Xiao et al., 2015), indicating
that KLF4 has anti-fibrotic action in the kidney. Nevertheless, the
role of KLF4 in renal fibrosis is still not clear, there is a need for
further study.

CONCLUSIONS AND PERSPECTIVES

The role of KLF4 in renal fibrosis is complex. For instance,
KLF4 can induce the transformation of primary fibroblasts
(Rowland et al., 2005) but can also induce fibroblasts to become
pluripotent stem cells in mice (Takahashi and Yamanaka, 2006;
Okita et al., 2007; Wernig et al., 2007). These findings make the
function of KLF4 in renal fibrosis confusing; nevertheless, the

findings described above indicate that KLF4 participates in the
development of renal fibrosis and that its inhibition of fibrosis is
greater than its promotion of the condition.

Because KLF4 is expressed in kidney cells (Hayashi et al.,
2014), the ability to reprogramming somatic cells into IPS
cells makes it possible to utilize KLF4 as a novel therapeutic
target for Chronic kidney disease (CKD; D’Anselmi et al., 2013;
Yamaguchi et al., 2014). Moreover, epigenetic modifications
are known to play an essential role in kidney function and
development (Dressler, 2008), and overexpression of KLF4 can
reduce DNA methylation at the nephrin promoter, increasing
the expression of nephrin and reducing the expression of
mesenchymal genes (Hayashi et al., 2014). KLF4 and epigenetic
modulation can thus be targeted as part of an intervention
to treat proteinuria (Hayashi and Itoh, 2015). In addition,
KLF4 can reduce the inflammation stimulated by TGF-β1 in
cases of renal fibrosis caused by diabetic nephropathy (Mreich
et al., 2015). Taken together, these findings strongly suggest
that KLF4 represents a potential therapeutic target for renal
fibrosis.
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