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Objective: To investigate whether support vector machine (SVM) trained with

radiomics features based on breast magnetic resonance imaging (MRI) could

predict the upgrade of ductal carcinoma in situ (DCIS) diagnosed by core

needle biopsy (CNB) after surgical excision.

Materials andmethods: This retrospective study included a total of 349 lesions

from 346 female patients (mean age, 54 years) diagnosed with DCIS by CNB

between January 2011 and December 2017. Based on histological confirmation

after surgery, the patients were divided into pure (n = 198, 56.7%) and upgraded

DCIS (n = 151, 43.3%). The entire dataset was randomly split to training (80%)

and test sets (20%). Radiomics features were extracted from the intratumor

region-of-interest, which was semi-automatically drawn by two radiologists,

based on the first subtraction images from dynamic contrast-enhanced T1-

weighted MRI. A least absolute shrinkage and selection operator (LASSO) was

used for feature selection. A 4-fold cross validation was applied to the training

set to determine the combination of features used to train SVM for classification

between pure and upgraded DCIS. Sensitivity, specificity, accuracy, and area

under the receiver-operating characteristic curve (AUC) were calculated to

evaluate the model performance using the hold-out test set.
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Results: The model trained with 9 features (Energy, Skewness, Surface Area to

Volume ratio, Gray Level Non Uniformity, Kurtosis, Dependence Variance,

Maximum 2D diameter Column, Sphericity, and Large Area Emphasis)

demonstrated the highest 4-fold mean validation accuracy and AUC of 0.724

(95% CI, 0.619–0.829) and 0.742 (0.623–0.860), respectively. Sensitivity,

specificity, accuracy, and AUC using the test set were 0.733 (0.575–0.892)

and 0.7 (0.558–0.842), 0.714 (0.608–0.820) and 0.767 (0.651–0.882),

respectively.

Conclusion: Our study suggested that the combined radiomics and machine

learning approach based on preoperative breast MRI may provide an assisting

tool to predict the histologic upgrade of DCIS.
KEYWORDS

ductal carcinoma in situ, magnetic resonance imaging, machine learning, radiomics
analysis, histologic upgrade, support vector machine
Introduction

Ductal carcinoma in situ (DCIS) is a noninvasive neoplastic

lesion of the breast which accounts for 20% of screen-detected

breast cancers (1). DCIS is characterized by the proliferation of

malignant epithelial cells that are confined within basement

membrane (2); therefore, it allows less-invasive treatment

options compared to invasive ductal carcinoma (IDC), which

usually involves axillary interventions. While core-needle biopsy

(CNB) is one of the gold standard tools for diagnosing breast

lesions, the preoperative diagnosis of DCIS determined by CNB

with a relatively small caliber (generally, 14-gauge) presents a

potential sampling error and may lead to the upstaging of DCIS

to invasive disease in surgically excised specimens. The rate of

histologic upgrade of DCIS to IDC at surgical excision has been

reported to be 6–59% (3–5).

Standard treatment for DCIS is similar to that for early-stage

invasive breast cancer, which consists of conserving surgery,

wide local excision followed by radiotherapy, mastectomy, or

possibly hormonal therapy (6); however, it remains to be

debatable whether these regimens are overtreatment especially

in women with pure DCIS or without invasive component (7–9).

According to National Comprehensive Cancer Network

(NCCN) guideline, sentinel lymph node biopsy (SLNB) is not

recommended for DCIS when breast-conserving surgery is

planned because of the low incidence of axillary involvement

in pure DCIS (1–2%) (6, 10). In contrast, SLNB or axillary lymph

node dissection (ALND) is essential in the case of DCIS

upgrading to IDC. Due to these differences in treatment

strategy between pure and upgraded DCIS, predicting occult

invasive component within newly diagnosed DCIS is of great
02
clinical importance for providing minimally harmful and more

effective patient management.

Various breast imaging modalities, including mammography

and magnetic resonance imaging (MRI), have been utilized to

evaluate the preoperative factors that are predictive of upgrading

of DCIS to IDC (11–14). Most of the previous efforts, however,

have applied the qualitative analysis of imaging features. More

recently, a quantitative imaging analysis method, called radiomics,

has emerged as a promising tool for extracting a large number of

quantitative features from medical imaging data (15). While a few

studies have tried to utilize the radiomics features for the

prediction of upgrading of DCIS in limited efforts (16, 17), the

extraction of large-scale radiomics features from imaging data and

the training of a machine learning classifier using these features

will add knowledge to the prior findings and help to evaluate the

potential of this method for noninvasive classification between

pure and upgraded DCIS.

The aim of our study was to investigate the feasibility of

using a combined radiomics and machine learning approach for

differentiating upgraded DCIS from pure DCIS based on breast

MR images in patients diagnosed with DCIS by CNB.
Materials and methods

Study population and
clinicopathologic features

This retrospective study was approved by the institutional

review board of our center (IRB No. 2022-110), and the

informed consent was waived. We selected a patient cohort
frontiersin.org
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with the diagnosis of CNB-proven DCIS from the pathologic

reports between January 2011 and December 2017. 354 female

patients who underwent a preoperative breast MRI and the

surgical resection were eligible for this study. The following

criteria were applied for the exclusion of patients: 1) prior

surgery or radiation therapy for breast cancer (n = 2), 2) prior

excision or vacuum-assisted biopsy (n = 2), 3) preoperative

breast MRI with an insufficient imaging quality or a poor

delineation of tumor due to prominent background

parenchymal enhancement (n = 4). After these exclusions, a

total of 346 women (mean age ± standard deviation [SD], 54 ±

10.5 years-old; range, 22−81 years-old) with 349 lesions

(upgraded DCIS, n = 151; pure DCIS, n = 198) were

included (Figure 1).

Clinicopathologic factors, including patients’ age and symptom

at diagnosis, mammography (mass, microcalcifications only,

asymmetry, occult), ultrasound (mass, non-mass), and MR

morphology (mass, non-mass enhancement), the size of

enhancing portion at MRI, the type of surgery, pathologic

diagnosis (upgraded DCIS or pure DCIS), Ki-67 proliferation

rate, the pathologic size of DCIS and invasive cancer, axillary

lymph node metastasis , and molecular subtype by

immunohistochemical staining, were reviewed. The lesions that

were difficult to be classified as “mass” on ultrasound but identified

as an area of altered echotexture were denoted as “non-mass”. CNB

was performed with a 14-gauge biopsy gun and at least 4 samples

were harvested from each patient. All pathologic information after

surgery were obtained from the pathology reports of surgical

specimen. Based on the histopathologic analysis of surgical

specimen, the patients were categorized into either pure DCIS or
Frontiers in Oncology 03
upgraded DCIS. The upgraded DCIS was histologically defined as

having microinvasive or invasive foci within a tumor.
MRI acquisition

All patients underwent bilateral breast MRI using three

different 3-tesla scanners (Tim trio, Skyra, or Skyra II; Siemens

Healthcare, Erlangen, Germany) with a dedicated 16- or 18-

channel breast coil. Dynamic contrast-enhanced (DCE)-MRI was

performed using T1-weighted axial 3-dimensional fat-saturated

spoiled gradient-echo (TR/TE = 4.5/1.7 ms, matrix size = 448×358

mm, FOV = 320×320 mm2, and slice thickness = 1.5 mm) with the

administration of gadoterate meglumine (Dotarem; Guerbet,

Aulnay-sous-bois, France) at a dose of 0.1 mmol/kg body weight.

DCE-MRI consisted of a pre-contrast and five post-contrast series.

Subtraction images were generated by subtracting pre-contrast

series from each of the five post-contrast series.
Tumor segmentation

The first subtraction images were utilized for the semi-

automatic segmentation of tumor. Two radiologists (4 and 18

years of experience in breast imaging, respectively), who were

blinded to the clinicopathologic data, reviewed the images and

semi-automatically drew the intratumor region-of-interest

(ROI) using an open-source software, 3D Slicer (https://www.

slicer.org). A 5-mm peritumor ROI was automatically created by

extending the boundary of the intratumor ROI using a built-in
FIGURE 1

Flowchart of study population with exclusion criteria.
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segmentation tool in 3D Slicer, and the combined ROI was

obtained by merging intratumor- and donut-like peritumor-

ROIs. The ROIs drawn on multiple slices were rendered into a

3D volume. The examples of tumor segmentation on the first

subtraction T1-weighted image are shown in Figures 2 and 3.
Data preprocessing and radiomics
feature extraction

In order to account for the differences in pixel intensities

across different MR scanners, the pixel intensity values on the

subtraction images were normalized using Z-score (18). Each

pixel value was normalized using the following equation:

zi =
xi −mR

sR
(1)
Frontiers in Oncology 04
, where zi , xi , mR , and sR stand for the normalized pixel

value, original pixel value, and the mean and standard deviation

of pixel values derived from the combined ROIs.

Following the pixel normalization, a total of 107 radiomics

features were extracted from the intratumor ROIs using a

Pyradiomics module in python package (19). The 107 features

consist of three statistical properties: 14 shape, 18 intensity, and

75 texture features (Supplemental Table).
Feature selection and classifier training

The entire dataset was randomly split into training (80%)

and test sets (20%), with each cohort containing the

approximately similar ratio of upgraded to pure DCIS. The

training set was used for selecting features and training a
B

C D

A

FIGURE 2

An example of tumor segmentation in a 50-year-old woman who complained of palpable lump in her left breast, which was pathologically
confirmed as upgraded ductal carcinoma in situ (DCIS) after surgical excision. (A) Mammography shows about 3 cm extent of fine pleomorphic
microcalcifications seen in the left central breast. (B) Ultrasound image shows the non-mass lesion with microcalcifications. (C) Axial first
postcontrast T1-weighted image with subtraction shows a 3 cm irregular heterogeneously enhancing mass in left lower central breast. (D) The
green and blue shadings represent the intratumor and peritumor ROIs, respectively, which are created by 3D slicer.
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classifier, while the hold-out test set was used for testing the

performance of the classifier model.

In order to minimize a model complexity and choose an

optimal set of features for classifier, a least absolute shrinkage

and selection operator (LASSO) was applied. LASSO was based

on L1 regularization and the coefficients of unimportant

regression variables were rendered to be zero (20). Features

with a bigger absolute coefficient value can be interpreted as

having a greater relevance for classification. The three-quarter of

the training set was randomly selected to fit LASSO. This process

was repeated 500 times and the absolute coefficient values of the

selected features were summed. Finally, the top 14 features with

the highest accumulated sum of absolute coefficient values were

selected as candidate features. The feature selection process was

implemented using a python package, scikit-learn (21).
Frontiers in Oncology 05
Based on the 14 candidate features that were selected, a

support vector machine (SVM) algorithm with a Radial Basis

Function kernel was utilized to build a classifier model using a

scikit-learn package. In order to find the optimal set of features for

the final classifier, the SVMmodels with every combination of the

14 selected features were tested using the training set with a 4-fold

cross-validation method. Hyperparameters were optimized for

each fold. The final classifier model was chosen based on the

highest mean validation accuracy, area under the receiver

operating characteristics curve (AUC) and the minimum

standard deviation of the 4-fold model accuracies. In addition,

the final classifier model must include the top-4 features based

on the sum of accumulated LASSO coefficients. The performance

of the final classifier model for distinguishing between the pure

and upgraded DCIS was assessed using the hold-out test set.
B

C D

A

FIGURE 3

An example of tumor segmentation in a 66-year-old woman who complained of incidentally detected microcalcifications in the screening
mammogram, which was pathologically confirmed as pure ductal carcinoma in situ (DCIS) after surgical excision. (A) Mammography shows
focal asymmetry with grouped microcalcifications seen in the right outer breast (arrows). (B) Ultrasound image shows the subtle non-mass
lesion with microcalcifications (arrows). (C) Axial first postcontrast T1-weighted image with subtraction shows about 3.1 cm extent of clumped
non-mass enhancement in right upper outer breast. (D) The green and blue shadings represent the intratumor and peritumor ROIs, respectively,
which are created by 3D slicer.
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Statistical analysis

Interobserver reproducibility of the extracted features from

the ROIs drawn by the two radiologists was analyzed by

calculating an intraclass correlation coefficient (ICC) and

categorized as excellent (>0.90), good (0.75–0.90), moderate

(0.50–0.75), or poor (<0.50) (22). Clinicopathologic features

were compared between the training and test sets using the

independent t-test for the continuous variables and the Fisher’s

exact test or Chi-square test for the categorical variables.

Sensitivity (upgraded DCIS considered as a positive

condition), specificity, accuracy, and AUC were calculated for

assessing model performance.
Results

Patient characteristics and
clinicopathologic features

The mean time interval between CNB and surgical excision

was 25 days (range, 10–71 days). The following surgeries were

performed: breast conserving surgery (n = 251, 71.9%) or

mastectomy (n = 98, 28.1%). One hundred fifty-one out of 349

lesions that were included in this study (43.3%) were

histologically determined to be upgraded to IDC, which was

within the range of the previously reported rate of upgrading

(23, 24).

The baseline characteristics and clinicopathologic features

between the training (n = 279) and test sets (n = 70) are

summarized in Table 1. There were no significant differences

in baseline characteristics and clinicopathologic features

between the two groups (all, p > 0.05).

The comparison of baseline characteristics and clinicopathologic

features between the pure and upgraded DCIS is shown in Table 2.

The patients in the upgraded DCIS group were significantly younger

(p = 0.021; mean age in the pure and upgradedDCIS = 53.0 and 50.5

years-old, respectively), had more symptoms of palpable lump

(p<0.001), higher Ki-67 proliferation rate (p = 0.001), and more

triple-negative breast cancer (TNBC) and less luminal A subtype (p

= 0.042) than pure DCIS (Figures 2 and 3). No patients in the pure

DCIS group had axillary lymph node metastasis (p< 0.001).
Interobserver reproducibility

The ICCs (mean ± SD) for the selected features were 0.937 ±

0.072 (range, 0.730–0.993) for intratumor ROIs and 0.9 ± 0.094

(range, 0.518–0.996) for peritumor ROIs, respectively, showing

an excellent agreement between the two radiologists. The

features based on the ROIs drawn by the first radiologist were

used to train the model.
Frontiers in Oncology 06
Feature selection

The top 14 features with the highest accumulated sum of

LASSO coefficients are shown in Figure 4. The 14 features

consisted of 4 shape features (Least Axis Length, Maximum 2D

Diameter Column, Sphericity, Surface Volume Ratio), 5 intensity

features (Energy, Kurtosis, Minimum, Total Energy, Skewness),

and 5 texture features (Dependence Variance, Gray Level Non

Uniformity, Large Area Emphasis, Size Zone Non Uniformity

Normalized, Zone Variance). The sums of accumulated LASSO

coefficients for the top-4 features (Energy, Skewness, Surface

Area to Volume ratio, Gray Level Non Uniformity) were

relatively large compared to those of other features. Therefore,

it was ensured that the final model included these four features.
Model Performance

After exploring all potential models with the combination of

the 14 candidate features, the model trained with 9 features,

including Energy, Skewness, Surface Area to Volume ratio, Gray

Level Non Uniformity, Kurtosis, Dependence Variance,

Maximum 2D diameter Column, Sphericity, and Large Area

Emphasis was chosen as the final classifier (Figure 4). This

model demonstrated the highest 4-fold mean validation

accuracy and AUC of 0.724 (95% CI, 0.619–0.829) and 0.742

(0.623–0.860), respectively. The accuracy and AUC of the final

classifier using the hold-out test set were 0.714 (0.608–0.820)

and 0.767 (0.651–0.882), respectively (Table 3 and Figure 5). The

sensitivity and specificity using the test set were 0.733 (0.575–

0.892) and 0.7 (0.558–0.842), respectively. Table 4 shows a

confusion matrix that summarizes the performance of the

final classifier.
Discussion

This study suggested that the combined radiomics and

machine learning approach in breast MRI may provide a tool

for the preoperative prediction of DCIS that has an increased

risk of carrying an invasive component. Our proposed model

demonstrated an accuracy of 0.714 and AUC of 0.767 for the

prediction of DCIS upgraded to IDC.

The NCCN guideline does not recommend a routine SLNB

for DCIS with a planned breast-conserving surgery, nor ALND

in the absence of invasive cancer or proven axillary disease to

minimize the chances of overtreating pure DCIS (6). Although

DCIS has a rare axillary involvement, axillary evaluation may be

considered in some DCIS lesions which are found to form a mass

by clinical examination or imaging. Unfortunately, CNB can

underestimate the occult invasive component in a relatively

small-caliber specimen; therefore, many institutions have been
frontiersin.org
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utilizing SLNB for patients with DCIS, who undergo breast-

conserving surgery, and many studies have attempted to

noninvasively identify DCIS with occult invasive component

or predict the upgrading of DCIS after surgical excision (23,

25–27).

MRI is the most sensitive tool to detect malignancy among

various breast imaging tools (28). Several studies focused on

finding meaningful discriminators or developing quantitative

features from breast MRI for predicting the upgrade of DCIS (12,

16, 29–31). Park et al. reported that low T2 signal, heterogeneous
Frontiers in Oncology 07
or rim enhancement, and low ADC value in multiparametric

breast MR may be helpful in predicting an upgrade of DCIS to

IDC (12). In a multi-institutional retrospective study, palpable

lump, BI-RADS category 4 or 5 on mammogram, mass

formation on ultrasound, and tumor size more than 20 mm

on MRI were independent predictors of upgrading of DCIS to

IDC after surgery (32). Lee at al. utilized diffusion-weighted

breast MRI in prediction of upstaging in women with biopsy-

proven DCIS (33). Most of these previous studies, however,

relied upon the conventional ways to analyze medical imaging
TABLE 1 Comparison of baseline characteristics between training (n = 279) and test (n = 70) sets.

Training Test P

Patient age (mean ± SD, years) 52.2 ± 10.4 50.9 ± 9.5 0.342

Symptom 0.089

Palpable lump 101 (36.2%) 20 (28.6%)

Nipple discharge 23 (8.2%) 2 (2.9%)

None 155 (55.6%) 48 (68.6%)

Mammogram morphology 0.997

Mass 26 (9.3%) 7 (21.2%)

Microcalcifications only 142 (50.9%) 35 (19.8%)

Asymmetry 61 (21.9%) 15 (19.7%)

Occult 50 (17.9%) 13 (20.6%)

Ultrasound morphology 0.291

Mass 63 (22.6%) 12 (17.1%)

Non-mass lesion 189 (67.7%) 54 (77.1%)

No delineation 27 (9.7%) 4 (5.7%)

MRI morphology 0.666

Mass 90 (32.3%) 20 (28.6%)

Non-mass enhancement 189 (67.7%) 50 (71.4%)

MR enhancing portion size (mean ± SD, mm) 37.3 ± 23.2 36.2 ± 21.2 0.692

Surgery type 0.183

Breast conserving surgery 196 (70.3%) 55 (78.6%)

Mastectomy 83 (29.7%) 15 (21.4%)

Pathologic diagnosis 0.938

Upgraded DCIS 121 (43.4%) 30 (42.9%)

Pure DCIS 158 (56.6%) 40 (57.1%)

Ki-67 (≥14%) 0.789

Yes 131 (47.0%) 31 (44.3%)

No 148 (53.0%) 39 (55.7%)

Pathologic size of DCIS (mean ± SD, mm) 28.1 ± 20.7 26.8 ± 15.9 0.627

Pathologic size of invasive component(mean ± SD, mm) 8.4 ± 11.1 6.4 ± 7.1 0.221

Axillary lymph node metastasis 0.820

Yes 16 (5.7%) 3 (4.3%)

No 263 (94.3%) 67 (95.7%)

IHC subtype 0.915

Luminal A 115 (41.2%) 31 (44.3%)

Luminal B 59 (21.1%) 15 (21.4%)

HER2-positive 83 (29.7%) 18 (25.7%)

TNBC 22 (8.0%) 6 (8.6%)
frontiersi
MRI, magnetic resonance imaging; DCIS, ductal carcinoma in situ; IHC, immunohistochemistry; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer;
SD, standard deviation.
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data, which are based on the qualitative assessment of imaging

parameters. A few reports have investigated the use of MRI-

extracted quantitative features or applied deep learning

algorithms for the prediction of the upgrading of DCIS (16,

34). Most recently, Mori et al. reported that radiomics features

extracted from ultrafast MRI could effectively distinguish low-

grade DCIS (n = 16) from non-low-grade DCIS (n = 37) or from

upgraded DCIS (n = 33) (35). While these information obtained

in an early contrast flow from ultrafast MRI can provide an

useful information, ultrafast MRI may be insufficient for the

morphological evaluation because of its relatively large voxel size

compared to the conventional DCE-MRI (35). In addition, the

conventional DCE-MRI is preferentially used for differentiating
Frontiers in Oncology 08
cancerous from benign tissue because it provides information

regarding the change in blood flow with the broad range of time

frame. In another study, Harowicz et al. analyzed 29

algorithmically assessed imaging features, including

morphologic and texture features as well as qualitatively

assessed MRI enhancement features from DCE-MRI from 131

patients for predicting the upgrade of DCIS (16). In comparison,

our study extracted a large number of quantitative radiomics

features, totaling 107, which were derived from the semi-

automatically drawn ROIs of enhancing portion of the

conventional DCE-MRI. Our study also represents a relatively

large number of patient dataset (n = 346). In contrast to other

studies where the proportion between pure and upgraded DCIS
TABLE 2 Comparison of clinicopathologic features between upgraded (n = 151) and pure DCIS (n = 198).

Upgraded Pure P

Patient age (mean ± SD, years) 50.5 ± 9.3 53.0 ± 10.8 0.021

Symptom < 0.001

Palpable lump 70 (46.4%) 51 (26.0%)

Nipple discharge 12 (7.9%) 13 (6.6%)

None 69 (45.7%) 132 (67.3%)

Mammogram morphology 0.120

Mass 20 (13.2%) 13 (6.6%)

Microcalcifications only 76 (50.3%) 101 (51.0%)

Asymmetry 33 (21.9%) 43 (21.7%)

Occult 22 (14.6%) 41 (20.7%)

Ultrasound morphology 0.093

Mass 33 (21.9%) 42 (21.2%)

Non-mass lesion 99 (65.6%) 144 (72.7%)

No delineation 19 (12.6%) 12 (6.1%)

MRI morphology 0.563

Mass 45 (29.8%) 65 (32.8%)

Non-mass enhancement 106 (70.2%) 133 (67.2%)

MR enhancing portion size (mean ± SD, mm) 39.6 ± 20.4 35.2 ± 24.3 0.068

Surgery type 0.188

Breast conserving surgery 103 (68.2%) 148 (74.7%)

Mastectomy 48 (31.8%) 50 (25.3%)

Ki-67 (≥14%) 0.001

Yes 86 (57.0%) 76 (38.4%)

No 65 (43.0%) 122 (61.6%)

Pathologic size of DCIS (mean ± SD, mm) 35.0 ± 17.7 26.2 ± 19.9 0.003

Pathologic size of invasive component(mean ± SD, mm) 8.0 ± 10.5 N/A

Axillary lymph node metastasis < 0.001

Yes 19 (12.6%) 0 (0)

No 132 (87.4%) 198 (100%)

IHC subtype 0.042

Luminal A 58 (38.4%) 88 (44.4%)

Luminal B 41 (27.2%) 33 (16.7%)

HER2-positive 37 (24.5%) 64 (32.3%)

TNBC 15 (9.9%) 13 (6.6%)
frontier
MRI, magnetic resonance imaging; DCIS, ductal carcinoma in situ; IHC, immunohistochemistry; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer;
SD, standard deviation; NA, Not Applicable.
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was imbalanced, we ensured to have relatively balanced dataset.

The ratio of pure DCIS to upgraded DCIS in our study was 1.3

while it ranged from 2.1 to 2.7 in other studies (16, 35, 36).

In our study cohort, the rate of upgrade to invasive cancer was

43.3%, which was within the range of the previously reported rates
Frontiers in Oncology 09
(6–59%) (4, 5). In a previous meta-analysis, the high

underestimation of DCIS at CNB was associated with the use of

14-gauge needle (versus 11-gauge vacuum-assisted device), high

histologic grade lesion (versus non-high grade lesion), lesion size

more than 20 mm at imaging, BI-RADS score of 4 or 5, mass at
FIGURE 4

Feature selection results. 14 features and their accumulated sum of the least absolute shrinkage and selection operator (LASSO) coefficients
over 500 iterations are plotted. 9 features that were included in the final model were marked with an asterisk (*).
TABLE 3 The summary of the radiomics model performance.

Validation set (average from 4-fold CV) Test set

Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC Accuracy

0.587
(0.412–0.761)

0.829
(0.714–0.945)

0.742
(0.623–0.860)

0.724
(0.619–0.829)

0.733
(0.575–0.892)

0.7
(0.558–0.842)

0.767
(0.651–0.882)

0.714
(0.608–0.820)
fro
Data are percentages, with 95% confidence intervals in parentheses.
AUC, area under the receiver operating characteristic curve; CV, cross validation; RA, radiomics analysis.
FIGURE 5

Receiver operating characteristic (ROC) curve of the model performance using the hold-out test set.
ntiersin.org

https://doi.org/10.3389/fonc.2022.1032809
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lee et al. 10.3389/fonc.2022.1032809
mammography (versus microcalcification only), and palpability

(23). Our study included relatively large lesions in both groups

(mean size, 39.6 mm and 35.2 mm for upgraded and pure DCIS,

respectively). In addition, most of the biopsies were performed

using 14-gauge device and patients who underwent vacuum-

assisted biopsy were excluded. We speculate that these factors

may have influenced the performance of our model.

There are several limitations in this study. Although we utilize

the semi-automatic segmentation tool from the open-source

software, this process is time-consuming and needs significant

human efforts. In addition, interobserver reproducibility is one of

the most important aspects in the extraction of radiomics features

from ROI. Although our results showed an excellent interobserver

reproducibility from the two radiologists, the development of

automatic ROI segmentation method will enhance the efficiency

and reproducibility in future efforts. Second, it was a retrospective

study without an external validation test. Although we have

performed the feature selection with the random split of

training set 500 times and allocated the hold-out test set to

evaluate the performance of our model, future studies with an

external validation incorporating multicenter patient data will

prove the validity of our method. The collection of multicenter

patient data from our collaborating hospitals are currently

underway. Third, we used only subtraction images to define

tumor and extract radiomics features. Because DCIS lesions are

usually revealed as non-mass enhancement in MR, it is difficult to

delineate tumor boundary from background parenchymal tissue

in T2-weighted images. In addition, the radiomics features from

the intratumor ROI were only utilized for classification, and the

combined ROI (intratumor + peritumor) was used only for the

purpose of pixel intensity normalization. As the peritumoral

region beyond contrast enhancement is believed to contain

critical information regarding tumor microenvironment (37),

further research is required to properly define and delineate the

peritumoral region, especially, for non-mass enhancement lesions,

and to assess its effect on the predictive performance of radiomics

model using multi-parametric MRI data.

In conclusion, our study demonstrated that the combined

radiomics and machine learning approach based on preoperative
Frontiers in Oncology 10
breast MRI may provide an assisting tool to predict the histologic

upgrade of DCIS after surgical excision. The proposedmethod can

help clinicians to provide an optimal medical care to patients with

underestimated invasive breast cancer.
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