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Abstract

In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential 

therapeutic approach for the treatment of heart disease. In the current study, we investigated the 

use of in vivo electroporation for gene transfer using 3 different penetrating electrodes and one 

non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. 

Eight electric pulses synchronized to the rising phase of the R wave of the ECG were administered 

at varying pulse widths and field strengths following an injection of either a plasmid encoding 

luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left 

ventricle were treated. Animals were euthanized 48 hours after injection and electroporation and 

gene expression was determined. Results were compared to sites in the heart that received plasmid 

injection but no electric pulses or were not treated. Gene expression was higher in all 

electroporated sites when compared to injection only sites demonstrating the robustness of this 

approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-

viral method for delivering genes to the heart, in vivo.
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Introduction

Ischemic heart disease continues to be a leading cause of mortality and disability. Despite 

the widespread availability of percutaneous catheter based interventions and surgical 

coronary artery bypass, there is a growing population of patients in which complete 

revascularization cannot be achieved. Gene transfer to promote neovascularization to these 

regions is an attractive therapeutic modality. The feasibility of delivering angiogenic factors 

to the myocardium has been demonstrated via cardiac catherization or direct administration 

into the myocardium.1–10 However, there are problems associated with its use. Adeno-

viruses have been linked with tissue immune responses and non-viral mediated gene 

transfer, although not associated with adverse immune responses, has provided expression 

levels that fall below levels needed for therapeutic management of disease. Unlike viral 

vectors, naked DNA vectors are not associated with the immunogenicity observed with viral 

vectors.11–14 Therefore, an efficient gene transfer system for delivery of plasmid DNA 

targeted to the ischemic area of the heart at levels designed to induce increased perfusion 

would provide long-term support to the ischemic myocardium and reduce the possibility of 

recurring ischemic episodes.

Electroporation, which is a technique involving the application of short duration, high 

intensity electric pulses to tissue 15,16 used in combination with plasmid DNA injection has 

been reported to facilitate delivery of plasmid DNA in skeletal muscle17 and cardiac 

tissue 18,19. Previously, we demonstrated that electroporation could be used to effectively 

deliver plasmid DNA directly to cardiac tissue in vivo 19. It was demonstrated that 

administering electric pulses that were synchronized to the rising phase of the R wave of the 

ECG resulted in enhanced expression of the delivered transgene without fibrillating the 

heart 19. In this study, the work is expanded to evaluate various electrode configurations to 

facilitate delivery. Utilizing these different arrays we evaluated the delivery of varying field 

strengths and pulse widths to the epicardium, the myocardium and to the endocardium of the 

heart, in vivo (Figure 1).

Results

A total of 40 animals were studied and 111 injection/electroporation sites analyzed. To 

enhance delivery of plasmid DNA to the heart, custom designed applicators were utilized. 

The basic electrode designs used were either a penetrating electrode applicator which 

contained 4 needle electrodes or a non-penetrating electrode applicator which contained 4 

bars. Both applicators were designed to form a 5 × 5 mm square (Figure 2). For the needles 

arrays, the 8 pulses were divided into two sets of 4 pulses. All pulses are applied across the 5 

mm gap in a 2 × 2 needle configuration. Following administration of the first 4 pulses, the 

next set of 4 pulses was applied in a perpendicular direction to the first (90° rotation). For all 

pulses, 2 needles have a positive polarity and 2 have a negative polarity. For the 
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nonpenetrating array, the pulses are applied across two plates then an additional 4 pulses 

applied across the 2 perpendicular plates. Thus, the pulses are applied in two perpendicular 

directions as done with the needle arrays.

The electrode applicators contained a central injection port which allowed the injection 

needle to be inserted to a controlled depth. This was critical in delivering the plasmid to the 

desired area of the heart. A spacer was slipped over the needle to control the insertion depth. 

Following injection of the plasmid, the needle was drawn back into the insulated part of the 

applicator and was not within the applied field. To assure that the electric field was applied 

in the area that the plasmid was injected, three different penetrating electrode applicators 

were utilized which facilitated penetration to 3 different depths (4, 7 and 10 mm). For 

delivery to the epicardium (tunica adventitia), the injection needle was inserted to a depth of 

2.5 mm and the electric pulses were administered using a penetrating applicator with 4 mm 

long needles. For delivery to the myocardium (tunica media) the injection needle was 

inserted to a depth of 3.5 mm and the electric pulses were administered using a penetrating 

applicator with 7 mm long needles. For delivery to the endocardium (tunica intima) the 

injection needle was inserted to a depth of 5.5 mm and the electric pulses were administered 

using a penetrating applicator with 10 mm long needles. For the nonpenetrating electrode, 

the injection needle was inserted to a depth of 2.5 mm.

All electroporated sites had significantly higher expression levels (p<0.001) of pLuc when 

compared to the plasmid injection only (no electroporation) or no treatment at all (Figure 

3A–D). These results demonstrate the robustness of the approach as increased expression 

was obtained even with different pulsing parameters and electrode depths.

Two different electrode applicators were used to deliver plasmid DNA to the epicardium. 

With the 4 mm penetrating electrode applicator, when the pulse width was held constant at 

20 milliseconds (ms) there was no significant difference in luciferase expression when the 

applied electric field was increased from 20 V to 60 V. Likewise, when pulse width was 

maintained at 50 ms and the applied electric field was increased, the increase in luciferase 

expression was not statistically significant (Figure 3A). These data suggest that plasmid 

injection plus electroporation increases the level of luciferase expression greater than 

plasmid injection alone but varying the pulse width or the electric field does not further 

enhance gene expression in the epicardium of the swine heart.

When we exposed the epicardium to varying field strengths and pulse widths using a non-

penetrating electrode (Figure 3B) the electroporated tissue once again had significantly 

higher expression levels of luciferase (p< 0.001) when compared to injection without 

electroporation or no treatment. However, changing pulse width or the applied electric field 

did not cause a further increase in expression.

Although the 4 mm electrode delivered the electrical field to a small portion of the 

myocardium in addition to the epicardium the highest expression of pLuc was observed 

when the plasmid was injected into the myocardium and electroporated using the 7 mm 

penetrating electrode (Figure 3C). Again, all electroporation sites had significantly higher 

luciferase expression levels (p<0.001) when compared to the injection only (plasmid 
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injection but no electroporation). Maintaining a constant pulse width of 20 ms and 

increasing the applied electric field from 20 V to 60 V resulted in no significant change in 

expression. When the pulse width was increased to 50 ms there was a significant decrease in 

luciferase expression at an electric field of 10 V and 20 V when compared to 20 ms and 60 

V (p<0.05). These data suggest that a shorter pulse width and a higher electric field are more 

efficient at increasing luciferase expression in the myocardium.

To demonstrate the effect of plasmid injection and electroporation on luciferase expression 

at the level of the endocardium we used a 10 mm penetrating electrode (Figure 3D). While 

luciferase expression was significantly higher in the electroporation sites than in the 

injection only site, manipulation of the pulse width or the electric field did not result in 

greater expression of luciferase.

The highest luciferase expression was obtained following injection of plasmid DNA into the 

myocardium followed by administration of electric pulses administered with the 7 mm 

electrode (20 ms and 60 V). Delivery utilizing 20 ms and 20 V also yielded high levels of 

expression in the myocardium. As a result, we analyzed luciferase expression using the 7 

mm electrode with both of these electroporation parameters following injection of pLuc at 

concentrations of 0.5 mg/ml, 1mg/ml or 2 mg/ml to determine if the concentration of DNA 

was a factor in amount of expression. When delivered with the 7 mm penetrating array, all 

concentrations of DNA resulted in increased luciferase expression when electroporation was 

used compared to injection without electroporation; however, we did not observe a dose 

response (Figure 4).

Distribution of expression within the heart was evaluated following injection of pGFP. For 

this experiment, the 7 mm electrode was used for electroporation. GFP was seen throughout 

the electroporated sites of the myocardium (Figure 5).

Using Ansoft Maxwell 12 software, electric fields were simulated for the different electrode 

geometries. Figure 6 shows a simple 2-D field simulation of the 4 mm penetrating needle 

electrode as well as the non-penetrating plate electrode. Both electrodes are modeled in the 

simulation with a 5 mm spacing and surrounded in a polyethylene sheath. The outside 

environment was specified to be air with the heart tissue modeled with permittivity and 

conductivity parameters as described previously20. The simulations used parameters that 

resulted in the best expressions for both electrodes (20 V for 4 mm penetrating electrode and 

50 V for non-penetrating electrode). It is seen that both electrode configurations showed 

high localized fields at the tips of the electrodes. The injection area electric field is seen to 

be ~ 50 V/cm for the penetrating electrode and ~ 60 V/cm for the non-penetrating electrode. 

The non-penetrating electrode shows a decrease in electric field with increasing depth of 

tissue but still showing ~10 V/cm up to 5 mm into the tissue. The penetrating electrodes 

show a 50 V/cm field for the length of the electrode and ~10 V/cm up to 5 mm deeper into 

the tissue than the electrode length. As the needle electrode is moved to 7 and 10 mm 

depths, the same electric fields are also moved to these depths. With the higher voltage 

conditions (60 V for penetrating and 100 V non-penetrating), simulations show fields at the 

injection areas to be ~120 V/cm and ~110 V/cm for the penetrating and non penetrating 

electrodes respectively.
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Discussion

In the present study, we confirmed that electroporation is a viable approach to deliver 

plasmid DNA into cells of the porcine heart, in vivo. Variables such as applied electrical 

field, pulse width, electrode length and DNA concentrations were tested. We analyzed 3 

different electrodes with varying needle lengths (4 mm, 7 mm, 10 mm) and a non-

penetrating electrode with varying pulse width and applied electric field. The electroporation 

parameters were selected based on several factors including size and structure of cells as 

well as a pulse length that could be administered during the rising phase of the R wave of 

the ECG and be concluded prior to the start of the t wave. Cardiac muscle is similar to 

skeletal muscle as both are striated. However, unlike skeletal muscle, cardiac muscle cells 

are mononucleated and may be branched unlike skeletal muscle cells that are typically 

multinucleated and linear. Skeletal muscle cells are typically centimeters in length while 

cardiac muscle cells are typically around 100–150 mm long. Skeletal muscle cells are also 

wider (100 μm diameter) than cardiac muscle cells (35 mm in diameter). Even with these 

differences, it was hypothesized that similar electroporation conditions that were successful 

to deliver to skeletal muscle could be utilized for cardiac muscle cells. It was decided to test 

pulse widths similar to those used by Aihara (50 ms) and Mir (20 ms) for this study21,22. 

These pulse widths were also short enough to be appropriately synchronized with the ECG. 

Interestingly, although the cardiac muscle cells are smaller, a lower applied voltage/

electrode distance was needed to obtain high expression. Our findings show a statistically 

significant increase in luciferase expression with all electrodes, at all pulse widths and at all 

applied electrical fields when compared to tissue sites exposed to injection of plasmid 

without electroporation or non-treated tissue sites (no injection or electroporation).

The 4 mm long needle electrodes placed the applied electrical field in the epicardium and a 

small portion of the myocardium of the heart, in vivo. Although luciferase expression was 

significantly (p <0.001) greater with electroporation (for both 4 mm electrode and the non-

penetrating electrode) than without it, the changes in pulse width or the applied electrical 

field did not cause a further increase in luciferase expression. We varied the pulse width 

from 20 to 50 ms and the applied electrical field from 10 V to 60 V. There was a greater 

tendency for changes in voltage to affect expression than changes in pulse width but the 

increase in expression was not statistically significant. The epicardium is a serous membrane 

of connective tissue covered with epithelium. The epicardium plays a morphogenetic role by 

emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative 

context, electroporation of the epicardium after injection of DNA may serve as a therapy for 

damaged heart and might induce a progenitor cell population that can be directed to 

contribute to cardiac repair.

It is clear that enhanced expression can be achieved in the epicardium by augmenting 

delivery with electroporation. It is interesting that higher expression in the epicardium was 

obtained utilizing the non-penetrating electrode compared to the 4 mm needle array. While 

the same injection procedure was used with both arrays, higher voltages were used with the 

non-penetrating array to achieve penetration of the fields. It may be possible that higher 

expression could be achieved with the 4 mm array if higher voltages were used, but this 

could also lead to tissue damage. However, it should also be noted that utilizing the non-
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penetrating array has a distinct advantage as only one needle (injection port) needs to 

penetrate the tissue. Being able to achieve appropriate expression levels without inserting 

multiple needles could be a benefit when attempting to deliver to the epicardium.

The most effective electrode in increasing luciferase expression was the 7 mm electrode. 

Delivery with this electrode yielded high reproducible expression. These studies show that 

luciferase expression was 133% greater when the pulse width was 20 ms and the applied 

electrical field was 60 V than when the pulse width was 50 ms and the applied electrical 

field was 10, 20 or 40 V (p<0.05). These data suggest that significant plasmid expression 

can be achieved when the electrode penetrates the myocardium and a voltage of at least 60 

V is applied to the cardiac myocyte. The myocardium is the muscular middle layer of the 

wall of the heart and plays an important role in controlling the pumping function of the 

ventricles. It is composed of muscle fibers that contract spontaneously which allow for 

cardiac contraction. The function of this layer of the heart is critical to survival after 

ischemic episodes observed in the hibernating myocardium or infarcted heart. Thus, the 

myocardium is an important target for delivery of therapeutic molecules for the potential 

treatment of ischemia or infarcts.

We observed very few adverse responses of the heart following the application of the 

electric field to the heart. Fibrillation of the heart generally occurred if the animal was 

hypokalemic upon arrival to the facility or when the ECG tracing was not of a quality that 

readily allowed for recognition of the rising phase of the R wave. We corrected the 

hypokalemia preoperatively by administering potassium intravenously. Also, preoperatively 

heart rate and the ECG leads were manipulated so that there was a significant distance 

between the R and T waves. Applying the electric field away from the T wave in most, if not 

all cases prevented fibrillation of the heart even when the applied electric field was as high 

as 90 V.

We did not observe a dose response with either a change in pulse width or a change in the 

applied electrical field when we varied the concentration of injected plasmid. This is an 

interesting result. It is possible that because of the small area (5×5 mm) that delivery was 

maximized to the cells within this area and a decrease in expression may occur with a 

further reduction in DNA concentration. In these experiments, we utilized a constant 

injection volume of 100 μl. It is possible that variation of the volume may influence 

expression more at these concentrations. Increased volume may cause further distribution of 

the plasmid potentially leading to delivery to more cells and thus higher expression. This 

will be tested in future work. The positive message from the data presented in this report 

suggest that small concentrations of DNA can be used in combination with electroporation 

to enhance expression in the myocardium of the heart, in vivo. This is an important finding 

demonstrating that a large amount of DNA is not needed to get significant levels of 

expression. The next critical step would be to determine if these levels will be sufficient to 

obtain a desired effect when a therapeutic transgene is delivered.

In support of our findings of enhanced expression after electroporation we observed 

expression of pGFP in cells within the myocardium of the swine heart in vivo. Distribution 

of expression was seen in cells throughout the area of delivery. These results will form the 
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basis for moving forward to explore therapeutic application of this approach. We 

previously19 demonstrated the use of electroporation for delivering plasmid DNA directly to 

the cardiac muscle in vivo. In the previous study, we established that the electric pulses had 

to be synchronized to the R wave in order to avoid fibrillation. It was also shown that a 

plasmid encoding VEGF165 could be effectively delivered to the heart without damage to 

the tissue. A recent study by Ayuni et al also demonstrated the utility of utilizing 

electroporation to deliver to a beating heart23. Although that study was done in a rat model it 

also suggests the potential for this approach. When these studies are taken together the data 

suggest that electroporation can be used therapeutically to increase the expression of growth 

factors such as VEGF in the heart in vivo19. The increased expression of VEGF could 

increase vessel formation and restore blood flow to ischemic regions of the heart.

A significant advance in the present study is the design of the electrode arrays. In previous 

studies the injection was independent of the placement of the electrode array. When 

performing the procedure in a small model such as a rat this is not an issue but in larger 

models such as the swine or when translating to eventual use in humans it will be critical to 

coordinate the injection with the placement of the electrodes to have a better control of 

delivery. Having the injection port incorporated into the electrode array assures the field will 

be applied where the plasmid is injected. This also enabled better control of the depth of the 

injection and facilitated targeting different levels within the heart. This can be a significant 

advantage when this approach is eventually tested in a disease model.

In summary, we analyzed a number of electroporation parameters in the heart in vivo. The 7 

mm electrode gave the most reproducible enhancement of plasmid expression. With the 7 

mm electrode a change in the applied electrical field was associated with a significant 

increase in luciferase expression. Electroporation appears to be a safe and efficient method 

of enhancing DNA expression in the beating heart of the swine.

Materials and Methods

Ethics Statement

Animal studies were performed at both at a PHS assured university animal research facility 

as well as the Naval Medical Center Portsmouth. This study was conducted in accordance 

with federal animal care and use guidelines and was preapproved by the Institutional Animal 

Care and Use Committee at both institutions.

Animals

Adult male castrated domestic Yorkshire pigs weighing 28–43 kg were purchased from 

Bellveue Farms, Smithville, Virginia for use in this study. All animals were singly housed in 

stainless steel runs with 3 animals to a room to allow socializing. The animal rooms were on 

a 12:12-hour light cycle. Room temperature was maintained at 15 – 17°C with a relative 

humidity between 40 – 65%, and 12 – 15 air changes hourly. Animals were fed twice daily a 

diet of Swine food (Teklad Swine Chow - #8753, Madison, WI) and provided water ad 

libitum via an automatic watering system (Edstrom Industries, Waterford, WI). 

Environmental enrichment included daily food treats, toys, and human interaction. The use 
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of the animals in this study was conducted in compliance with the Animal Welfare Act and 

other federal statutes and regulations pertaining to animals and adheres to the principles 

stated in the Guide for the Care and Use of Laboratory Animals.

Presurgical preparation—All animals were given the pre-anesthetic drug Ketamine (20 

mg/kg) and diazepam (3–5 mg/kg IM) for sedation to facilitate catheter placement in both 

ear veins. Following catheter placement, the animals were anesthetized with isoflurane with 

a nose mask to facilitate intubation. Each animal was intubated with a #6 French 

endotracheal tube.

Surgical Preparation—A surgical plane of anesthesia was accomplished by allowing the 

animal to breath isoflurane at 2–3% with an oxygen flow rate of 2 liters per minute. The 

lungs were ventilated (200–300 ml tidal volume 16–18 breaths per minute) using a BonAir 

mechanical ventilator. Depth of anesthesia was constantly monitored and the percentage of 

isoflurane adjusted to maintain the animal in a surgical plane of anesthesia. Preparation for 

surgery included shaving the ventral thorax (chest) and initial surgical scrub. The animals 

were then moved to the surgical facility and placed in dorsal recumbence on a heated 

surgical table. ECG leads were then attached and the electrocardiogram R wave monitored 

for the purpose of delivering the electric field. The chest was scrubbed with 70 % alcohol 

and chlorhex-Q scrub.

Surgical Procedure—The chest was draped creating a sterile surgical field and the skin 

and soft tissues were incised using an electrosurgical unit. Once the sternum was identified, 

it was opened with a striker saw and the ribs spread with a rib spreader to expose the left and 

right ventricles of the heart. Amiodarone (300mg) was given intravenously (IV) to slow the 

heart rate and provide anti-arrhythmic protection to the heart. A lidocaine drip (50–75 

μg/kg/min IV) was started to stabilize the heart membrane. ECG, blood pressure, and body 

temperature were monitored constantly. Blood gases were monitored during the surgical 

procedure. Four sutures were placed 2 cm apart on the anterior wall of the left ventricle to 

mark the location of each plasmid injection. A 5th suture was placed in the right ventricle 

which marked the site of injection only (no electroporation). The sternum was closed with 

surgical steel monofilament 18 inch surgical needles. All other incisions were closed with 

vicryl plus-antibacterial suture (3.5 metric). The surgical area was bandaged using sterile 

TelFa non-adherent pads secured by wrapping the chest with VetWrap to protect the incision 

from contamination. Postoperatively, all animals were allowed to remain in the operating 

room under constant observation until extubation. Analgesics for pain relief included 

Carprofen (4 mg/kg once daily for 3 days) and Buprenorphine (0.1 mg/kg) as needed.

Plasmid Injection and Electroporation

The ECG for each animal was established to clearly distinguish the rising phase of the R 

wave. At that time, either a plasmid encoding luciferase (pLuc) or a plasmid encoding green 

fluorescent protein (pGFP) was injected and 8 electric pulses administered synchronized to 

initiate pulse during the R wave and be complete prior to the start of the T wave. Plasmids 

were injected at 4 sites on the anterior wall of the left ventricle and electroporated using 

varying field strengths and pulse widths (Table 1). Two types of electrode designs were used 

Hargrave et al. Page 8

Gene Ther. Author manuscript; available in PMC 2013 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a penetrating electrode applicator which contained 4 needle electrodes (4, 7 or 10 mm long) 

or a non-penetrating electrode applicator which contained 4 bars. Both applicators were 

designed to form a 5 × 5 mm square (Figure 2). Both designs facilitated the administration 

of 4 pulses in each of two perpendicular directions. All the electrode applicators had a 

central injection port which allowed the injection needle to be inserted to a controlled depth. 

Following injection of the plasmid the needle was drawn back into the insulated part of the 

applicator and was not within the applied field. The injection of plasmid was performed to 

three different depths. This allowed placement of the plasmid within the epicardium (tunica 

adventitia) using a 2.5 mm injection depth, myocardium (tunica media) using a 3.5 mm 

injection depth or endocardium (tunica intima) using a 5.5 mm injection depth (Figure 1). 

The length of the penetrating electrode was chosen to place the injected plasmid within the 

center of the electrode array. To accomplish this, a 4 mm long electrode was used with the 

2.5 mm injection depth, a 7 mm long electrode was used for a 3.5 mm injection depth and a 

10 mm long electrode was used for a 5.5 mm injection depth. The electric pulses were 

administered using a custom built pulse generator. The pulsing program captured the ECG 

signal from an Accusync 72 (Accusync Medical Research Company, Milford, CT, USA) 

and synchronized pulse administration with the initiation of the R wave.

Tissue Harvesting and Detection of Luciferase or GFP Expression—Forty eight 

hours after plasmid delivery, luciferase activity was quantified as previously described24. 

The animal was placed under a surgical plane of anesthesia the sternum re-opened and the 

heart tissue was harvested and frozen at −80°C until analysis. The tissue was analyzed for 

the presence of luciferase activity using a luciferase assay orfor the presence of GFP using 

florescent microscopy.

Luciferase Assay—Activity was expressed as total picograms (pg) of luciferase per 

tissue sample. The data was tested for normality using a Normal Quantile Plot. Statistical 

analysis was performed by a one-way ANOVA.

GFP Expression—Each excised sample was frozen on dry ice and embedded in tissue 

freeze media OCT compound (Electron Microscopy Sciences, Hatfield, PA) stored at −80°C 

until analysis. Several frozen sections (7 um thickness) were cut from each sample. Each 

section was fixed in 75% Acetone and 25% ethanol for 20 min and then washed with PBS. 

Each slide was placed in a dark container and allowed to dry. VECTASHIELD mounting 

medium with 4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA) 

was placed on the tissue and the tissue examined by Olympus BX51 fluorescent microscopy 

for the presence of GFP.
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Figure 1. 
Cartoon of the layers of the heart showing plasmid injection and electrode placement.
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Figure 2. 
4 Needle electrode and nonpenetrating electrode
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Figure 3. 
Cardiac expression of luciferase after electroporation-mediated delivery of pLuc. Expression 

for luciferase is given as the mean total pg ± SD in all figures.

A) Expression levels using the 4 mm penetrating electrode applicator. Injection needle was 

inserted to a depth of 2.5 mm. B) Expression levels using a non-penetrating 

electrode.Injection needle was inserted to a depth of 2.5 mm. C) Expression levels using the 

7 mm penetrating electrode applicator. Injection needle was inserted to a depth of 3.5 mm. 

D) Expression levels using the 10 mm penetrating electrode applicator. Injection needle was 

inserted to a depth of 6.5 mm. Number of sites treated with each electrode delineated in 

Table 1. An additional 6–10 sites received an injection of pLuc without electroporation 

(injection only). * p<0.001; # p<0.05.
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Figure 4. 
Luciferase expression response to different concentrations of plasmid after electroporation. 

For each plasmid concentration and electroporation parameters had between 5–6 sites.
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Figure 5. 
Distribution of expression following delivering to the myocardium. Injection of pGFP 

following by admistration of electroporation using the 7 mm electrode. Injection needle was 

inserted to a depth of 3.5 mm. A total of 6 sites received injection of pGFP and 

electroporation and an additional 6 sites received an injection of pGFP without 

electroporation.
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Figure 6. 
Modeling of electric field distribution. Top: 2-D field simulations for 4 mm penetrating (20 

V) and bottom: non-penetrating (50 V) electrode configurations in heart tissue.
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Table 1

Electroporation parameters. Four sites, each 2 cm apart on the anterior wall of the left ventricle of the porcine 

heart were injected with plasmid and exposed, in vivo, to the pulse widths and applied electric fields using 

electrodes of various lengths. Each site received 8 pulses. The injection only site which was given plasmid 

only (no electroporation) was placed on the anterior wall of the right ventricle.

Electrodes 4 mm 7 mm 10 mm Non- Penetrating

Voltages 50 ms; 20 V (n=3 separate 
sites)

50 ms; 20 V (n=6 separate 
sites)

50 ms; 20 V (n=5 separate 
sites)

20 ms; 50 V (n=6 separate sites)

20 ms; 60 V (n= 4 separate 
sites)

20 ms; 60 V (n= 7 separate 
sites)

20 ms; 60 V (n= 9 separate 
sites)

50 ms; 25 V (n= 6 separate sites)

50 ms; 40 V (n=5 separate 
sites)

50 ms; 40 V (n=5 separate 
sites)

20 ms; 90 V (n=5 separate 
sites)

20 ms; 100 V (n=6 separate sites)

50 ms; 10 V (n=5 separate 
sites)

50 ms; 10 V (n=7 separate 
sites)

20 ms; 30 V (n=11 separate 
sites)

50 ms; 50 V (n=6 separate sites)

20 ms; 20 V (n=5 separate 
sites)

20 ms; 20 V (n=6 separate 
sites)

20 ms; 20 V (n=4 separate 
sites)
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