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Green’s function methods provide a robust, general framework within many-body theory
for treating electron correlation in both excited states and x-ray spectra. Conventional
methods using the Dyson equation or the cumulant expansion are typically based on the
GW self-energy approximation. In order to extend this approximation in molecular
systems, a non-perturbative real-time coupled-cluster cumulant Green’s function
approach has been introduced, where the cumulant is obtained as the solution to a
system of coupled first order, non-linear differential equations. This approach naturally
includes non-linear corrections to conventional cumulant Green’s function techniques
where the cumulant is linear in theGW self-energy. The method yields the spectral function
for the core Green’s function, which is directly related to the x-ray photoemission spectra
(XPS) of molecular systems. The approach also yields very good results for binding
energies and satellite excitations. The x-ray absorption spectrum (XAS) is then calculated
using a convolution of the core spectral function and an effective, one-body XAS. Here this
approach is extended to include the full coupled-cluster-singles (CCS) core Green’s
function by including the complete form of the non-linear contributions to the cumulant
as well as all single, double, and triple cluster excitations in the CC amplitude equations.
This approach naturally builds in orthogonality and shake-up effects analogous to those in
the Mahan-Noizeres-de Dominicis edge singularity corrections that enhance the XAS near
the edge. The method is illustrated for the XPS and XAS of NH3.
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1 INTRODUCTION

The core-level x-ray absorption spectra (XAS) μ(ω) is typically described formally by Fermi’s golden
rule. However, this formulation requires calculations of and summations over eigenstates of the
many-body Hamiltonian H and is computationally intractable. Simplifications such as the
determinantal ΔSCF approach, in terms of Slater determinants (Liang et al., 2017; Liang and
Prendergast, 2019; Nozieres and Combescot, 1971) have similar limitations. Although still
computationally demanding, Green’s function methods provide an attractive alternative since
summation over final states is implicit (Lee et al., 2012; Bertsch and Lee, 2014; Rehr et al.,
2009). Real-time approaches can also be advantageous as they avoid explicit calculations of
eigenstates. Our treatment here exploits real-time approaches, following several recent
developments: 1) Equation of motion coupled-cluster (EOM-CC) approaches for molecular
systems have been formulated for the Green’s function in energy-space (Peng and Kowalski,
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2016; Peng and Kowalski, 2018a), 2) An approach has also been
developed (Rehr et al., 2020) for calculations of many-body XAS
μ(ω) in terms of the convolution of a one-body XAS μ1(ω) and the
spectral function of the core-hole Ac(ω)

μ(ω) � ∫ dte−iωtμ(t) � ∫ dω′μ1(ω′)Ac(ω − ω′). (1)

This result originates from the time-correlation approach
(Nozieres and de Dominicis, 1969) that was used to solve the
x-ray edge-singularity problem. In this approach the time-
domain XAS transition amplitude μ(t) is given by the
factorization

μ(t) � 〈Ψ|D(0)D(t)|Ψ〉 � L(t)Gc(t). (2)

Here L(t) is an effective one-body transition amplitude and
Ac(ω) � −(1/π)Im Gc(t). 3) A real-time EOM-CC approach
for the cumulant core Green’s function Gc has been developed
including excitations up to CC-singles (CCS). Intrinsic losses
induced by the sudden creation of the core hole lead to shake-
up effects, characterized by satellites in Ac(ω), as observed in
x-ray photoemission spectra (XPS). The effective one-body
XAS μ1(ω) also builds in orthogonality corrections leading to
edge enhancements, as predicted by Mahan, Nozieres and de
Dominicis (Mahan, 1967). Our goal here is to review these
developments and to combine the one-particle absorption
spectrum with a more accurate treatment of the core
Green’s function, including the complete form of the CCS
cumulant, as well as the full single, doubles and triple cluster
excitations in the cluster amplitude equations.

In the rest of this review, Section 2 describes the theoretical
approaches used, in particular a brief introduction to the
cumulant approach (Section 2.1), the real-time equation of
motion, coupled cluster (RT-EOM-CC) approach (Section
2.2), the frequency space implementation of the Green’s
Function coupled clusters (GFCC) approach (Section 2.3), and
the application to XAS (Section 2.4). Section 3 presents results
for the core binding energies of small molecules, and a
comparison of the theory to XPS and XAS experimental
results for NH3. Finally, Section 4 presents a summary and
discusses future developments.

2 THEORY

2.1 Cumulant Approach
Within the cumulant approximation, the core-level Green’s
function is defined by an exponential expression

Gc(t) � G0
c(t)eC(t), (3)

where G0
c (t) � −iθ(t)e−iϵct is the independent particle Green’s

function (Hartree-Fock in this paper), with single particle
energy εc, and denotes the core-level in question. C(t) is
the cumulant function, which builds the correlation into
the Green’s function. This cumulant can be expressed in
Landau form (Landau, 1944), in terms of an excitation
spectrum β(ω),

C(t) � ∫ dω
β(ω)
ω2

e−iωt + iωt − 1[ ]. (4)

As a consequence, the cumulant Green’s function is naturally
normalized, with an occupation Gc(t � 0) � 1. One can also
analyze A(ω) � −(1/π)Im Gc(ω), which is the natural quantity to
compare to experimental x-ray photoemission spectra, and to
assess the quality of many-body correlation approximations since
satellites appearing in spectral quantities such as XPS are directly
related to those seen in the spectral function. The above form of
the cumulant also permits a natural separation into quasiparticle
and satellite contributions. Separating the terms in the expression
for the cumulant above, we have

C(t) � −a + iΔt + ~C(t), (5)

where a � ∫dωβ(ω)/ω2 is the net satellite strength, Δ � ∫dωβ(ω)/ω
is the quasiparticle shift, or core-level “relaxation energy”, and
~C(t) is the remainder of the cumulant, which contains the
information about the satellites. By expanding about small ~C,
the spectral function can be obtained analytically in terms of
β(ω), i.e.,

Ac(ω) � Zcδ(ω − Ec) p 1 + Asat(ω) + 1
2
Asat(ω) pAsat(ω) +/[ ],

(6)

where Zc � e−a is the quasiparticle renormalization, Ec � ϵc −Δ is
the quasiparticle energy, and Asat(ω) � β(ω)/ω2 is the satellite
spectral function (Aryasetiawan et al., 1996).

The cumulant kernel or excitation spectrum β(ω) can be
approximated in a variety of ways. The most common
approximation is to expand the Green’s function to low order
either in the bare Coulomb interaction, giving β(ω) in terms of the
second order self-energy (Vila et al., 2020), or by expanding in
terms of the screened Coulomb interaction, which produces an
approximation in terms of the GW self-energy (Hedin, 1999;
Guzzo et al., 2011; Zhou et al., 2015). Approximate non-linear
corrections can be included using real-time TDDFT (Tzavala
et al., 2020). Here, as described in the next section, we calculate
the cumulant including non-linear corrections within a non-
perturbative approach, by expressing the Green’s function in
terms of the time-dependent EOM-CC states.

2.2 RT-EOM-CC Theory
Our treatment of the core-hole Green’s function Gc(t) is based on
the CC-ansatz for the time-evolved initial state of the system with
a core-hole created at t � 0+: |Ψc (0)〉 ≡|Ψc〉 � cc|Ψ〉where cc is the
core annihilation operator and |Ψ〉 is the ground state Hartree-
Fock Slater determinant:

|Ψc(t)〉 ≡ Nc(t)eT(t)|Ψc〉. (7)

Then Gc(t) � −i〈Ψc|ei(H−E0)t|Ψc〉θ(t) simply becomes

Gc(t) � −iNc(t)e−iE0tθ(t). (8)

Calculations of Gc(t) are based on the real-time equation of
motion coupled cluster (RT-EOM-CC) ansatz of
Schönhammer and Gunnarsson (SG) (Schönhammer and
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Gunnarsson, 1978), in which the time-evolution of |Ψc(t)〉 is
carried out using an initial value problem and propagation via the
Schrödinger equation of motion i z|Ψc(t)〉/zt � H|Ψc(t)〉. The
time-evolved wave-function |Ψc(t)〉 can then be expressed using
the CC ansatz in Eq. 7. The use of a single-excitations CC ansatz is
justified for a single-determinant reference state approximation
due to Thouless’ theorem (Thouless, 1961). In Eq. 7 Nc(t) is a
normalization factor, while the CC operator T(t) is defined in
terms of single, double, etc., excitation creation operators a†n, i.e.,

T(t) � ∑
n

tn(t)a†n. (9)

For example, for single excitations n � (i, a) and a†n � c†aci; for
double excitations n � i, j, a, b and a†n � c†ac

†
bcjci; etc. As is

conventional in CC, the indices i, j. . . refer to occupied single-
particle states, a, b, . . . to unoccupied, and p, q, . . . to either
occupied or unoccupied ones. Projecting the EOMwith either the
ground state, or with singly-excited versions of it, the equations
decouple naturally, i.e.,

i z lnNc(t)/zt � 〈Ψc| �H(t)|Ψc〉, (10)

i z tn(t)/zt � 〈n| �H(t)|Ψc〉, (11)

where |n〉 � a†n|Ψc〉 and �H � e−THeT is the similarity-
transformed Hamiltonian. The first of these results shows that
the normalization factor Nc(t) is a pure exponential, so that the
core Green’s functionGc(t) has a natural cumulant representation
Gc(t) � G0

c(t)eC(t) with a cumulant defined as

C(t) � −i∫t

0
dt′ 〈Ψc|( �H(t′) − E0′ )|Ψc〉, (12)

where E0′ � E0 − ϵc, and E0 is the ground state energy. As noted
above, the EOM-CC cumulant can have a Landau form (Eq. 4)
(Landau, 1944) that simplifies analysis of its spectrum. The
cumulant kernel or excitation spectrum β(ω) from the EOM-
CC approach is given by

β(ω) � 1
π
Re∫∞

0
dt e−iωt

d

dt
〈Ψc| �H(t)|Ψc〉 (13)

This amplitude accounts for the transfer of oscillator strength
from the main peak in XPS to the satellite excitations at
frequencies ω. The cumulant initial conditions C (0) � C′(0) �

0 guarantee the normalization of the spectral function. In
addition, they ensure that its centroid remains invariant at the
Koopmans’ energy −ϵc. After some straightforward diagrammatic
analysis to compute the matrix elements in Eqs. 10, 12, we obtain
a compact expression for the time-derivative of the cumulant

−i dC(t)
dt

� ∑
ia

fiat
a
i +

1
2
∑
ijab

vabij t
b
jt

a
i , (14)

where tai � tn(t) when n � (i, a), and the fia and vabij coefficients
correspond, respectively, to the one- and two-particle elements
that define the second-quantized Hamiltonian in a core-hole
reference (Vila et al., 2020). The terms on the rhs of Eq. 14
correspond to the linear- (L) and non-linear (NL) CC diagrams
(Crawford and Schaefer, 2000; Brandow, 1967) shown in
Figure 1. The linear term arises from the coupling of the
core-hole to the i → a excitation, while the second term
[which is quadratic in the amplitudes t (NL)] represents
valence polarization effects that screen the core-hole.

Remarkably, these diagrams are completely analogous to the
time-independent diagrams for the CCSD energy if only single
excitations (T1) are included. It is interesting to note that only one
more diagram is needed to obtain the complete CC cumulant for
the core-hole Green's function, namely that from double
excitations similar to the NL diagram in Figure 1, but with a
cluster line joining the base vertices representing the T2 operator.

The EOM for the matrix elements of the CC amplitudes in Eq.
11 can be calculated using similar diagrammatic analysis which
yield a set of coupled first-order differential equations.

−i _tai � −vicac + ϵa − ϵi( )tai (15a)

+∑
j
vicjct

a
j −∑

b

vbcact
b
i +∑

jb

vbijat
b
j +∑

jb

vbcjct
b
i t

a
j (15b)

+ ∑
jbd

vbdaj t
b
i t

d
j −∑

jkb

vibjkt
a
j t

b
k (15c)

− ∑
jkbd

vbdjk t
b
i t

a
j t

d
k, (15d)

where ϵp are the bare single-particle energies. The low order terms
are identical to those in our original paper (Rehr et al., 2020).
However, now the complete CCS T1 approximation is used,
including terms up to third order in tai . The similarity in the
form of Eq. 14 and Eq. 15 to the time-independent matrix
elements used in standard CC theory implies that the overall
scaling of the RT-EOM-CC approach per time step is equivalent
to that of the standard CC equations of the same order per
solution iteration (i.e. N4 for CCS, N6 for CCSD, etc.). The main
difference arises in that while for the latter only a few tens of
iterations are needed for convergences, RT-EOM-CC requires
hundreds to thousands of steps to described the core dynamics.
One final difference arises from the complex nature of the time-
dependent CC amplitudes, which doubles the computational
demands. Thus, approximations are highly desirable and here
we review four possible levels of approximation:

1) Lowest order approximation, with only the leading terms,
i.e., Eq. 15a: At this level the EOM is exactly solvable giving

FIGURE 1 | Linear (L) and non-linear (NL) CC diagrams (Crawford and
Schaefer, 2000; Brandow, 1967) for the time-derivative of the cumulant in Eq.
14. Unlike in traditional EOM-CC diagrams, the base vertices (t) are time-
dependent.
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tai (t) � −vicac[exp(iωiat) − 1], with ωia � ϵa−ϵi. Moreover, the
second-order self-energy cumulant (Vila et al., 2020) is
obtained if only the linear part in Eq. 14 is kept. However
this low level of approximation produced mean absolute
errors for the core binding energies an order of magnitude
larger than those with the next higher levels of approximation
to Eq. 15 (2–4, as summarized below) which we have used for
the results presented in Section 3.

2) Core-valence approximation: Eq. 15a together with the
dominant, first four sums in Eq. 15b. This approximation
includes the linear core- and valence-valence contributions
and a non-linear term corresponding to excitations linked to
the core-hole.

3) Full second order approximation: Keeping all terms of level 2,
and the non-linear valence-valence excitations from the two
sums in Eq. 15c. This gives corrections that close the gap
between the QP peak and the satellites.

4) Full third order T1 level: This approximation retains all the
terms in the T1 EOM in Eq. 15, including the cubic term in
Eq. 15d.

Each of the approximation levels to Eq. 15 can be combined
with either the linear (L), or both the linear and non-linear (NL)
components of C(t) defined in Eq. 14. As we have demonstrated
previously (Vila et al., 2020), the NL component is key for
obtaining accurate core binding energies. Consequently it is
useful to focus on the 2NL, 3NL and 4NL results only. For
comparison results are also shown for the solution of the
Dyson equation (DSE2) (Linderberg and Öhrn, 2004; Szabo
and Ostlund, 1996)

Gc(ω) � [1 − G0
c(ω)Σ(2)(ω)]−1G0

c(ω) (16)

where Σ(2)(ω) is the second order self-energy (Szabo and Ostlund,
1996); and for the frequency space Green’s function GFCCSD
and GFCC-i (2, 3) methods (Peng and Kowalski, 2018a; Peng and
Kowalski, 2018b).

2.3 GFCC Theory
In this section we briefly review the GFCC formalism introduced
by Nooijen et al. (Nooijen and Snijders, 1992; Nooijen and
Snijders, 1993; Nooijen and Snijders, 1995, see also Meissner
and Bartlett, 1993; Kowalski et al., 2014; Bhaskaran-Nair et al.,
2016; Peng and Kowalski, 2016; Peng and Kowalski, 2018a),
which draws heavily on the bi-variational CC formalism
(Arponen, 1983; Stanton and Bartlett, 1993) where the
ground-state bra- ket (〈Ψg|) and (|Ψg〉) states are parametrized
in a different way.

〈Ψg| � 〈Φ|(1 + Λ)e−T (17)

|Ψg〉 � eT|Φ〉, (18)

where the reference function |Φ〉 is typically chosen as a Hartree-
Fock Slater determinant (for the original papers on the CC ansatz
see Coester, 1958; Coester and Kümmel, 1960; Čížek, 1966;
Paldus et al., 1972; Purvis and Bartlett, 1982; Paldus and Li,
1999; Bartlett andMusiał, 2007). In the above equations the T and
Λ operators refer to the so-called cluster and de-excitation

operators, respectively, which can be obtained by solving
canonical CC equations for the N-electron system. For
simplicity, in this review we will discuss the algebraic form of
the retarded part of the frequency dependent CCGreen’s function
defined by matrix elements GR

pq(ω):

GR
pq(ω) � 〈Ψg|c†q(ω + (H − E0) − iη)−1cp|Ψg〉. (19)

Here H is the electronic Hamiltonian for the N-electron system,
E0 the corresponding ground-state energy, η is a broadening
factor, and cp (c†q) operator is an annihilation (creation) operator
for an electron in the q-th spin-orbital. The bi-variational CC
formalism then leads to a formula for the general matrix element
GR
pq(ω) given by:

GR
pq(ω) � 〈Φ|(1 + Λ)c†q(ω + �HN − iη)−1�cp|Φ〉, (20)

The similarity transformed operators here �A (A � H, cp, c†q) are
defined as �A � e−TA eT. By defining ω-dependent auxiliary
operators Xp(ω)

Xp(ω) � Xp,1(ω) +Xp,2(ω) + . . .

� ∑
i
xi(ω)pci + ∑

i<j,a
xij
a (ω)pc†acjci + . . . , ∀p (21)

that satisfy equations

(ω + �HN − iη)Xp(ω)|Φ〉 � �cp|Φ〉, (22)

Equation 20 can then be re-expressed compactly as

GR
pq(ω) � 〈Φ|(1 + Λ)c†qXp(ω)|Φ〉. (23)

The Xp(ω) operators can be effectively solved using a parallel
implementation of the GFCC formalism based on the
approximate forms of T, Λ, and Xp(ω) (Peng et al., 2021).

The RT-EOM-CC Green’s function differs from the
frequency-space GFCC approaches (Peng and Kowalski, 2016;
Peng and Kowalski, 2018b) in several respects. In particular RT-
EOM-CC is based on a transformation to an initial value problem
with the propagation of theN − 1 particle system carried out after
the creation of the core-hole; in contrast the GFCC methods are
implemented in frequency-space. In addition, RT-EOM-CC
assumes an uncorrelated N-particle single-determinant ground
state, while the GFCC approaches calculate this ground state
using the CC ansatz (Eq. 17 and Eq. 18). Finally, the RT-EOM-
CC cumulant treats the N − 1 particle excited states at the CCS
level, while the GFCCSD approximation solves for the excitations
of the N − 1 particle system at the approximate CCSD level,
keeping only single and double excitations, as discussed near Eq.
14 of Peng and Kowalski, 2018a. Thus high order diagrams are
implicitly built in the RT-EOM-CC GF from the exponential
form of the cumulant (Gunnarsson et al., 1994; Lange and
Berkelbach, 2018). While the RT-EOM-CC utilizes a unique
approximation for the time-dependent T(t) operator, the
GFCC formalisms permit the use of several levels of
approximation for the T, Λ and Xp(ω) operators (for assuring
size-extensivity of diagrams defining the GR

pq(ω) matrix elements,
the “n+1” rule of Peng and Kowalski, 2018b has to be followed).
The numerical complexities of the RT-EOM-CC and GFCC
methods, aside from complicated tensor contractions, originate
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in the time propagation algorithms, and the need for solving a
large number of linear equations for frequency domain,
respectively. Efficient algorithms have already been tested to
alleviate possible numerical problems and instabilities (Peng
et al., 2019; Peng et al., 2021).

2.4 X-Ray Spectra
Our treatment here is adapted from that in our original EOM-CC
paper (Rehr et al., 2020), but updated here with a more detailed
treatment of the EOM discussed above. As outlined in the
introduction, the contribution from a deep core level |c〉 to
the XAS is given by the time-correlation function μ(t) � L(t)
Gc(t) in Eq. 2, as in Nozieres and de Dominicis, 1969 and Rehr
et al., 2020. The core-hole Green’s function Gc can be obtained
from the RT-EOM-CC Eq. 8. Calculations of L(t), the one-body
time-dependent transition amplitude, can be carried out using
coupled equation of motion or equivalent integral equations
(Langreth, 1969; Grebennikov et al., 1977; Privalov et al.,
2001). Alternatively, propagation based on the overlap
integrals uij(t) can also be used, as done by Nozieres and
Combescot (NC) (Nozieres and Combescot, 1971). However, it
is more convenient to replace the sums over k with the complete
set of eigenstates κ of the final state one-particle Hamiltonian
h′ � ∑κϵκc†κcκ. Then, defining the core transition operator D in
terms of the transition matrix elements Mcκ � 〈c|d|κ〉,
D � ΣκMcκc†κcc, the single-particle XAS amplitude L(t) becomes.

L(t) � ∑
κ,κ′

M*
cκMcκ′Lκ,κ′(t), (24)

Lκ,κ′(t) � eiϵκt uκ,κ′(t) −∑occ
ij

uκi(t)u−1
ij (t)ujκ′(t)⎡⎢⎢⎣ ⎤⎥⎥⎦. (25)

The leading term on the rhs of Eq. 25 can be interpreted as a
contribution to Lκ,κ′(t) from the independent particle transition
amplitude for the final state when the core-hole is present L0(t) �
Σκ|Mcκ|

2 exp(iϵκt), consistent with the final-state rule of von
Barth and Grossman (von Barth and Grossmann, 1982). The
diagonal terms κ � κ′ in Eq. 25 suppress transitions to the
occupied states κ < kF by yielding the theta function θ(kF − k).
The off-diagonal terms in Lκ,κ′(t) are controlled by states with
either κ (or κ′) > kF or κ′ (or κ) < kF. Interestingly the net result
can be approximated accurately by the expression

L(t) ≈ ∑
κ

| ~Mcκ|2eiϵκt, (26)

equivalent to the one derived by Friedel (Friedel, 1969), where
~Mcκ � 〈c|d�P|κ〉, and �P � 1 − ΣN

i�1|i〉〈i| projects out the occupied
valence states in the ground state. Note that the sum-rule ∫dω
μ(ω) � πL(0) for the XAS is also preserved by this formula. The
additional terms −Σi〈c|d|i〉〈i|κ〉 from �P are termed replacement
transitions (Friedel, 1969). Physically, these terms are necessary to
remove transitions into the initial occupied levels. First order
perturbation theory shows that, for an attractive core-hole
potential and κ > i, the integral for the overlap〈i|κ〉 ≈ −vik/ωik

< 0. Thus these terms imply an intrinsic edge enhancement factor
L/L0 � (1 + χκ) for each photoelectron level κ in the XAS where
χκ ≈ − 2ΣN

i�1(Mci/Mcκ)〈i|κ〉. Though this edge-enhancement

effect is non-singular in molecular systems, it is consistent
with the power-law singularity μ1 ∼ |(ϵ − ϵF)/ϵF|−2δl/π predicted
by Mahan for metallic systems (Mahan, 1967). The XAS in Eq. 1
is finally given by a convolution of μ1(ω) with the spectral
function Ac(ω). It is convenient to shift μ1(ω) and Ac(ω) by ϵc,
the energy of the core level, with ω � ϵ−ϵc, so that for the non-
interacting system, μ1(ω) reduces to the independent particle
XAS. The shifted Ac(ω) then accounts for the shake-up excitation
spectrum

Ac(ω) � ∑
n

|Sn|2δ(ω − ϵn). (27)

Here Sn � 〈Ψc|Ψn′〉 is the N − 1, many-body overlap integral,
and ϵn � En′ − E0 is the shake-up energy. The net effect of the
spectral function Ac(ω) is to broaden the XAS and significantly
reduce its magnitude near the edge, transferring the weight to
the satellite peaks. For metallic systems this yields an Anderson
power-law singularity [(ϵ − ϵF)/ϵF]α (Nozieres and de
Dominicis, 1969). This reduction effect has opposite sign to
and competes with the Mahan enhancement L/L0 in μ1(ω).
However, the above formulation neglects extrinsic losses and
interference effects, which will likely lessen these effects. The net
result, however, is a many-body amplitude correction to the
independent particle XAS visible in experimental XPS. This
spectrum is proportional to the spectral function Jk(ω) ∼ Ac (ω −
ϵk), and usually measured vs photoelectron energy ϵk at fixed
photon energy ω. Thus the peaks in the XPS correspond to a
quasiparticle peak as well as satellite excitations at higher
binding energies, as discussed in more detail below.

3 RESULTS AND DISCUSSION

As an example of the accuracy of the RT-EOM-CCS method for
core ionization energies we show results for CH4, NH3, H2O, HF
and Ne, i.e. the ten-electron series, using the experimental
geometries (NIST, 2019) for all systems (rCH � 1.087 Å, rNH

� 1.012 Å, aHNH � 106.67 degree, rOH � 0.958 Å, aHOH � 104.48
degree, rFH � 0.917 Å), and the aug-cc-pVDZ basis set (Kendall
et al., 1992). We also show spectral function and XAS results for
NH3 for which experimental values are available in the
literature. The ground state single-particle states and
molecular orbitals integrals for the RT-EOM-CCS approach
and the ΔSCF method were calculated from a Hartree-Fock
(HF) reference, while those for the core-excited ΔSCF were
derived from a spin-symmetric and occupation-constrained HF
reference. The final spectra were broadened to compare with
experiment as in Rehr et al., 2020 and Vila et al., 2020 with
varying (1–6 eV) broadening to account for the limited basis set
for the continuum; similarly XAS used constant broadening
consistent with experimental broadening below and 3.5 eV
above the binding energy.

Figure 2 shows a comparison of errors vs experiment for
the core binding energies of the ten-electron series molecules. The
RT-EOM-CCS method shows small errors even at the simplest
non-linear level of approximation (2NL), with a mean-absolute
error (MAE) across systems of only 0.5 eV, significantly smaller
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than for the other methods tested. Although better core-
optimized basis sets need to be tested to ensure full
convergence with basis set size, we find (Vila et al., 2020)
similar errors even for smaller basis sets (e.g. DZVP and cc-
pVDZ). We emphasize that these accurate results arise from the
non-linear terms in vabij in the expression of the cumulant (Eq.
14), which reduce the error typically by an order of magnitude. Of
the ten-electron systems, the Ne atom has the smallest MAE
across the methods (0.3 eV), while for the molecules the MAE
increases systematically from CH4 (0.4 eV) to HF (0.8 eV). It
should be noted that these results do not include contributions
from changes in the vibrational zero point energy (which are
expected to be an order of magnitude smaller) or from relativistic
effects. The latter can be significant even for these light elements
(Keller et al., 2020). For instance, the inclusion of relativistic
effects in the calculation of the C, N, O and F atoms increases the
1s core binding energies by 0.1, 0.3, 0.5 and 0.8 eV, respectively
(Pueyo Bellafont et al., 2016). If these corrections are applied to
our results the MAE are reduced by 50%.

Figure 3 shows results for the spectral function Ac(ω) and the
cumulant kernel β(ω). These are shown vs. binding energy to
compare more readily to the experimental XPS. β(ω) is
dominated by shake-up excitation peaks about 20–30 eV
above the quasiparticle peak that correspond precisely with
the inelastic losses in Ac(ω). The satellites structure is in
reasonable agreement with that observed in XPS (Sankari
et al., 2006) once scissors corrections are included, despite
the fact that our HF-based Hamiltonian overestimates the
excitation energies. From the Landau form in Eq. 4, the
strength of the quasi-particle peak is defined by the
renormalization constant Z, where for the 4NL approximation

to the EOM-CC cumulant Z � exp (−a) � 0.70. The satellite
strength is a � ∫dω β(ω)/ω2 � 0.35. This matches the numerical
integration over the QP peak that yields Z � 0.70, in good
agreement with the ΔSCF value Z � 0.76. The renormalization
constant Z is also partly responsible for the amplitude reduction
factor S20 for the XAS fine structure (Rehr et al., 1978). We also
find that the RT-EOM-CCS values for Z agree with those
obtained using the frequency-space CC Green’s function
methods (Peng and Kowalski, 2016; Peng and Kowalski,
2018a). Moreover, the energy shift Δ from the middle term
in Eq. 5 is the “relaxation energy,” that introduces electron-
electron correlations corrections to the Koopmans’ theorem
approximation of the core binding energy. Here we find that Δ �∫dω β(ω)/ω � 17.1 eV, with a core binding energy Eb � |ϵc|−Δ �
406.1 eV, in good agreement with the experimental value of
405.52 eV, and the position of the quasiparticle peak in Ac(ω) at
404.9 eV.

Results for the XAS, including experiment (Wight and Brion,
1974), are shown in Figure 4. The overall agreement between
theory and experiment is quite good for the positions and relative
intensities of the first two peaks. The third peak, at 403.5 eV, is
almost in the continuum and is more difficult to describe with our
limited basis set. For this molecule, the corrections to the
independent particle XAS (L0(ϵ)) are clearly visible: First, the
edge enhancement factor 1 + χ increases the intensity to L(ϵ).
Second, the amplitude reduction factor from the spectral function
Ac(ϵ), which has opposite sign and is approximately twice as
strong, reduces the intensity to the final μ(ϵ). Since the leading
satellites peaks in Ac(ϵ) are 20–30 eV above the QP peak, the

FIGURE 2 | Comparison of the theory errors vs experiment (Karlsen
et al., 2002; Buttersack et al., 2019; Viñes et al., 2018; Jolly et al., 1984;
Williams, 2009) for the core binding energies. The theoretical calculations were
performed with the 2-4NL RT-EOM-CCS approximations with the aug-
cc-pVDZ basis set. Also shown are results from the second order Dyson
equation (DSE2) and the standard GFCCSD and GFCC-i (2, 3) coupled-
cluster Green’s function methods (Peng and Kowalski, 2016; Peng and
Kowalski, 2018a).

FIGURE 3 | Comparison of the 4NL RT-EOM-CCS and ΔSCF core
spectral functions Ac(ω) (full lines) and cumulant kernel β(ω) (dashed lines,
shown only for the RT-EOM-CC method) for the NH3 molecule, to the
experimental XPS (dots) (Sankari et al., 2006). Energies are shows in
either absolute binding energy E or versus excitation energy ω � E−Eb with
respect to the experimental core binding energy Eb � 405.52 eV (Sankari et al.,
2006). All the theoretical results were obtained with the aug-cc-pVDZ basis
set. The theoretical Ac(ω) were broadened and include a scissors shift of
3.9 eV.
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corresponding XAS satellite features fall in the continuum and are
thus not visible.

4 CONCLUSIONS

This review describes a combined equation of motion coupled
cluster approach in real-time to calculate excitations
corresponding to intrinsic losses in XAS and XPS. The
approach is based on the cumulant form of the Green’s
function representation for the core-hole spectral function
that arises naturally from the coupled cluster ansatz. This
theoretical connection between the cumulant approach, a
powerful tool for computing satellites in solid state physics, to
the coupled cluster approach which is the gold standard for
accuracy in quantum chemistry brings together two previously
mostly unrelated fields, thus opening new areas of research.
Unlike our previous treatment of the XAS, where an
approximate, effective single-particle Hamiltonian was used,
here we use the full two-particle one, yet for simplicity we
still limit the representation of the reference wavefunctions
functions to single-determinants. We show that the cumulant
form aids in both the physical interpretation of many-body
effects observed in the spectra as well as the numerical
simulations. We find that, for the XAS, a convolution form in
terms of an effective single-particle spectrum and the core-hole
spectral function is key to accounting for two types of many-
body effects: First, inelastic losses caused by shake up excitations,
accounted for the spectral function. Second the edge
enhancement due to orthogonality. Both effects modulate the
XAS amplitude in opposite direction near threshold, despite

being non-singular for molecular systems. Interference terms
and extrinsic losses from the coupling between the core-hole and
the photoelectron are ignored. Nevertheless, these effects tend to
cancel due to their opposite signs. The formal behavior of the
RT-EOM-CC cumulant Green’s function is similar to that in
other approaches, e.g., field-theoretic methods such as the
linked-cluster theorem, or the quasi-boson approximation
(Nozieres and de Dominicis, 1969; Langreth, 1970; Hedin,
1999). For condensed matter systems, the cumulant kernel
function β(ω) is directly connected to the loss function or the
screened Coulomb interaction, and represents collective
excitations such as density fluctuations arising from the
sudden creation of the core-hole (Langreth, 1970; Kas and
Rehr, 2017). Other extensions to the approach reviewed here
are feasible. For instance, an analogous treatment is possible to
study x-ray emission spectra instead of XAS (Nozieres and
Combescot, 1971) by changing the unoccupied single-particle
states for the occupied ones. Finally, bigger systems computed
with a more user-friendly and efficient implementation,
including higher excitations, will be presented elsewhere.
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FIGURE 4 | Comparison of the experimental XAS μ(E) for NH3 (Wight
and Brion, 1974) vs photon energy E to those calculated from the convolution
in Eq. 2, the effective one-body XAS L(E) � μ1(E) and the independent particle
XAS L0(E) � μ0(E) from Eq. 25. The N x-ray K edge lies just under ELUMO

while Eb is the ionization threshold. In order to account for the sparsity of the
Gaussian-type orbital basis set in the continuum region above Eb, the
comparison to experiment includes variable broadening (see text) that
increases to a maximum of 3.5 eV above Eb.
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