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Apoptosis is closely associated with the development of various cancers,

including lung adenocarcinoma (LUAD). However, the prognostic value of

apoptosis-related lncRNAs (ApoRLs) in LUAD has not been fully elucidated.

In the present study, we screened 2, 960 ApoRLs by constructing a co-

expression network of mRNAs-lncRNAs associated with apoptosis, and

identified 421 ApoRLs that were differentially expressed between LUAD

samples and normal lung samples. Sixteen differentially expressed

apoptosis-related lncRNAs (DE-ApoRLs) with prognostic relevance to LUAD

patients were screened using univariate Cox regression analysis. An apoptosis-

related lncRNA signature (ApoRLSig ) containing 10 ApoRLs was constructed by

applying the Least Absolute Shrinkage and Selection Operator (LASSO) Cox

regression method, and all LUAD patients in the TCGA cohort were divided into

high or low risk groups. Moreover, patients in the high-risk group had a worse

prognosis (p < 0.05). When analyzed in conjunction with clinical features, we

found ApoRLSig to be an independent predictor of LUAD patients and

established a prognostic nomogram combining ApoRLSig and clinical

features. Gene set enrichment analysis (GSEA) revealed that ApoRLSig is

involved in many malignancy-associated immunomodulatory pathways. In

addition, there were significant differences in the immune microenvironment

and immune cells between the high-risk and low-risk groups. Further analysis

revealed that the expression levels of most immune checkpoint genes (ICGs)

were higher in the high-risk group, which suggested that the immunotherapy

effect was better in the high-risk group than in the low-risk group. And we
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found that the high-risk group was also better than the low-risk group in terms

of chemotherapy effect. In conclusion, we successfully constructed an

ApoRLSig which could predict the prognosis of LUAD patients and provide a

novel strategy for the antitumor treatment of LUAD patients.

KEYWORDS

lung adenocarcinoma, apoptosis, long non-coding RNA, prognostic, signature,
immunotherapy

Introduction

Lung cancer still has the highest mortality rate in the cancer

spectrum worldwide, with a 5-years survival rate of only 10%–20%

(Sung et al., 2021). Lung adenocarcinoma (LUAD) accounts for

approximately 40%–50% of all lung cancer cases (Bray et al., 2018).

Although molecular targeted therapies and immunotherapies have

been developed for LUAD, long-term survival remains suboptimal

for most patients (Saito et al., 2018). Therefore, it remains urgent to

identify new and effective prognostic biomarkers to improve the low

survival rate of patients with LUAD.

Apoptosis is one of the most common and well-studied forms of

programmed cell death (Fuchs and Steller, 2015), the initiation of

which depends on the activation of a series of Caspase proteases that

subsequently induce extensive cleavage of hundreds of substrates and

rapid cell death (D’Arcy, 2019). Apoptosis has a dual role in cancer,

on the one hand, it can inhibit tumor development by deleting

malignant or pre-malignant cells; on the other hand, it can promote

tumor development by stimulating reparative and regenerative

responses in the tumor microenvironment (Morana et al., 2022).

Moreover, apoptosis plays an important role in the development and

progression of non-small cell lung cancer, and targeting apoptosis

may be a new and effective treatment for lung cancer (Liu et al.,

2017).

Long non-coding RNAs (lncRNAs), which typically exceed

200 nucleotides in size and are transcribed by RNA polymerase

II, have an important regulatory role in the induction of

apoptosis (Ghafouri-Fard et al., 2021). Many studies have

demonstrated that lncRNAs are key regulators involved in the

progression of human cancer including lung cancer. Different

lncRNAs can modulate the sensitivity of chemotherapy,

radiotherapy and egfr-targeted therapy through distinct

mechanisms (Chen Y. et al., 2021b). In recent years, several

studies have constructed a series of prognostic lncRNA

signatures in LUAD to improve patient prognosis by

exploring lncRNAs associated with ferroptosis (Lu et al.,

2021), pyroptosis (Song et al., 2021), autophagy (Chen et al.,

2021), necroptosis (Lu et al., 2022), and immunity (Wu G. et al.,

2021). Whereas, the apoptosis-related lncRNA signature

(ApoRLSig) and its relationship with prognosis have not been

systematically evaluated in LUAD.

In this study, anApoRLSig was constructed based onTheCancer

Genome Atlas (TCGA) database, and the relevance of apoptosis-

related lncRNAs (ApoRLs) to the prognosis of patients with LUAD

was systematically assessed. Then, we analyzed the relationship

between ApoRLs and clinicopathological characteristics of LUAD

patients, and established a nomogram to individually predict patient’s

survival. In addition, the relationship between risk score and tumor

immune microenvironment, immune checkpoint genes (ICGs), and

chemotherapy sensitivity was further evaluated. The results of this

studymay help to improve individualized treatment effectiveness and

prognostic assessment of patients with LUAD.

Materials and methods

Data acquisition and processing

RNA sequencing (RNA-seq) data and corresponding clinical

survival information for LUAD samples from TCGA database

were downloaded via the UCSC xena website (https://

xenabrowser.net/datapages/). There were 510 tumor samples

and 58 normal samples in the TCGA-LUAD dataset. To

reduce statistical bias in the analysis, patients with missing

overall survival (OS) or short survival (<30 days) were

excluded, and 487 patients were finally included in the study

(Supplementary Table S1). A total of 326 patients with complete

clinicopathological data were included in the subsequent analysis

(Supplementary Table S2).

Apoptosis-related gene detection

A total of 136 apoptosis-related genes were collected by

searching the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database (https://www.kegg.jp/kegg/pathway.

html) with the keyword “Apoptosis.” Eventually, 134 apoptosis-

related genes were retrieved from the mRNA expression profile

of TCGA-LUAD (Supplementary Table S3).

Screening of apoptosis-related lncRNAs

Pearson correlation analysis was performed to identify potential

lncRNAs associated with apoptosis-related genes. The apoptosis-

related mRNA-lncRNA co-expression network was constructed

using |Pearson correlation coefficient|>0.4 and p < 0.001 as

thresholds. A total of 2, 960 ApoRLs were identified. The co-
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expression networkwas visualized using Cytoscape 3.8.2. Using the R

package “ggalluvial” to draw sankey diagrams. Differentially

expressed ApoRLs (DE-ApoRLs) between tumor and normal

samples were identified by the “DESeq2” package (Love et al.,

2014). |log2FC|>2 and FDR<0.05 were considered to be significant.

Construction of apoptosis-related lncRNA
prognostic model in lung
adenocarcinoma

Univariate Cox analysis of OS was performed to identify DE-

ApoRLs with prognostic value (p < 0.001). Then, using the R

package “glmnet,” the least absolute shrinkage and selection

operator (LASSO) Cox regression was performed to screen for

key DE-ApoRLs. Risk scores of patients were calculated based on

the expression levels of lncRNAs and the corresponding lasso

coefficients. The risk score is calculated by the formula: risk

score = ∑exp(i)×coef(i). Using the median risk score as the cut-

off point, patients were divided into a low-risk group and a high-

risk group. Survival analysis was performed to compare the OS of

the high-risk and low-risk groups by using the R packages

“survivor” and “survminer.” Using the R package “timeROC,”

time-dependent receiver operating characteristic analysis and the

area under the curve (AUC) were performed to assess the

predictive power of the model. Principal component analysis

(PCA) was performed to evaluate the distribution of patients

with different risk scores, and PCA plots were generated by the

“scatterplot3D” package of R. In addition, the distribution of

patient survival status was evaluated based on risk score levels.

Predictive nomogram construction

TheWilcoxon test was used to explore the potential relationship

between the risk score and multiple clinical characteristics (age, sex,

stage, TNM stage). p < 0.05 was considered to be significant. Then,

univariate and multivariate Cox regression analyses were performed

on the independent prognostic factors, and the results were visualized

using the R package “forestplot.” Subsequently, independent risk

factors with clinical prognostic significance were integrated, and a

nomogram was constructed to predict 1-, 3-, and 5-years survival in

LUAD patients by using the R package “rms.” Finally, the predictive

accuracy of themodel was further evaluated by the consistency index,

calibration curve, and receiver operating characteristic (ROC) curve.

Gene set enrichment analysis

Gene set enrichment analysis was performed for genes in the

high-risk and low-risk group using the R package “clusterProfiler”

and “org.Hs.eg.db.” The c5.go.v7.5.1.entrez.gmt and

c2.cp.kegg.v7.5.1.entrez.gmt were selected as predefined gene sets

from the Molecular Signature Database (MSigDB; https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). Biological processes and

pathways that were significantly enriched were screened according

to the criteria of NOM p < 0.05 and FDR<0.25.

Immune infiltration and
chemotherapeutic drug sensitivity analysis

The immune, stromal and estimete score for each patient were

calculated by the R “estimate” package. The level of immune cell

infiltration was quantified for each patient using CIBERSORT

(https://cibersort.stanford.edu/). A heat map of the correlation

between lncRNAs and immune cell infiltration was drawn by the

R package “corrplot.” The proportions of 22 immune cells in the

high- and low-risk groups were compared and the results were

visualized using the R package “vioplot.” In addition, the single-

sample gene set enrichment analysis (ssGSEA) in the “GSVA”

package was used to quantify the relative infiltration of

28 immune cell types in the tumor microenvironment (Barbie

et al., 2009). The set of characteristic genes for each immune cell

type was obtained from a publication (Jia et al., 2018). In the ssGSEA

analysis, the relative abundance of each immune cell type was

represented by an enrichment score. Seventy-nine ICGs were

obtained from the literature (Hu et al., 2021), 78 of which were

expressed in the TCGA-LUAD dataset, and the relationship between

the risk score and expression levels of ICGs was assessed. The

IC50 values of common antitumor drugs used in the treatment of

LUAD, such as cisplatin, etoposide, docetaxel, gefitinib, erlotinib,

gemcitabine, and paclitaxel, were compared between two groups

using the R packages “pRRophetic” and “ggplot2”.

Statistical analysis

All calculations and statistical analyses for this study were

performed in R (version 4.1.3) (https://www.r-project.org/).

Survival analysis was performed using the Kaplan-Meier

method. The Wilcoxon signed-rank test was used to compare

the differences between groups. Spearman or Pearson correlation

coefficients were used to evaluate the relationships among

lncRNA expression, estimate scores, and immune infiltration.

p < 0.05 was considered a significant difference.

Results

Identification of apoptosis-related
lncRNAs with prognostic value in lung
adenocarcinoma

We first screened 136 apoptosis-related genes (mRNAs),

of which 134 genes had expression data in the TCGA-LUAD
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dataset (Supplementary Table S3). The workflow of this study

is shown in Figure 1. Peasron correlation analysis identified 2,

960 ApoRLs (|R2|>0.4, p < 0.001). Then, differential analysis

of tumor and normal samples identified 421 DE-ApoRLs (|

log2FC|>2, p < 0.05, Figure 2A; Supplementary Figure S1A).

Next, 16 lncRNAs whose expression levels correlated with

patient prognosis were screened by univariate Cox

regression, suggesting their prognostic value for LUAD

(p < 0.001, Figure 2B; Supplementary Table S4). Eleven

lncRNAs were poor prognostic factors (HR > 1,

Figure 2C) and five lncRNAs were favorable prognostic

factors (HR < 1, Figure 2D).

Construction of a prognostic apoptosis-
related lncRNA signature

LASSO Cox regression analysis identified 10 ApoRLs

(RP11.1105O14.1, CTD.2510F5.4, AC018647.3, CTD.3179P9.1,

CTD.2555C10.3, LINC01312, LINC00968, RP11.462L8.1,

LINC00857, FAM83A.AS1) , and established a prognostic

ApoRLSig (Figures 3A,B). The correlations of these 10 lncRNAs

with apoptosis genes are shown in Figure 4A. Among them, seven

lncRNAs (RP11.1105O14.1, CTD.2510F5.4, CTD.2555C10.3,

LINC01312, RP11.462L8.1, LINC00857, FAM83A.AS1) were

significant adverse prognostic factors, while the remaining

FIGURE 1
Flowchart of the present study. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; ARGs, apoptosis-related genes; ApoRLs,
apoptosis-related lncRNAs; ApoRLSig, apoptosis-related lncRNA signature; ICGs, immune checkpoint genes.
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FIGURE 2
Identification of prognostic apoptosis-related lncRNAs in LUAD patients. (A) The differentially expressed apoptosis-related lncRNAs
were shown in the volcano plot. (B) Forest plot showing the HR (95% CI) and p values of lncRNAs screened by univariate Cox regression
analysis (all p < 0.001). (C) Kaplan–Meier survival curves for eleven unfavorable prognostic apoptosis-related lncRNAs. (D) Kaplan-Meier
survival curves for five apoptosis-related lncRNAs with a good prognosis.
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FIGURE 3
Construction of the apoptosis-related lncRNA signature. (A) Lasso coefficients profiles of the 16 apoptosis-related lncRNAs. (B) Lasso
regression analysis obtained 10 prognostic apoptosis-related lncRNAs. (C) Kaplan–Meier curves for OS in the high-risk and low-risk groups
stratifified by ApoRLSig (p < 0.001). (D) Risk curve based on the risk score for each sample, where red indicates a high risk and green indicates a low
risk. (E) Scatterplot based on the survival status of each sample. Red and green dots indicate death and survival, respectively. (F) The heatmap
shows the distribution of 10 apoptosis-related lncRNAs in the high-risk and low-risk groups.
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lncRNAs (AC018647.3, CTD.3179P9.1, LINC00968) were favorable

prognostic factors forOS (Figure 4B). The risk score was calculated as

follows: risk score = (0.1072 × RP11.1105O14.1 expression level) +

(0.0555 × CTD.2510F5.4 expression level) + (−0.6456 ×

AC018647.3 expression level) + (−2.0068 ×

CTD.3179P9.1 expression level) + (0.1503 ×

FIGURE 4
Coexpression network and Sankey diagram of prognostic apoptosis-related lncRNAs. (A) A co-expression network of apoptosis-related
lncRNAs and mRNAs was constructed. Pink ellipses indicate prognostic AR-lncRNAs, and blue hexagons indicate apoptosis-related mRNAs. The
levels of the 10 apoptosis-related lncRNAs were associated with the levels of 35 apoptosis-related mRNAs. (B) Sankey diagram showing the
associations between prognostic apoptosis-related lncRNAs, mRNAs, and risk type.
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FIGURE 5
ApoRLSig is an independent prognostic factor for overall survival. Univariate (A) and multivariate (B) Cox regression analysis of the relationship
between clinical characteristics (including FerRLSig) andOS. (C) Time-dependent ROC curves of OS at 1, 3, and 5 years. Principal component analysis
(PCA) of low-risk and high-risk groups based on the (D) genome-wide, (E) apoptosis-related lncRNAs, and (F) the ApoRLSig including 10 apoptosis-
related lncRNAs. Patients with high risk scores are indicated in orange, and those with low risk scores areindicated in blue. T, tumor stage; N,
lymph node metastasis stage; M, distant metastasis stage.
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CTD.2555C10.3 expression level) + (0.8414 × LINC01312 expression

level) + (−0.0628 × LINC00968 expression level) + (0.0605 ×

RP11.462L8.1 expression level) + (0.0702 ×

LINC00857 expression level) + (0.0708 ×

FAM83A.AS1 expression level). We calculated the risk score for

each patient according to the formula, and divided patients into a

high-risk group (n = 243) and a low-risk group (n = 244) using the

median risk score as the threshold. Kaplan-Meier curves showed a

significant difference in OS between the high-risk and low-risk

groups of LUAD patients (p < 0.001, Figure 3C), indicating that

the newly developed signature is effective in predicting survival.

Meanwhile, the risk curve, scatter plot based on survival status and

heat maps of expression distribution for these 10 lncRNAs are shown

in Figures 3D–F.

Evaluation of ApoRLSig as an independent
prognostic factor for lung
adenocarcinoma

We performed univariate and multivariate Cox regression

analyses to determine whether ApoRLSig is an independent

prognostic model for OS in LUAD patients. The HRs (95% CI)

for the risk score in univariate and multivariate Cox regression

analyses were 3.239 (2.308–4.547) (p < 0.001, Figure 5A) and 3.014

(2.090–4.347) (p < 0.001, Figure 5B), indicating that ApoRLSig is

an independent prognostic indicator. In addition, the predictive

accuracy of the model was assessed by time-dependent receiver

operating characteristic analysis at 1, 3, and 5 years, with AUC

values of 0.738, 0.702, and 0.688, respectively (Figure 5C). Then,

we compared the low-risk and high-risk groups based on genome-

wide, ApoRLs, and the risk model using PCA. As shown in Figures

5D,E, genome-wide or ApoRLs could not effectively distinguish

between high-risk and low-risk groups, while ApoRLSig could

clearly distinguish between high-risk and low-risk patients, further

supporting the accuracy of the model (Figure 5F). The above

results illustrated that ApoRLSig is an important independent

prognostic risk factor for patients with LUAD.

Correlations between the risk score and
clinicopathological factors

To further assess the role of ApoRLSig in the development

of LUAD, we evaluated the correlations between the risk score

and clinicopathological factors. As shown in Figure 6 and

Supplementary Table S5, there was a significant correlation

between the risk score and pathological stage (p < 0.01),

FIGURE 6
ApoRLSig was associated with the clinicopathological factors of patients with LUAD. Correlation analysis between risk score and Stage (A), T (B),
N (C), M (D), Gender (E), survival outcome (F). T, tumor stage; N, lymph node metastasis stage; M, distant metastasis stage.
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especially for stages II-IV, which were significantly higher

than stage I (Figure 6A, p < 0.05). The signature correlated

with tumor stage (Figure 6B, p < 0.05), and patients with

lymph node metastases had significantly higher risk scores

than those without lymph node metastases (Figure 6C, p <
0.01). In addition, there was a correlation between the

signature and gender (Figure 6E, p < 0.05). Figure 6F

illustrated that patients with high risk scores had a

FIGURE 7
Clinical predictive nomogram construction and evaluation. (A) A clinical predictive nomogram based on the clinicopathological factors and risk
score.The calibration curves of the nomogram in predicting 1-year (B), 3-years (C), and 5-years (D) survival of LUAD patients. (E) Time-dependent
ROC curve analyses for predicting OS at 1 year by risk score age, sex, stage, T (tumor size), N (lymph node metastasis and M (distant metastasis).
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significantly poorer prognosis in terms of survival status than

patients with low-risk scores. These results suggested that

ApoRLSig is closely associated with the progression and

prognosis of LUAD.

Construction of a predictive nomogram

Using ApoRLSig in combination with other

clinicopathological factors (stage, T, and N), we constructed a

clinically applicable nomogram to estimate the probability of

survival at 1, 3 and 5 years for patients with LUAD (Figure 7A).

The consistency index of the model was: 0.73 (95% CI: 0.68–0.78,

p < 0.001) and its 1-, 3-, and 5-years calibration curves indicated

that the mortality rates estimated by the nomogram were close to

the actual mortality rates (Figures 7B–D). In the time-dependent

ROC curve for 1-year OS, the AUC value of ApoRLSig was 0.761,

which was significantly higher than other clinical features,

further supporting the predictive ability of ApoRLSig for

survival in patients with LUAD (Figure 7E).

FIGURE 8
GSEA for samples with high risk scores and low risk scores. (A) Enriched gene sets in C5 collection, the Go gene sets, by patients with high risk
scores. Only gene sets both with NOM p < 0.05 and FDR q < 0.25 were considered signifificant. Only five top gene sets are shown in the plot. (B) The
enriched gene sets in C5 collection by patients with low risk scores. (C) Enriched gene sets in C2 collection, the KEGG gene sets, by patients with high
risk scores. (D) The enriched gene sets in C2 collection by patients with low risk scores.
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Identification of ApoRLSig-related
biological pathways

GO functional annotation and KEGG pathway enrichment

were performed using Gene set enrichment analysis. GO

functional annotation results (Supplementary Table S6)

showed that chromosome segregation (NES = 2.50, p =

0.000), mitotic nuclear division (NES = 2.48, p = 0.000),

mitotic sister chromatid segregation (NES = 2.63, p = 0.000),

nuclear chromosome segregation (NES = 2.54, p = 0.000) and

sister chromatid segregation (NES = 2.58, p = 0.000) were

enriched in LUAD patients with high risk scores (Figure 8A).

In contrast, cilium movement (NES = −2.19, p = 0.000), peptide

antigen assembly with MHC protein complex (NES = −2.27,p =

0.000), ciliary plasm (NES = −2.26, p = 0.000), MHC class II

protein complex (NES = −2.23, p = 0.000) and MHC class II

protein complex binding (NES = −2.18, p = 0.0002) were

enriched in patients with low risk scores (Figure 8B). In

addition, 19 KEGG pathways were enriched (Supplementary

Table S7). Cell cycle (NES = 2.35, p = 0.000), DNA

replication (NES = 2.07, p = 0.001), mismatch repair (NES =

1.84, p = 0.031), proteasome (NES = 1.82, p = 0.014) and

splicesome (NES = 1.81, p = 0.001) signaling pathways were

enriched in the high-risk group (Figure 8C). Meanwhile,

Allograft rejection (NES = −2.05, p = 0.001), asthma

(NES = −2.26, p = 0.000), cell adhesion molecules CAMs

(NES = -1.83, p = 0.001), intestinal immune network for IgA

production (NES = −2.06, p = 0.001) and systemic lupus

erythematosus (NES = -2.12, p = 0.000) signaling pathways

were enriched in the low-risk group (Figure 8D). We found

that multiple of these pathways are immune response-related

pathways. The results indicated that the lncRNAs signature may

be related to the tumor immune microenvironment.

Correlation of the risk score with tumor
immune microenvironment

To further assess the correlations between the risk score and

tumor microenvironment, we quantified the level of tumor

immune cells infiltration in both groups of patients using

ESTIMATE, CIBERSORT and ssGSEA algorithms. The results

showed that three ApoRLs were positively correlated with

stromal, immune and estimate score, including AC018647.3,

CTD-3179P9.1 and LINC00968, while LINC01312, RP11-

1105O14.1 and LINC00857 were negatively correlated with

them (p < 0.001, Figure 9A; Supplementary Figure S1B).

Differences in infiltration of 22 immune cell types in patients

with LUAD in TCGA are shown in Figure 9B, reflecting the

intrinsic characteristics of individual differences. The high-risk

group of LUAD patients had a higher proportion of T cells

CD4memory activated (p < 0.001), Macrophages M0 (p < 0.001),

Mast cells activated (p < 0.001) and Neutrophils (p = 0.031). In

contrast, B cells memory (p < 0.001), T cells CD4memory resting

(p < 0.001), Monocytes (p < 0.001), Macrophages M1 (p = 0.005),

Dendritic cells resting (p < 0.001) and Mast cells resting (p <
0.001) were negatively associated with risk score (Figure 9C).

Furthermore, we analyzed the correlations between 10 ApoRLs

and 22 immune cells (Figure 9D). Correlation analysis of

immune cell subsets based on ssGSEA showed more immune

cell infiltration in the low-risk group, including B cells, central

memory CD4+ T cells, dendritic cells, natural killer cells,

Eosinophi, Macrophage , Mast cells, MDSC , Monocyte ,

CD8+ T cells, T follicular helper cells, Regulatory T cells and

Type 1 T helper cell (p < 0.001, Supplementary Table S8;

Figure 9E). In contrast, only memory B cells, Activated CD4+

T cells, CD56dim natural killer cells, neutrophils and Type 2 T

helper cells infiltrated in the high-risk group. The results

suggested that our signature is not only a prognostic marker

but also reflects the level of immune cell infiltration.

Differences in response to
immunotherapy and chemotherapy
between the high-risk and low-risk groups

The expression levels of ICGs may be predictive biomarkers

for immune checkpoint blockade therapy. We investigated the

relationship between the expression of 78 ICGs and two groups.

The results showed that 19 ICGs were expressed at higher levels

in the low-risk group, including BTNL9, HLA-DRB5, HLA-

DPB1, HLA-DOA, HLA-DQB1, CD40LG, HLA-DRB1, HLA-

DRA, HLA-DPA1, HLA-DMA, HLA-DQA1, HLA-DMB,

CD96,BTLA, HLA-DOB, CD48, TNFSF15, CD200R1, CD28,

while the other 41 ICGs were highly expressed in the high-

risk group (Supplementary Table S9). The first 10 ICGs were

shown in Figures 10A–E and Supplemenatry Figures S1C–G.

These results demonstated that ApoRLSig could be a candidate

biomarker for immunotherapy in patients with LUAD. In

addition, the results of the correlation analysis between risk

score and the sensitivity of chemotherapeutic agents to LUAD

were shown in Figures 10F–L. Patients with high risk scores were

highly sensitive to cisplatin (p = 0.032), docetaxel (p < 0.001),

gemcitabine (p = 0.026) and paclitaxel (p < 0.001), while patients

with low risk scores were only sensitive to erlotinib (p = 0.006).

There was no significant difference in the sensitivity of etoposide

and gefitinib between the two groups (p > 0.05). The results

indicate that ApoRLSig is a potential predictor of chemotherapy

sensitivity.

Discussion

Lung cancer is the leading cause of cancer deaths worldwide.

LUAD is one of the most common histological types of lung

cancer (Carrillo-Perez et al., 2021). In recent years,
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FIGURE 9
Comparison of the immune microenvironment of LUAD patients between the high- and low-risk groups. (A) Correlation matrices between six
lncRNAs expression and stromal score, immune score, and estimate score. (B)Barplot shows the proportion of 22 types of TICs in LUAD samples. The
column names of the plot were sample ID. (C) Violin plot showed the ratio of 22 immune cell types between the low-risk and high-risk groups, and
Wilcoxon signed-rank test was used for significance test. Red indicates the high-risk group and green indicates the low-risk group. (D)Heatmap
showing the correlation between 22 TICs and 10 lncRNAs. (E) The single sample gene set enrichment analysis (ssGSEA) algorithm compares the
expression of 28 immune cells between patients in high and low risk groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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chemotherapy and molecular targeted therapy can prolong the

overall survival of patients with LUAD, and the emergence of

immunotherapy also brings a promising future to LUAD

treatment (Lou et al., 2020; Deshpand et al., 2022). However,

the prognosis for patients with LUAD remains poor due to late

diagnosis and the emergence of drug resistance (Blandin et al.,

2017; Li et al., 2020). Hence, there is an urgent need to develop

safe and feasible predictive biomarkers that will facilitate accurate

and timely personalized treatment of LUAD patients and greatly

improve their prognosis.

Apoptosis is a specific programmed cell death process

regulated by molecules, and regulating apoptosis can treat a

variety of diseases, including cancer (Ketelut-Carneiro and

Fitzgerald, 2022). Moreover, the cytotoxic effects of most

oncological chemotherapeutic agents are mediated through

activation of apoptotic pathways, and apoptosis targeting

holds promise as a key strategy for cancer treatment

(Johnstone et al., 2002; Singh and Lim, 2022). Increasing

evidence showed that lncRNAs can regulate apoptosis through

different mechanisms, and their regulatory effects on apoptosis in

lung cancer cells have been investigated (Wang et al., 2020; Xiang

et al., 2020; Ghafouri-Fard et al., 2021; Ouyang et al., 2021).

Whereas, the role of ApoRLs in the prognosis, chemotherapy and

immunotherapy of LUAD is not well understood.

In this study, we constructed a prognostic signature using

10 ApoRLs, and the ROC curve demonstrated that this lncRNA

signature had moderate predictive performance for OS in LUAD

patients. We then evaluated the relationship between the risk

score and clinical features of LUAD and constructed a

nomogram diagnostic model. Next, we linked the lncRNA

signature to the tumor immune microenvironment and found

that these ApoRLs play a key role in the regulation of tumor

FIGURE 10
Correlation analysis between risk score, ICGs, and chemotherapeutics sensitivity. The differential expression of five immune checkpoint genes,
(A) HLA-DPB1, (B) KIR2DL4, (C) CD27, (D) PVR, and (E) CD276, between the high-risk group and the low-risk group. Half-maximal inhibitory
concentration (IC50) values for seven common antineoplastic drugs, (F) cisplatin, (G) docetaxel, (H) gemcitabine, (I) paclitaxel, (J) erlotinib, (K)
etoposide, and (L) gefitinib, between the high-risk and low-risk groups.
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immune infiltration, suggesting that they may be potential targets

for tumor immunotherapy. Finally, the correlation between

ICGs, chemotherapeutic sensitivity and risk score was

analyzed to assess the role of this signature in immune

response and chemotherapy effect in LUAD. These results

strongly suggested that the lncRNA signature may play an

important role in LUAD.

Among the identified lncRNAs, five were closely associated

with tumor development, namely CTD.2510F5.4, LINC01312,

LINC00857, FAM83A.AS1, and LINC00968. CTD.2510F5.4 was

found to be significantly upregulated in cancerous tissues and

was strongly associated with poor prognosis in LUAD (Wang

et al., 2018). We found that LINC01312 could be used as a

prognostic marker to predict survival in LUAD (Li et al., 2018).

However, the biological functions of LINC01312 in apoptosis

and LUAD have not been systematically analyzed and need to be

further investigated. LINC00857 is considered to be an oncogenic

lncRNA that promotes proliferation and metastasis of cancer

cells in pancreatic (Chen et al., 2022), colorectal (Chang et al.,

2021) and breast (Zheng et al., 2020) cancers, and it regulates

apoptosis and autophagy (Su et al., 2020).

FAM83A.AS1 regulates the proliferation, migration, invasion

and epithelial-mesenchymal transition process of LUAD cells

by targeting microRNA-141-3p (Huang et al., 2022). Notably,

LINC00857 and FAM83A.AS1 are components of the immune-

associated lncRNA signature (Mu et al., 2021; You et al., 2021),

suggesting a possible strong link between apoptosis and immune

regulation in LUAD. LINC00968 is significantly downregulated

in LUAD and inhibits tumor proliferation,migration and invasion,

and may serve as a prognostic marker and potential therapeutic

target for LUAD (Wu C. et al., 2021). In addition, LINC00968 was

found to be closely associated with ferroptosis (Lu et al., 2021) and

N-6 methylation (m6A) (Zheng et al., 2021), and could attenuate

drug resistance in cancer cells (Xiu et al., 2019). However, the

prognostic value of five lncRNAs (RP11.1105O14.1,

CTD.2555C10.3, RP11.462L8.1, AC018647.3, and

CTD.3179P9.1) for cancer and their contribution to apoptosis

have been lacking studies. Therefore, further studies are needed to

explore the role of these lncRNAs in LUAD and apoptosis.

There are complex interactions between tumor cells and the

tumor microenvironment that significantly influence tumor

progression (Arneth, 2020). Therefore, this study

demonstrates the relationship between ApoRLSig and tumor

immune microenvironment. Significant differences in immune

cell infiltration were found between high- and low-risk groups,

confirming the role of ApoRLs in the regulation of tumor

immune infiltration. Tumor immunity depends on the balance

between immune cells that promote tumor or inhibit tumor

progression (Wang et al., 2019). Type 1 T helper cells, which

release TNF-a, IL-2, and interferon-g (IFN-g), exert antitumor

effects, while Type 2 T helper cells mainly produce IL-4 to

suppress the host immune system and promote tumor growth

(Becker, 2006). M1 macrophages and natural killer cells have

been shown to exert antitumor effects during tumorigenesis, and

natural killer cells can drive tumor immunotherapeutic responses

(Biswas et al., 2008; Huntington et al., 2020). It has been shown

that the presence of CD8+ T cells is a hallmark of the anti-tumor

immune response (Chen Y. et al., 2021a). Dendritic cells are

specialized antigen-presenting cells that play a key role in the

initiation, programming and regulation of tumor-specific

immune responses (Melief, 2008; Li and He, 2018). CD4+ T

regulatory cells, MDSC and mast cells may promote tumor

progression (Ostrand-Rosenberg, 2008). In addition, an

increase in neutrophil count is often strongly associated with

poor cancer prognosis (Mollinedo, 2019). Consistent with

previous studies, our study found more infiltration of immune

cells performing anti-tumor responses (e.g., Activated CD8+

T cells, Type 1 T helper cells, Activated dendritic cells,

M1 macrophages, and Natural killer cells) in the tumor

microenvironment of patients with low risk scores, reflecting a

reduction in malignancy and the effects of various treatments. In

contrast, more immune cells that promote tumor progression

(e.g., CD4+ T regulatory cells, mast cells, and neutrophils) were

found in high-risk scoring patients. An exception emerged, with

higher levels of MDSC infiltration in the low-risk population. Lung

cancer has high levels of MDSCs, which are associated with

resistance to chemotherapy, targeted therapy and

immunotherapy and can predict poor prognosis (Liu et al.,

2010; Feng et al., 2012; Heuvers et al., 2013; Huang et al., 2013;

Zhou et al., 2018). This also explains the fact that patients with low

risk scores are less sensitive to multiple chemotherapeutic agents

than patients with high risk scores in our study.

In addition, apoptosis not only plays an important role in

tumor development, but also has an impact on the effectiveness

of immunotherapy and molecular targeted therapy for tumors

(Carneiro and El-Deiry, 2020; Michie et al., 2020). Since

immunotherapy with checkpoint inhibitors plays a key role in

LUAD, we further investigated the differences in the expression

of ICGs between high- and low-risk groups. The expression levels

of HLA-DPB1, KIR2DL4, CD274, PVR, CD276, HLA-DRA,

HLA-DOA, HLA-DRB5, HLA-DPA1, and HLA-DRB1 were

found to be significantly different in the two groups of

patients. Meanwhile, we found higher expression levels of

most immune checkpoint genes in patients with high risk

scores, prompting a superior immunotherapy effect in the

high-risk group than in the low-risk group. Of note, patients

with high risk scores were found to be highly sensitive to the

chemotherapeutic agents cisplatin, docetaxel, gemcitabine and

paclitaxel, indicating that the high-risk group was also

outperformed by the low-risk group in terms of chemotherapy

efficacy. These results suggest that lncRNAs in this signature may

influence the development of LUAD by regulating immune

responses in tumors and play a crucial role in chemotherapy

drug resistance in LUAD.

The strength of this study is that we have constructed the first

prognostic model of ApoRLs in LUAD and analyzed the
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relationship of the risk score with immunotherapy response and

chemotherapy drug sensitivity. Most importantly, the lncRNA

signature constructed in this study has higher predictive accuracy

and is more comprehensively studied than another existing

apoptosis-related signature that is used to predict the

prognosis of lung adenocarcinoma (Zou et al., 2022).

However, there are limitations in our study. First, we used

only one dataset to construct the model. Second, this is a

retrospective study. Third, this study lacks functional

experimental validation. Hence, prospective cohort studies and

molecular biology experiments are needed in this study to further

validate the prognostic value of ApoRLSig and to explore the

molecular mechanisms of ApoRLs.

In summary, we constructed a novel ApoRLSig to predict

the prognosis of LUAD patients, and established an effective

nomogram model including ApoRLSig. Furthermore, the

most important contribution of this study is that we

demonstrated the relationship between ApoRLSig and

tumor immune microenvironment and further evaluated

the relationship between ICGs, chemotherapy drug

sensitivity, and risk score.These findings are of great

importance in guiding the treatment and prognostic

evaluation of patients with LUAD.
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