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Abstract
Background: Stomach adenocarcinoma (STAD), is one of the most lethal malignan-
cies around the world. The aim of this study was to find the long noncoding RNAs 
(lncRNAs) acting as diagnostic and prognostic biomarker of STAD.
Methods: Base on TCGA dataset, the differentially expressed mRNAs (DEmRNAs) and 
lncRNAs (DElncRNAs) were identified between STAD and normal tissue. The machine 
learning and survival analysis were performed to evaluate the potential diagnostic and 
prognostic value of lncRNAs for STAD. We also build the co-expression network and 
functional annotation. The expression of selected candidate mRNAs and lncRNAs were 
validated by Quantitative real-time polymerase chain reaction (qRT-PCR) and GSE27342 
dataset. GSE27342 dataset were also to perform gene set enrichment analysis.
Results: A total of 814 DEmRNAs and 106 DElncRNAs between STAD and normal 
tissue were obtained. FOXD2-AS1, LINC01235, and RP11-598F7.5 were defined as 
optimal diagnostic lncRNA biomarkers for STAD. The area under curve (AUC) of the 
decision tree model, random forests model, and support vector machine (SVM) model 
were 0.797, 0.981, and 0.983, and the specificity and sensitivity of the three model were 
75.0% and 97.1%, 96.9% and 96%, and 96.9% and 97.1%, respectively. Among them, 
LINC01235 was not only an optimal diagnostic lncRNA biomarkers, but also related 
to survival time. The expression of three DEmRNAs (ESM1, WNT2, and COL10A1) 
and three optimal diagnostic lncRNAs biomarkers (FOXD2-AS1, RP11-598F7.5, and 
LINC01235) in qRT-PCR validation was were consistent with our integrated analysis. 
Except for FOXD2-AS1, ESM1, WNT2, COL10A1, and LINC01235 were upregulated 
in STAD, which was consistent with our integration results. Gene set enrichment anal-
ysis results indicated that DNA replication, Cell cycle, ECM-receptor interaction, and 
P53 signaling pathway were four significantly enriched pathways in STAD.
Conclusion: Our study identified three DElncRNAs as potential diagnostic biomark-
ers of STAD. Among them, LINC01235 also was a prognostic lncRNA biomarkers.
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1 |  INTRODUCTION

Stomach adenocarcinoma (STAD), the predominant subtype 
in stomach cancer, is one of the major malignancies in the 
world (Gu et al., 2017). At present, the main treatment of 
STAD has been gastrectomy accompanied by chemotherapy 
and radiation therapy. Due to the no symptoms or no specific 
symptoms of the disease in its early stages, 80% of patients 
are diagnosed at advanced stages (Cancer Genome Atlas 
Research Network, 2014). In spite of advancements have 
been made with treatment, the survival of STAD patient re-
mains low (Cervantes et al., 2013; Siegel et al., 2014). Hence, 
searching for new diagnosis and prognosis biomarkers of 
STAD are urgent issues.

With the advances of microarray technology, bio-
informatics have become most usually used tool to ob-
tain potential biomarkers in multiple diseases (Wang 
et al., 2015, 2019; Yang & Li, 2019). Mounting evidence 
demonstrates that long noncoding RNA (lncRNA) is 
closely relevant to the biological processes in cancers, 
such as tumor occurrence, development, and metastasis 
(Dey et al., 2014; Gu et al., 2017). In recent years, many 
lncRNAs has been identified as novel candidate biomark-
ers for diagnostic and prognostic of various cancer (Pan 
et al., 2019; Wei et al., 2019; Zeng et al., 2017). However, 
to our knowledge, there are few study on lncRNA bio-
markers in STAD is rare. Bioinformatic analysis of the 
Cancer Genome Atlas (TCGA) datasets has been proven 
to be a novel tool in seeking diagnostic and prognostic 
markers for a variety of malignancies (Ding et al., 2017; 
Tsai et al., 2016). Machine learning is considered to be 
one of the most accurate prediction methods, with the 
ability to determine the importance of variables and to 
model complex interactions between independent vari-
ables (Cutler et al., 2007).

In this study, aiming to identify the diagnostic and 
prognostic lncRNAs biomarkers in STAD patients, we ap-
plied the bioinformatics analysis according to the lncRNA 
and mRNA expression profiles derived from TCGA data-
set. We performed the machine learning and survival anal-
ysis to evaluate the potential diagnostic and prognostic 
value of lncRNAs for STAD. The DElncRNA-DEmRNA 
co-expression network was structured by Pearson correla-
tion coefficient. The functions of the DEmRNAs co-ex-
pressed with the identified optimal diagnostic lncRNAs 
in STAD was analyzed by functional annotation. The ex-
pression levels of ESM1 (MIM#: 601521), WNT2 (MIM#: 
147870), COL10A1 (MIM#: 120110), FOXD2-AS1, 
RP11-598F7.5, and LINC01235 were verified by qRT-
PCR. To our knowledge, this is first time to seek diagnos-
tic and prognostic lncRNAs biomarkers in STAD by using 
machine learning.

2 |  MATERIALS AND METHODS

2.1 | Integrated profiles in TCGA

The lncRNA expression profiles (Level 3-IlluminaHiSeq-
lncRNASeq data) and mRNA expression profiles (Level 
3-IlluminaHiSeq-mRNASeq data) and correlated clinical 
information were download from the Cancer Genome Atlas 
(TCGA) (http://tcga-data.nci.nih.gov/) through Genomic 
Data Commons tool. The present study included only pa-
tients who were histologically diagnosed as STAD. Finally, 
375 STAD tissues and 32 normal adjacent samples from pa-
tients with STAD were included in this study.

2.2 | Identification of 
DEmRNAs and DElncRNAs

The RNA-Seq expression datasets were downloaded, and 
then, transformed from Fragments Per Kilobase Million 
(FPKM) data into Transcripts Per Kilobase Million (TPM) 
data. TPM has been considered to be more comparable than 
FPKM and reads per kilobase of transcript per million mapped 
reads (RPKM) (Li et al., 2010). Log2 of its TPM value was 
used as the measure of mRNAs and lncRNAs expression 
level here. The DElncRNAs and DEmRNAs in STAD com-
pared to adjacent normal tissues were calculated using the R 
package DESeq2. Benjamini and Hochberg multiple testing 
method was applied to acquire the false discovery rate (FDR). 
FDR <.05 and |Log2fold change|>2 were used to define 
DElncRNAs and DEmRNAs. Hierarchical clustering analy-
sis of DElncRNAs and DEmRNAs were further performed by 
using R package v3.3.3 (https://www.r-proje ct.org/).

2.3 | Identification of the optimal diagnostic 
lncRNAs biomarkers for STAD

LASSO algorithm was conducted by the glmnet package 
(https://cran.r-proje ct.org/web/packa ges/glmne t/) to decrease 
dimensions of the data. We also performed Elastic net to de-
crease dimensions of the data. We performed single 10-fold 
cross-validation cycles with the coordinate descent algorithm 
for each fold and found regularization parameters that result in 
the smallest average mean squared errors across all folds. The 
optimal DElncRNAs were selected in STAD and normal tissue.

To further identify the optimal diagnostic lncRNA biomark-
ers for STAD, we performed feature selection procedures as 
follows. (1) The importance value of each lncRNA was ranked 
according to mean decrease in accuracy from large to small by 
random forest algorithm. (2) The optimum number of features 
was found by adding a DElncRNA at a time in the top-down 
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forward-wrapper packaging method. (3) By using support vec-
tor machine (SVM) at each increment and the optimal diagnos-
tic lncRNA biomarkers were identified for STAD.

The “random Forests” packet (https://cran.r-proje ct.org/
web/packa ges/rando mFore st/) was used to establish the ran-
dom forest model. The “rpart” packet (https://cran.r-proje 
ct.org/web/packa ges/rpart/) was used to build the decision 
tree model. The e1071 package (https://cran.r-proje ct.org/web/
packa ges/e1071/ index.html) in R was used to establish the 
SVM model. Diagnostic ability of these three models, and each 
lncRNA biomarker was evaluated by acquiring the area under 
the receiver operating characteristic (ROC) curve (AUC), sen-
sitivity, and specificity. By using pROC package in R language, 
we performed the ROC analyses to assess the diagnostic value 
of lncRNA biomarker. The AUC under binomial exact confi-
dence interval was calculated and ROC curve was produced.

2.4 | Survival analysis of optimal diagnostic 
lncRNAs biomarkers for STAD

To determine the potential association between the identified 
DElncRNAs and survival in STAD patients, survival analy-
sis (https://cran.r-proje ct.org/web/packa ges/survi val/index.
html) in R was performed.

2.5 | DEmRNAs co-expressed with the 
identified optimal diagnostic lncRNAs

The correlation between the optimal diagnostic lncRNAs 
and DEmRNAs were analyzed by the Pearson correlation 
coefficient. The threshold for DElncRNA-DEmRNA co-
expression pairs was p  <  0.05 and R  >  0.5. We used the 
Cytoscape software (http://www.cytos cape.org/) to build the 
DElncRNA-DEmRNA co-expression network.

2.6 | Functional annotation of DEmRNAs 
co-expressed with the identified optimal 
diagnostic lncRNAs

Gene Ontology (GO) classification and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analy-
sis were performed using Metascape (http://metas cape.org/
gp/index.html). p < 0.05 was considered to indicate a statisti-
cally significant difference.

2.7 | Confirmation by qRT-PCR

Base on the results of TCGA integration analysis, three 
DEmRNAs (ESM1, WNT2, and COL10A1) and three 

optimal diagnostic lncRNAs biomarkers (FOXD2-AS1, 
RP11-598F7.5, and LINC01235) were screened as candidate 
mRNAs and lncRNAs. Twelve tissues samples of STAD pa-
tients (n = 6) and normal adjacent (n = 6) were obtained. This 
study was approved by the Institutional Ethics Committees 
of the 960th Hospital of the PLA Joint Logistics Support 
Force and complied with the Declaration of Helsinki.

All the participants had signed a written informed. Total RNA 
was extracted from samples using a RNA simple total RNA kit 
(Tiangen, China). RNA was reverse-transcribed using a Fast 
Quant RT Kit (Tiangen, China) according to the manufacturer's 
instructions. Quantitative real-time PCR were conducted using 
the Super Real PreMix Plus SYBR Green (Tiangen, China) on 
ABI 7500 real-time PCR system. The 2−∆∆Ct method was used to 
analyze the relative quantification of mRNA and lncRNA levels. 
Each sample was analyzed in triplicate. The PCR primers used 
are listed in Table 1. The human ACTB were used as endogenous 
controls for mRNA and lncRNA expression in analysis.

2.8 | Validation in the Gene Expression 
Omnibus (GEO) dataset

GSE27342 dataset was obtained from the GEO (https://
www.ncbi.nlm.nih.gov/geo/), which consisted of 80 pa-
tients with STAD and 80 normal controls. The GEO dataset 
GSE27342 was performed to confirm the expression of some 
DEmRNAs and DElncRNAs.

2.8.1 | Gene set enrichment analysis

The samples in the GSE27342 dataset were divided into 
two groups including 80 patients with STAD and 80 normal 

T A B L E  1  Primer sequences used for qRT-PCR

Name Sequence (5′ to 3′)

ACTB-F CATGTACGTTGCTATCCAGGC

ACTB-R CTCCTTAATGTCACGCACGAT

ESM1-F CAGTGAGTGCAAAAGCAGCC

ESM1-R TCCTCCCCATTAGAAGGCTGA

WNT2-F TCTCGGTGGAATCTGGCTCTGG

WNT2-R TGGCTAATGGCACGCATCACATC

COL10A1-F CAGGAAAACCAGGCTACGGA

COL10A1-R CCAGCTGGTCCAACZTCTCC

FOXD2-AS1-F TGCATCCTGTGTCCTGTGTC

FOXD2-AS1-R CCACTAGGGTCTCGCTGTTG

RP11-598F7.5-F GCATGTCTGTCTCAAGCTGC

RP11-598F7.5-R TGCAGAAGTTCGTGGAGGAC

LINC01235-F CGAGACCAGCCTGACCAACATG

LINC01235-R CTCCTGCCTTAGCCTCCTGAGTAG

https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/rpart/
https://cran.r-project.org/web/packages/rpart/
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
http://www.cytoscape.org/
http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
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controls. Gene set enrichment analysis (http://www.broad 
insti tute.org/gsea/index.jsp) was performed to understand the 
meaningful KEGG pathway in the two groups. The annotated 
gene sets of version 6.0 were downloaded from the Molecular 
Signatures Database (MSigDB; http://softw are.broad insti tute.
org/gsea/msigd b/index.jsp). The inclusion criteria were nor-
malized p < 0.05 and false discovery rate (FDR) <25%.

3 |  RESULTS

3.1 | DEmRNAs and DElncRNAs in STAD

The detailed characteristics of 375 STAD tissues and 32 nor-
mal adjacent samples from patients with STAD are listed in 
Table S1. A total of 814 DEmRNAs (550 downregulated and 
264 upregulated mRNAs) and 106 DElncRNAs (55 down-
regulated and 51 upregulated lncRNAs) between STAD and 
normal tissue were identified with FDR <0.05 and |Log2fold 
change|>2. All DEmRNAs and DElncRNAs between STAD 
and normal are displayed in Tables S2 and S3, respectively. 
Hierarchical clustering analysis of the top 100 DEmRNAs 
and all of DElncRNAs between STAD and normal tissue are 
demonstrated in Figures 1a,b, respectively.

3.2 | Identification of optimal diagnostic 
lncRNAs biomarkers for STAD

According to reduced dimensions of the data, we obtained 
28 and 49 DElncRNAs between STAD and normal tissues 
by using LASSO algorithm and Elastic net, respectively 

(Tables 2 and 3). Hierarchical clustering analysis of the 28 
DElncRNAs are shown in Figure 2a. The random forest anal-
ysis was used to rank the 28 DElncRNAs according to the 
mean decrease in accuracy (Figure 2b). Ten-fold cross-vali-
dation result suggested that the average accuracy rate of three 
DElncRNAs (FOXD2-AS1, LINC01235, and RP11-598F7.5) 
reached the higher score for the first time (Figure 2c). Base 
on the Elastic net, 10-fold cross-validation result also sug-
gested that the average accuracy rate of three DElncRNAs 
(FOXD2-AS1, LINC01235, and RP11-598F7.5) reached 
the higher score for the first time (Figure S1). Hierarchical 
clustering analysis of the three DElncRNAs (FOXD2-AS1, 
LINC01235, and RP11-598F7.5) are displayed in Figure 
2d. Therefore, these three DElncRNAs were determined as 
the optimal diagnostic lncRNA biomarkers for STAD which 
were used to establish the random forests, decision tree, and 
SVM models. Hierarchical clustering analysis of these three 
DElncRNAs between STAD and normal tissue are displayed 
in Figure 2d. Box-plot uncovered the expression levels of 
these three DElncRNAs between STAD and normal tissues 
(Figure 2e–g). The AUC of the decision tree model was 0.797 
and the specificity and sensitivity of this model were 75.0% 
and 97.1%, respectively (Figure 3a). The AUC of the random 
forests model was 0.981 and the specificity and sensitivity of 
this model were 96.9% and 96%, respectively (Figure 3b). The 
AUC of the SVM model was 0.983 and the specificity and sen-
sitivity of this model were 96.9% and 97.1% (Figure 3c). The 
AUC of all these three lncRNAs (FOXD2-AS1, LINC01235, 
and RP11-598F7.5) were also above 0.916 (Figure 3d–f). 
Taken together, the AUC of all these three lncRNAs and 
their combination were all greater than 0.79 which indicated 
the FOXD2-AS1, LINC01235, and RP11-598F7.5 and their 

F I G U R E  1  Hierarchical clustering analysis of DElncRNAs and top 100 DEmRNAs between STAD and normal tissues. (a) DEmRNAs. (b) 
DElncRNAs. Row and column represented DElncRNAs/DEmRNAs and tissue samples, respectively. The color scale represented the expression levels

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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combination were related to STAD and could predict the oc-
currence of STAD.

3.3 | Survival analysis of optimal diagnostic 
lncRNAs biomarkers for STAD

The association between three lncRNAs (FOXD2-AS1, 
LINC01235, and RP11-598F7.5) and survival in patients 
with STAD (Figure 3g–i). Only LINC01235 was signifi-
cantly associated with the prognosis of patients with STAD.

3.4 | DEmRNAs co-expressed with the 
identified optimal diagnostic lncRNAs

A total of three optimal DElncRNA biomarkers for 
STAD were co-expressed with 87 DEmRNAs, accounting 

for 122 DElncRNA-DEmRNA co-expression pairs. 
FOXD2-AS1, LINC01235, and RP11-598F7.5 were co-
expressed with 55, 50, and 17 DEmRNAs, respectively 
(Figure 4).

3.5 | Functional annotation of DEmRNAs 
co-expressed with the identified optimal 
diagnostic lncRNAs

Base on the functional annotation of 87 DEmRNAs co-
expressed with the identified optimal diagnostic lncRNAs 
(Figure 5), nuclear chromosome segregation, extracellular 
matrix organization, extracellular matrix, and meiotic cell 
cycle were significantly enriched GO terms, and TNF signal-
ing pathway, JAK-STAT signaling pathway, Transcriptional 
misregulation in cancer, and ECM-receptor interaction were 
four significantly enriched pathways.

Symbol log2FoldChange p-value FDR Updown

FOXD2-AS1 2.139327751 2.28E-31 2.63E-28 Up

IL12A-AS1 −3.340180888 5.18E-31 4.78E-28 Down

AC090616.2 −2.265896134 1.14E-29 8.77E-27 Down

RP11-598F7.5 2.374331116 2.37E-27 1.37E-24 Up

ADAMTS9-AS1 −2.750538461 3.62E-27 1.86E-24 Down

DLGAP1-AS2 2.043503544 2.23E-25 6.44E-23 Up

RP11-613D13.8 −2.423609575 2.96E-24 7.19E-22 Down

LINC02158 −2.245429764 3.21E-24 7.39E-22 Down

AL928768.3 −3.703197788 1.06E-22 1.96E-20 Down

LINC01235 2.53991133 5.63E-22 8.95E-20 Up

LINC01336 −2.549764194 5.00E-20 5.12E-18 Down

AC015849.16 2.256425866 9.54E-20 9.36E-18 Up

RNF144A-AS1 2.139212352 7.70E-19 6.96E-17 Up

C5orf66-AS1 −3.187219896 9.81E-19 8.53E-17 Down

CDKN2B-AS1 −2.587107347 2.91E-18 2.27E-16 Down

LINC01697 −2.747733567 9.67E-18 6.73E-16 Down

AC073283.7 2.081655386 2.20E-16 1.18E-14 Up

LINC00982 −2.306850193 1.49E-15 6.46E-14 Down

RP11-963H4.3 −2.022400723 7.67E-15 3.00E-13 Down

RP11-641D5.2 −2.040949727 1.08E-14 3.99E-13 Down

PGM5-AS1 −3.192676148 1.26E-14 4.58E-13 Down

RP11-7 K24.3 −2.041496455 9.89E-14 2.90E-12 Down

AC096579.15 −2.46634156 1.27E-13 3.67E-12 Down

AC104024.1 −2.111937683 1.75E-13 4.82E-12 Down

PART1 −2.31587256 8.27E-12 1.64E-10 Down

C20orf166-AS1 −2.491364692 2.57E-11 4.40E-10 Down

CASC9 2.276494335 2.79E-11 4.69E-10 Up

AF001548.6 −2.081376039 1.45E-08 1.29E-07 Down

T A B L E  2  DElncRNAs between STAD 
and normal tissues after reduced dimensions 
of data by LASSO algorithm
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T A B L E  3  DElncRNAs between STAD and normal tissues after reduced dimensions of data by Elastic net

Symbol log2FoldChange p-value FDR Updown

FOXD2-AS1 2.139328 2.28E-31 2.63E-28 Up

RP11-598F7.5 2.374331 2.37E-27 1.37E-24 Up

LINC01235 2.539911 5.63E-22 8.95E-20 Up

AL928768.3 −3.7032 1.06E-22 1.96E-20 Down

GAPLINC 2.062859 1.75E-18 1.43E-16 Up

DUXAP8 3.316478 1.22E-35 2.80E-32 Up

LINC01336 −2.54976 5.00E-20 5.12E-18 Down

DLGAP1-AS2 2.043504 2.23E-25 6.44E-23 Up

LINC01697 −2.74773 9.67E-18 6.73E-16 Down

C5orf66-AS1 −3.18722 9.81E-19 8.53E-17 Down

RP1-60O19.1 2.739187 4.28E-14 1.32E-12 Up

RP11-867G23.10 −3.08974 1.47E-25 4.53E-23 Down

ADAMTS9-AS2 −2.15844 4.67E-16 2.24E-14 Down

AC015849.16 2.256426 9.54E-20 9.36E-18 Up

RNF144A-AS1 2.139212 7.70E-19 6.96E-17 Up

LINC02086 2.525563 2.62E-14 8.68E-13 Up

KRT7-AS 2.226896 3.66E-12 8.11E-11 Up

AC073283.7 2.081655 2.20E-16 1.18E-14 Up

LINC02158 −2.24543 3.21E-24 7.39E-22 Down

RP11-770 J1.3 −2.05015 1.84E-39 8.50E-36 Down

PGM5-AS1 −3.19268 1.26E-14 4.58E-13 Down

MEF2C-AS1 −2.09002 3.43E-16 1.76E-14 Down

RBMS3-AS3 −2.2516 2.02E-15 8.47E-14 Down

RP11-211G23.2 2.118864 2.16E-12 5.14E-11 Up

CTD-2540F13.2 2.141602 9.78E-18 6.73E-16 Up

AC108676.1 2.441715 4.71E-16 2.24E-14 Up

CASC9 2.276494 2.79E-11 4.69E-10 Up

PART1 −2.31587 8.27E-12 1.64E-10 Down

TRPM2-AS 2.748372 2.12E-20 2.39E-18 Up

CTD-2540F13.2 2.141602 9.78E-18 6.73E-16 Up

RP11-21A7A.2 −2.52023 9.31E-17 5.43E-15 Down

IL12A-AS1 −3.34018 5.18E-31 4.78E-28 Down

AC096579.15 −2.46634 1.27E-13 3.67E-12 Down

RP11-641D5.2 −2.04095 1.08E-14 3.99E-13 Down

RP11-963H4.3 −2.0224 7.67E-15 3.00E-13 Down

CDKN2B-AS1 −2.58711 2.91E-18 2.27E-16 Down

RP11-613D13.8 −2.42361 2.96E-24 7.19E-22 Down

RP11-626H12.2 2.19915 3.16E-17 1.94E-15 Up

AC090616.2 −2.2659 1.14E-29 8.77E-27 Down

C20orf166-AS1 −2.49136 2.57E-11 4.40E-10 Down

UBXN10-AS1 −2.77015 6.71E-20 6.73E-18 Down

LINC00671 −2.66457 3.07E-20 3.29E-18 Down

LINC00982 −2.30685 1.49E-15 6.46E-14 Down

AC104024.1 −2.11194 1.75E-13 4.82E-12 Down

(Continues)
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Symbol log2FoldChange p-value FDR Updown

SOX21-AS1 −2.18199 2.01E-07 1.34E-06 Down

RP11-351 J23.1 −2.7255 5.24E-14 1.61E-12 Down

AF001548.6 −2.08138 1.45E-08 1.29E-07 Down

RP11-7 K24.3 −2.0415 9.89E-14 2.90E-12 Down

RP11-800A18.4 −2.53106 1.73E-12 4.18E-11 Down

T A B L E  3  (Continued)

F I G U R E  2  Identification of optimal lncRNA biomarkers for STAD. (a) Hierarchical clustering analysis of the 28 DElncRNAs. (b) The 
importance value of each DElncRNA ranked according to the mean decrease in accuracy by using the random forest analysis. (c) The variance 
rate of classification performance when increasing numbers of the predictive DElncRNAs. (d) Hierarchical clustering analysis of three lncRNAs 
biomarkers (FOXD2-AS1, LINC01235, and RP11-598F7.5). (e–g) Box-plot displayed the expression levels of three lncRNAs biomarkers between 
STAD and normal tissues. The x-axis represented normal and STAD groups. The y-axis represented gene expression levels
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3.6 | Confirmation by qRT-PCR

We performed the confirmation of three DEmRNAs (ESM1, 
WNT2, and COL10A1) and three optimal diagnostic lncRNAs 
biomarkers (FOXD2-AS1, RP11-598F7.5, and LINC01235) 
by qRT-PCR. Based on TCGA, ESM1, WNT2, COL10A1, 
FOXD2-AS1, RP11-598F7.5, and LINC01235 were upregu-
lated in STAD compared to adjacent tissues. According to the 
qRT-PCR results, ESM1, WNT2, COL10A1, FOXD2-AS1, 

RP11-598F7.5, and LINC01235 were upregulated which was 
consistent with the results of TCGA (Figure 6).

3.6.1 | Validation in GEO dataset

The expression pattern of selected DEmRNAs (ESM1, 
WNT2, and COL10A1) and DElncRNAs (FOXD2-AS1 
and LINC01235) was verified using GSE27342 dataset. The 

F I G U R E  3  ROC analysis of three STAD-specific lncRNAs biomarkers. The ROC results of these three diagnostic lncRNAs biomarkers 
(FOXD2-AS1, LINC01235, and RP11-598F7.5) their combination based on decision tree model (Figure 3a), support random forest (Figure 3b) 
and SVM model (Figure 3c) and individual FOXD2-AS1 (Figure 3d), LINC01235 (Figure 3e), and RP11-598F7.5 (Figure 3f). The x-axis shows 
1-specificity and y-axis shows sensitivity. Figure 3g–i Survival analysis of FOXD2-AS1, LINC01235, and RP11-598F7.5

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
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raw data of box-plots are displayed in Table S4. As shown 
in Figure 7, FOXD2-AS1 was downregulated, which was 
inconsistent with our integration results. ESM1, WNT2, 
COL10A1, and LINC01235 were upregulated in STAD, 
which was consistent with our integration results, suggesting 
that the results were convincing.

3.7 | Gene set enrichment analysis

Gene set enrichment analysis was performed in the present 
study using the GSE27342 dataset. The enrichment results 
showed that DNA replication, Cell cycle, ECM-receptor in-
teraction, and P53 signaling pathway were four significantly 
enriched pathways (Figure 8).

4 |  DISCUSSION

STAD is one of the leading causes of cancer death, ac-
counting for about 10% of newly diagnosed cancer (Liu 
et al., 2018). Therefore, searching for novel diagnosis and 
prognosis biomarkers of STAD is needed. In this study, the 
expression profiles of lncRNAs and mRNA in STAD was 
obtained from TCGA dataset. We identified 814 DEmRNAs 
(550 downregulated and 264 upregulated mRNAs) and 106 
DElncRNAs (55 downregulated and 51 upregulated lncR-
NAs) of STAD. A total of three optimal diagnostic lncRNA 
biomarkers, including FOXD2-AS1, LINC01235, and RP11-
598F7.5, for STAD were identified by machine learning.

KEGG pathway enrichment analysis showed that 
DEmRNAs was were enriched TNF signaling pathway, 
JAK-STAT signaling pathway, Transcriptional misregula-
tion in cancer, and ECM-receptor interaction, indicating 
that DElncRNAs and DEmRNAs might play crucial roles 

by participating in these pathways in STAD. Gu et al. per-
formed the lncRNA and mRNA expression profile of three 
STAD tissues and three matched adjacent non-tumor tissues 
via RNA-sequencing, and found that the DEmRNAs co-ex-
pressed with DElncRNAs were significantly enriched in 
JAK-STAT signaling pathway, which was considered as a 
signaling pathway associated with STAD (Gu et al., 2017). 
Li et al. also carried out the RNA-sequencing in 15 pairs of 
STAD tissues and the adjacent normal tissues, and found that 
DEGs of most significantly enriched in ECM-receptor inter-
action signaling pathway (Li et al., 2019). The results indi-
cated that our KEGG pathway enrichment analysis results 
were convincing. To our knowledge, except of FOXD2-AS1 
and RP11-598F7.5, the present study was the first to iden-
tify the LINC01235 in STAD. At present, FOXD2-AS1 have 
been proven to be abnormally regulated in various human 
cancers. For instance, Su et al. have demonstrated that 
FOXD2-AS1 promotes the progression of bladder cancer 
by regulation AKT and E2F1 (Su et al., 2018). Chen et al. 
have found FOXD2-AS1 acts as a tumor promoter in naso-
pharyngeal carcinoma by modulating miR-363-5p/S100a1 
signaling pathway (Chen et al., 2018). Ni et al. have found 
that FOXD2-AS1 promotes tumorigenesis and progression 
of glioma via miR-185-5p/HMGA2 axis (Ni et al., 2019). Xu 
et al. have reported that FOXD2-AS1 expression was upreg-
ulated in stomach tumor tissues, and FOXD2-AS1 promotes 
carcinogenesis in stomach cancer through EZH2 and LSD1 
mediated EphB3 downregulation (Xu et al., 2018). In current 
study, we found that FOXD2-AS1 was upregulated in both 
TCGA integration analysis and qRT-PCR validation. LIF 
co-expressed with FOXD2-AS1 was enriched in TNF signal-
ing pathway and JAK-STAT signaling pathway. Therefore, 
we hypothesized that FOXD2-AS1 might play pivotal roles 
in STAD by regulating the TNF signaling pathway and JAK-
STAT signaling pathway.

F I G U R E  4  lncRNAs-mRNAs co-expression network. The ellipses and rhombuses were represented the mRNAs and lncRNAs, respectively. 
Red and green color represented up and downregulation, respectively. The black border indicates top 10 DEmRNAs and DElncRNAs

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
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The survival analysis results showed that LINC01235 was 
significantly associated with the prognosis of patients with 
STAD, which provide evidence emphasize its prognostic 

value for STAD. COL10A1 (Type X collagen gene), belongs 
to the collagen family, has been found in various human can-
cers (Sole et al., 2014). Huang et al. reported that the high 

F I G U R E  5  The function annotation of DEmRNAs co-expressed with the identified optimal diagnostic lncRNAs. The x-axis shows -log P and 
y-axis shows GO terms or KEGG pathways. (a) GO terms. (b) KEGG pathways

F I G U R E  6  Validation optimal lncRNA biomarkers in STAD tissue by qRT-PCR. * indicated p-value < 0.05
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expression of COL10A1 is an independent biomarkers of 
prognosis and survival in colon cancer patients (Huang et al., 
2018). COL10A1 might promote STAD tumor aggressive-
ness by regulating of the TGF-β1-SOX9 axis (Li et al., 2018). 
In this study, COL10A1 co-expressed with LINC01235 was 
enriched in ECM-receptor interaction pathway. Therefore, 
we presumed that LINC01235 might be involved in the oc-
currence of STAD by regulating ECM-receptor interaction 
pathway.

WNT2, a member of the WNT protein family, is frequently 
overexpressed in and colorectal cancer and gastric cancer 

(Katoh, 2001). Zhang et al. found that WNT2 is upregulated 
in gastric cancer, and WNT2 contributes to promoting the 
gastric cancer cells migration and invasion abilities (Zhang 
et al., 2018). In this study, we found that WNT2 was up-
regulated in both TCGA integration analysis and qRT-PCR 
validation. The DElncRNA-DEmRNA co-expression net-
work results showed that WNT2 co-expressed with RP11-
598F7.5. Hence, we hypothesized that RP11-598F7.5 might 
play important roles in STAD by regulating WNT2.

ESM1 (endothelial cell-specific molecule-1) was cor-
related to tumorigenesis and tumor progression and was 

F I G U R E  7  Validation in the GEO dataset. The x-axis shows healthy normal control (blue color) and STAD (red color) groups and y-axis 
shows a log2 transformation to the intensities. **indicated p-value < 0.01, ***indicated p-value < 0.001
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regarded as a marker of angiogenesis in various cancer 
(Miao et al., 2016; Ozaki et al., 2014). Lv et al. demon-
strated that ESM1 level is upregulated in gastric cancer pa-
tients, and ESM1 can be used as a potential biomarkers for 
early detection and prognosis of gastric cancer (Lv et al., 
2014). ESM1 expressing microvessel density correlates 
with the expression of vascular endothelial growth factor 
and is a prognostic factor for survival in gastric cancer 
(Chang et al., 2016). ESM1 promotes gastric cancer cell 
proliferation, and ESM1 level is associated with the patho-
logical tumor stage (Zhao et al., 2014). In this study, our 
results displayed that ESM1 was upregulated in both TCGA 

integration analysis and qRT-PCR validation. The results 
also showed that ESM1 co-expressed with FOXD2-AS1. 
Therefore, we hypothesized that ESM1 might be involved 
in initiation and progression of STAD. Recently, Li et al. 
performed a more comprehensive study, and their study 
found that MAGI2-AS3 was overexpressed in STAD and 
associated with poor prognosis, and MAGI2-AS3 promotes 
tumor progression through sponging miR-141/200a to 
maintain overexpression of ZEB1 in STAD and BRD4 is a 
transcriptional regulator of MAGI2-AS3 in STAD (Li et al., 
2020). We are collecting STAD samples to validate the ex-
pression of the identified optimal diagnostic lncRNAs in 

F I G U R E  8  Enrichment plots from gene set enrichment analysis. (a) DNA replication. (b) Cell cycle. (c) ECM-receptor interaction. (d) P53 
signaling pathway
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our following research with larger sample size. Then, the 
biological significances of optimal diagnostic lncRNAs 
will be investigated in in vivo and in vitro experiments.

In summary, our study found three DElncRNAs 
(FOXD2-AS1, LINC01235, and RP11-598F7.5) with diag-
nostic value for STAD. Among them, LINC01235 was not 
only an optimal diagnostic lncRNA biomarkers, but also 
related to survival time. Our results warrant further studies 
on these DEmRNAs and DElncRNAs to improve our com-
prehending of the STAD progression mechanisms. However, 
there are limitations to our study. First, the sample size for 
qRT-PCR confirmation was small and large numbers of 
STAD samples are needed for further research. Second, op-
timal diagnostic lncRNAs of STAD were identified and bio-
logical functions were not studied. Therefore, in vivo and in 
vitro experiments were necessary to uncover the biological 
functions of optimal diagnostic lncRNAs of STAD in the fu-
ture work.
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