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Abstract: In recent decades, type 2 diabetes complications have been correlated with amylin ag-
gregation, copper homeostasis and metformin side effects. However, each factor was analyzed
separately, and only in some rare cases copper/amylin or copper/metformin complexes were
considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper
(II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation
of aggregated multi-level lamellar structures on the cell membrane. Considering the increased
concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the
toxicity of amylin and its adducts may be correlated with diabetic nephropathy development.

Keywords: diabetic nephropathy (DN); metformin; copper; human islet amyloid polypeptide (hI-
APP); metal complexes

1. Introduction

Diabetic nephropathy (DN) has one of the highest incidences among the different
complications of type 2 diabetes mellitus (T2DM), and in 1997 it accounted for 40% of all
new end-stage renal disease (ESRD) cases in the United States, with the cost for treatment
of USD 15.6 billion [1]. DN is characterized by progressive albuminuria, with a decline
in the glomerular filtration rate that leads to kidney failure, podocyte loss, progressive
glomerulosclerosis and, at the final stage, to tubulointerstitial fibrosis [2].

Currently, metformin is the first drug of choice for the treatment of T2DM and
is used by at least 120 million people worldwide [3], reaching a market size of USD
280 million in 2019 [4]. Metformin, as a biguanide derivative, is an efficient copper
(II) chelator, forming stable Cu(metformin)2 complexes (LogK1[Cu(metformin)] = 7.17,
logK2[Cu(metformin)2] = 12.30) [5]. In 2012, Logie et al. [6] revealed that the cellular ac-
tions of metformin are disrupted by interference with its metal-binding properties. Recently,
it was shown that metformin alone [7,8] or in the complex with copper (II) [9,10] can bind
to DNA and could exert its anti-tumor activity [11,12].

Metformin has an oral bioavailability of 50–60%, half-life between 2 and 6 h [13]
and plasma concentration up to 5 µg/mL (38.8 µmol/L) [14]. Metformin is absorbed
incompletely by the intestine (approximately 60%), and the remaining quantities are
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excreted in faces [15], while about 90% of the absorbed fraction is excreted unchanged in
the urine [15]. Up to 2015, metformin was contraindicated by FDA in a large population of
T2DM patients mainly due to concerns over metformin-associated lactic acidosis (MALA).
In light of new research dismissing the correlation between metformin and MALA [16], and
presenting beneficial effects of metformin therapy [17–19], the FDA updated its protocols
regulating metformin use in T2DM patients with reduced kidney function [20].

Poor glycemic control and diabetes alters the levels of essential trace elements (Cu,
Zn, Mg, Mn, Cr, Fe, etc.) by increasing urinary excretion and their concomitant decrease in
the blood [21]. In 2005, Cooper et al. [22] showed in clinical studies that Cu homeostasis
was altered in diabetic subjects, who demonstrated elevated rates of urinary Cu excretion
and a tendency to increased Cu balance compared with control subjects [22].

Human islet amyloid polypeptide (hIAPP) (Scheme 1B) is expressed in β-cells and co-
secreted with insulin. Extensive reviews of hIAPP function, structure and toxicity have been
published in the last decade [23,24]. Human IAPP is one of the most aggregation-prone
peptides that interacts with cell membranes, and soluble hIAPP oligomers are more toxic
than their aggregated counterparts [25]. Amyloid fibrils are typically 5–15 nm in width, and
often many microns long [26,27]. Several studies [28–30] verified the high tendency of IAPP
to aggregate and misfold into the toxic β-sheet structure. This feature depends on specific
amino acids in the primary sequence of the peptide, often associated with the regions
located between amino acids 10–20 [31] and/or 20–29 [31–35], with particular attention to
His [18,36]. Noteworthily, amylin aggregation is susceptible to changing environmental
factors (e.g., pH, which influences the protonation state of the peptide) [37,38] and the
presence of other molecules [39–42] and metal ions [30,43,44]. Zinc (II) and copper (II) are
two essential metal ions that can form complexes with amylin [45–47] and influence the
fibrilization process, although contradictory results can be found in [48,49], most probably
due to different experimental conditions. Studies on the potential role of metal ions such
as copper on the aggregation of IAPP have intensified over the last two decades, due to its
possible biomedical importance [46,50,51]. Interestingly, clinical and epidemiological stud-
ies found correlation between T2DM and Alzheimer’s disease, with possible implications
of zinc (II) and copper (II) dyshomeostasis [52]. Importantly, rat IAPP differs in six amino
acids in the 18–29 region (H18→R18; F23→L23; A25→P25; I26→V26; S28→P28; S29→P29) and
does not aggregate [53].
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Scheme 1. (A) Metformin and (B) amino acid sequence and NMR structure of hIAPP (PDB: 2KB8). The side chains of
Cys [2] and Cys [7] are shown in yellow to illustrate the disulfide bond.

Amylin deposition in the kidneys of patients with diabetic nephropathy was found by
Gong et al. [54], and its role was evaluated in different studies [55,56]. Here we investigate,
for the first time, the formation of the ternary complex Cu(II)/hIAPP/metformin and its
toxicity in human embryonic kidney cells. Chemical and cell culture studies showed that
both copper (II) and metformin significantly change the aggregation pattern of amylin,
while together they have a synergistic effect that leads to significant morphological changes
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of the remaining aggregates. Amylin, copper (II) and metformin lead to harmful changes
in the cell’s morphology, particularly when the ternary complex is present in the solution.

2. Material and Method

Reagents. All reagents (copper (II) nitrate, copper (II) sulphate, metformin, Thioflavin
T (ThT), DMSO, 50 mM HEPES buffer) were purchased from Sigma Aldrich. The reagents
were of the highest grade commercially available and were used without further purifi-
cation. Human islet amyloid polypeptide (hIAPP) was purchased from GenScript, with
>95% purity (Scheme S1).

EPR measurement. EPR spectroscopy was used in order to study the dynamics and
interactions between Cu (II) ions, human amylin and metformin. The EPR spectra were
recorded using the procedure previously described [57]. All samples were dissolved in
water to the final concentration of 0.3 mM by using stock solution of amylin (10 mg/mL in
100% DMSO), and weighing proper amounts of Cu(NO3)2 and metformin salts. The pH
was fixed at 7.4 by the addition of NaOH and/or HCl. The EPR spectra were recorded using
an X-band continuous wave Bruker EMX PLUS spectrometer equipped with a standard
resonator for high-sensitivity CW-EPR (Bruker BioSpin, Rheinstetten, Germany).

ThT fluorescence microplate reads. We conducted the ThT fluorescence measurements
according to the procedure previously described [57], which is widely accepted in the study
of amylin aggregation process [38,58,59]. The working concentrations were as follows:
20 µM thioflavin T (ThT), 2% (v/v) DMSO (final concentration), and a 50 mM HEPES
buffer solution (pH 7.4), different final amylin (from a 10 mg/mL stock in 100% DMSO),
metformin and copper concentrations in a final volume of 200 µL. All experiments were
conducted at 25 ◦C. The aggregation kinetics were studied by the use of 96-well flat-bottom
black plate (Corning 3915) sealed with transparent film (Duck Brand Crystal Clear Tape,
Avon, OH) on on a Synergy 2 Multi-Mode Microplate with excitation set at 485/20 nm and
emission at 528/20 nm with a gain equal to 35.

TEM microscopy. Samples containing 100 µM amylin, 100 µM amylin with 100 µM
Cu(NO3)2, 100 µM amylin with 100 µM metformin, and 100 µM amylin with 100 µM copper
(II) and 100 µM metformin were incubated at 25 ◦C and pH 7.4, and aliquots of the reaction
were removed after 1 week. The 2 µL solution was applied on the pre-glow discharged EM
grids (carbon film on 300 mesh copper grids) and incubated for 1 min. Then, most of the
solution was removed with filter paper and stained with 1% uranyl acetate. The air-dried
grids were loaded to the microscope (Titan CT, Thermo Fisher Scientific,) for imaging. Most
of the images were taken with 0.5 s exposure time at different magnifications.

Mass spectrometry. The spectra and data analyses were performed according to the pro-
cedure previously described [57]. We prepared the samples: hIAPP ([hIAPP]tot = 10−4 M);
1:1 Cu2+:hIAPP stoichiometry ([Cu(II)]tot = [hIAPP]tot = 10−4 M); 1:1 metformin:hIAPP
stoichiometry ([metformin]tot = [hIAPP]tot = 10−4 M); 1:1 Cu(II):metformin:hIAPP stoi-
chiometry ([Cu(II)]tot = [metformin]tot = [hIAPP]tot = 10−4 M) in a 50/50 acetonitrile/water
mixture at pH 7.4. The analysis was performed using a Micro-TOF Mass Spectrometer
from Bruker Daltonics (Germany), equipped with a heated ESI ion source. The mass scan
range was set to 100–4000 m/z, with a resolving power of ~10,000. The m/z calibration
of the TOF analyzer was performed in the positive ESI mode using a solution containing
a peptide mixture according to the manufacturer’s guidelines. The ESI was performed
with a heated ion source equipped with a metal needle and operated at 4.5 kV. The source
vaporizer temperature was adjusted to 300 ◦C, the exit capillary was set at 400 V.

Cell cultures. Commercial 293T human kidney embryonic cells (catalog code HTL03003)
were obtained from the Istituto Nazionale per la Ricerca sul Cancro c/o CBA (ICLC, Gen-
ova). The cell cultures were prepared following previously described procedures [60]. After
24 h of growth with the complete medium, the cells were grown in the presence of different
experimental samples: hIAPP (daily prepared solution; different concentration conditions),
metformin 4.7 µM, copper (II) sulphate 4.7 µM, hIAPP with copper (II) sulphate (4.7 µM;
1:1 molar ratio) and hIAPP, copper and metformin (4.7 µM; 1:1:1 molar ratio).
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Fluorescence microscopy. Zoes microscopy was used for live cell imaging at bright
field and green channel (λEx 480 ± 17; λEm 517 ± 23). Thioflavin T (ThT) staining was
prepared as follows: 1 mM solution of ThT in buffer (50 mM phosphate; 100 mM NaCl;
pH 7.4) was diluted (1:100) with the “measurement buffer” (50 mM glycine at pH 8.5) on the
day of measurement; 5 µL of diluted ThT was added to the cell growth medium (final ThT
concentration 0.025 µM). The images were collected after 2 h incubation with ThT marker.
The images were processed with ImageJ® software (https://imagej.nih.gov/ij/index.html,
accessed on 21 January 2021), and the intensity of the fluorescence was measured with
ImageJ tools.

Optic microscopy. Cell samples growing in different experimental conditions were
stained with the classical hematoxylin/eosin staining technique [61], whereas digital image
acquisition was performed on an Olympus BH2 series system light microscope.

SEM microscopy. Samples were collected and fixed with 4% buffered formaldehyde
and then washed three times in PBS. For SEM analysis, specimens were post-fixed for 1 h in
a solution of 1% osmium tetroxide and 1.25% potassium ferrous-cyanide and then washed
three times in PBS. In the next step, the samples were dehydrated (ethanol series, critical
point drying (CPD) in CO2). The samples, mounted on carbonated stubs and gold-coated
in a sputter coater, were observed with a SEM microscope (ZEISS, Sigma 500 VP).

Quantitative cell analysis. The cell concentration, viability and size were evaluated
using the LunaFL Cell Counter (www.logosbio.com, accessed on 21 January 2021) as
indicated in the manufacturer’s user manual. Briefly, cell samples mixed 1:1 with 0.4%
Trypan Blue solution, supplied in the kit reagents, were counted in the Luna cell counting
chamber slide within 1–3 min. Results were analyzed as cell concentration, percent of
cell viability and cell size. To obtain accurate data, each experiment was repeated two
times, and at least three measurements were acquired for each sample. The standard
deviation bars (Figure S8) represent the errors of all measurements for each experiment.
Cells growing in the medium containing copper ions (final concentration 4.74 µM) showed
cell concentration and viability similar to that of the control sample (normal growing
conditions), while the cell size was slightly reduced. The addition of metformin (final
concentration 4.74 µM) to the cell growing medium reduced the cell concentration and
cell viability, while the cell size remained similar to that of control sample. The presence
of amylin (final concentration 4.74 µM) in the cell growing medium leads to the lower
cell concentration and viability, while the cell size remains similar to that of the control
sample. The presence of amylin equimolar complexes with coper and/or metformin (final
concentration 4.74 µM) exert its toxicity at a lower cell concentration, viability and cell size.
The lowest values of all three parameters were found for the cells growing with amylin,
copper and metformin.

3. Results
3.1. In Vitro Copper, Metformin and Amylin Interactions

Electron paramagnetic resonance (EPR) probes the structure of copper binding sites [62]
and permits the establishment of ligands in close proximity to the metal center and the
structure of the formed complexes. The copper (II) complexes with metformin were previ-
ously studied by means of EPR spectroscopy [5,63] showing the square-planar geometry of
the Cu(metformin)2 complex. In Figure 1, two solutions with 1:1 and 1:2 metal:metformin
molar ratios are presented. The solution containing 1:2 metal:metformin molar ration has
the shape of EPR signals similar to that reported for the Cu(metformin)2 complex [5], while
the equimolar solution has slightly higher g value and different shape. Such differences
could be assigned to the formation of different stoichiometry and geometry complexes, but
further analysis is needed.

https://imagej.nih.gov/ij/index.html
www.logosbio.com
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Recently, EPR spectra of hIAPP complexes with copper (II) in different experimental
conditions (pH and metal:peptide molar ratio) were extensively studied by Seal et al. [64].
They showed that copper (II) forms with amylin in 1:1 stoichiometry complexes, and
different metal binding sites are placed within the amylin [1–19] fragment. The metal
binding mode depends on the pH, and in the physiological range two types of complexes
(named I and II) can be distinguished by EPR spectra. Complex I (g‖ = 2.17, g⊥ = 2.03,
A‖ = 195; 4N coordination mode from the Peisach–Blumberg plot [62]) is predominant at
pH 8.0, and based on the combined EPR, UV–vis and CD data the authors concluded that
the metal ion is coordinated by N-terminal amine (N-donor), amidate (N-donor), but could
be also coordinated by hydroxide (HO–) and carbonyl (O-donor) groups. Complex II is
formed mainly at pH 6.0 (g‖ = 2.20, g⊥ = 2.04, A‖ = 162; 3N1O coordination mode from
the Peisach–Blumberg plot [62]), and the copper ion is coordinated by histidine, amidate,
amine and O-donors from amide carbonyl or H2O.

More structural data of Cu(II)/amylin complex can be found in the paper of Magrì et al. [47],
who studied copper (II) coordination by hIAPP [14–22] and hIAPP [17–29] PEG-ylated
fragments by means of EPR, UV–vis and CD. They showed that at physiological pH (7–8)
the metal ion is coordinated by nitrogen atom of His [18] and three deprotonated amides
of the preceding peptide bonds.

In our experimental conditions, the EPR spectra (Figure 1; Table 1) of Cu(II)/hIAPP
(blue), Cu(II)/metformin 1:1 molar ratio (green), Cu(II)/metformin 1:2 molar ratio (ma-
genta) and Cu(II)/hIAPP/metformin (red) were distinctly different from free Cu(II) (black)
in solution at the same pH, and each spectrum represents a different signal pattern.

The EPR signal of the Cu(II)/hIAPP complex (Figure 1, blue) with g‖ = 2.23 and
A‖ = 171 G corresponds to the signal previously reported by Seal et al. [64] and assigned to
the tetragonal Cu/amylin complexes having a dx2 − y2 ground state in a square-planar or
square-pyramidal geometry with a weak axial ligand. Moreover, the comparison of data
presented here with that of Seal et al. (Table 1) and Magrì et al. (PEG-hIAPP [14–22]; pH 8;
g‖ 2.217, A‖178; PEG-hIAPP [17–29]; pH 8; g‖ 2.225, A‖161) confirm the main presence of
the complex with the coordination mode 4N at pH 7.4. The addition of metformin to the
solution containing copper ions and hIAPP leads to the formation of a complex, with a
lower A‖ value with respect to the binary Cu(II)/hIAPP complex, and better defined signal
at ~3100 G. This new complex could be assigned to the ternary Cu(II)/hIAPP/metformin
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adduct, and the coordination mode from the Peisach−Blumberg plot [62] can be associated
to 3N1O. Following Peisach–Blumberg analysis [62], the change of only the A‖ value (with
respect to the Cu(II)/hIAPP complex) suggests that the overall charge of both complexes
remains the same. It is likely that metformin contributes to the metal-coordination center
with one or two nitrogen atoms, while the remaining metal binding sites are associated to
hIAPP, but in-depth analysis of the metal binding sites and the geometry of the complex is
out of the scope of this paper.

Table 1. EPR parameters of the copper complexes with hIAPP and/or metformin compared with published data.

Assumed
Composition of

the Complex

Obtained EPR Results Assumed Composition
of the Complex Literature EPR Results

A‖ ± 3, G g‖ ± 0.05 g⊥ ± 0.005 A‖ g‖ g⊥

Cu:hIAPP 171 2.23 2.03
Cu:hIAPP pH 8.0 [64] 195 2.17 2.03

Cu:hIAPP pH 6.0 [64] 162 2.20 2.04

Cu:Metformin (1:2) - - 2.06
Cu:Metformin [63] - 2.179 2.031

Cu:Metformin (1:1) - - 2.08

Cu:hIAPP:Metformin 165 2.23 2.04 Cu:hIAPP:Metformin - - -

The complex formation between amylin, metformin and copper (II) ions was studied
by means of ESI-MS spectrometry (Supplementary Material Figure S5). In the solution
containing hIAPP and copper ions, there are signals at 1322.6102 and 1983.4039 m/z (Figure
S4B), which can be assigned to the [M+Cu(II)+H]3+ and [M+Cu(II)]2+ complexes (M = hI-
APP). The amylin/metformin adduct is represented by the signal at 1342.9244 m/z (Figure
S4C) in the solution of amylin and metformin. The exact nature of amylin/metformin
adduct is unknown, but it is likely that the biguanide chain of metformin forms hydrogen
bonds (–NH . . . ) with the amylin backbone and/or amino acid side chains. As shown
further by the TEM experiments, the formation of amylin/metformin adducts significantly
changes the morphology of amylin aggregates. The EPR data showed that in the ternary
Cu(II)/hIAPP/metformin complex metformin binds directly to the metal center, but it
is also possible that metformin/amylin interactions occur along the peptide backbone
and/or amino acid side chains. Nevertheless, in the mass spectra of the solution containing
hIAPP, metformin and metal ions (Figure S4D) there is no signal associated to the tertiary
copper/amylin/metformin adduct, probably due low stability at 300 ◦C experimental
conditions, and only the signal at 1322.6102 m/z of [M+Cu(II)+H]3+ can be observed.

The fluorescent dye thioflavin T (ThT) is commonly used to measure the kinetics of
protein assembly in vitro. It associates rapidly (within seconds) with aggregated fibrils,
giving rise to enhanced fluorescence emission [65]. ThT is supposed to interact specifically
with the crossed-β-sheet structures, and the fluorescence enhancement of ThT depends on
the structure of the aggregated state of the amyloid peptides [65]. Moreover, polycationic
materials fail to interact or impede interaction with the amyloid peptides [65]. Aware
of advantages and limitations of ThT, we investigated the influence of copper (II) ions,
metformin and both copper (II) and metformin on amylin aggregation.

In a series of experiments (Figure S1), we observed that the fluorescence intensity
was directly proportional to the concentration of the reagents. Solutions containing higher
concentrations of the reagents showed higher fluorescence intensity, which could be as-
sociated to lower amylin solubility and increased formation of aggregates. Noteworthily,
Cu(II)/hIAPP and Cu(II)/hIAPP/Metformin solutions had the same fluorescence intensity,
which was much lower than in the solution containing only hIAPP. The elongation phase
of Cu(II)/hIAPP and Cu(II)/hIAPP/metformin solutions started faster and was shorter in
time compared to the same phase of the hIAPP solution. In the experiment using 50 µM
hIAPP, copper ions and metformin (Figure 2), we observed that the presence of metformin
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in the solution of hIAPP lowered the fluorescence intensity, but it did not significantly
influence the elongation phase.
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Figure 2. Effect of time and Cu2+ (50 µM), metformin (50 µM) and Cu2+/metformin (50 µM) on
hIAPP (50 µM) aggregation in a 50 mM HEPES-buffered solution pH 7.4, at 25 ◦C. ThT (20 µM) was
used as a fluorescence marker of the aggregation process.

In order to better assess the ThT fluorescence results, microscopic observations of
protein aggregates were prepared with TEM microscopy. It was observed at microm-
eter resolution that amylin formed fibril structure aggregates (Figure 3A), which were
found previously with the same experimental conditions by Jha et al. [38]. The addition
of copper ions to the amylin solution led to formation of Cu(II)/hIAPP complexes [64],
and the formation of longer fibril structures seemingly increased (Figure 3B). Metformin
and hIAPP form a complex, which to our knowledge has not been previously described.
The presence of metformin in the hIAPP solution significantly reduced the formation
of fibril structures (Figure 3C) and led to the formation of amorphous aggregates. Incu-
bation of copper ions together with hIAPP and metformin led to the formation of the
ternary Cu(II)/hIAPP/metformin adduct and significantly increased the formation of fibril
structures of high electron density (Figure 3D).

ThT fluorescence experiments (Figure S2), conducted on the samples prepared under
the same experimental conditions as the TEM samples, showed a lower fluorescence
intensity for the Cu(II)/hIAPP and Cu(II)/hIAPP/metformin complexes, compared to
the hIAPP sample. Noteworthily, the highest fluorescence intensity was observed in the
sample of the metformin/hIAPP adduct, and such a high fluorescence intensity after 7
days of incubation needs further investigation. As shown by TEM observations of the
formed aggregates, the decrease/increase in ThT fluorescence intensity can be associated
with the change in aggregate morphology, rather than decrease/increase in the aggregation
process rate.
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Figure 3. Electron micrographs (four representative images) of amylin fibrils at pH 7.4 in the water solution containing: (A) amylin (100 µM); (B) Cu(II)/amylin (100 µM; molar ratio 1:1);
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3.2. Toxicity of Amylin Adducts with Copper and/or Metformin in 239T Cells

Human embryonic 293T kidney cells were used recently for in vitro studies on the
mechanisms of nephropathy pathology [66–68]. In our experimental studies, 293T cells
were used to investigate cell morphology after exposure to hIAPP and its complexes with
copper ions and/or metformin. In the series of experiments (Figures 4 and S5), we observed
that growing concentrations of hIAPP in the cell medium led to reduced cell numbers
and changes in the morphology of the remaining cells, compared to the control sample.
The hIAPP concentration that did not interfere with cell number, but led to morphological
changes in half of the growing cells, was 4.74 µM. The ThT staining (Figure 4A–C) of the
293T cells in medium with different hIAPP concentrations showed that cells treated with
4.74 µM hIAPP (Figure 4C) had higher fluorescence intensity with respect to the control
sample and cells treated with 1.15 µM hIAPP.
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Hematoxylin and eosin staining permits observation of the morphology of 293T cells
growing in medium with different hIAPP concentrations (Figure 4D–F). A low hIAPP
concentration (1.15 µM) did not interfere with normal cell activity or mitotic processes
(Figure 4E, arrow). In contrast, a fourfold increase in hIAPP concentration led to morpho-
logical changes of the cells (Figure 4F) and significantly reduced the number of cellular
expansions. Some cells also displayed apoptotic phenotypes (Figure 4F, arrow).

ThT fluorescence staining was used for live-cell imaging of the 293T cells growing
in the absence or presence of amylin and its adducts with metal ions and metformin
(Figure S6). ThT reacted immediately with live cells and showed low fluorescence intensity
in the control sample. In the presence of amylin (Figure S6B), the fluorescence intensity
slightly increased. Moreover, cell numbers in the culture with hIAPP were reduced. In
the cell culture containing amylin and copper (II) ions (Figure S6C), the fluorescence in-
tensity was slightly lower than in the culture only with amylin, while the cell number
remained similar. Cell numbers were drastically reduced in samples containing met-
formin (Figure S6D,E) and had lower fluorescence intensity compared to the sample with
amylin only.
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The general trend of fluorescence intensity in the live-cell cultures with amylin and its
adducts with copper (II) and/or metformin was similar to that observed in vitro without
cells (Figures S1 and S2). Nevertheless, we should treat the data with caution due to the
high fluorescence intensity oscillation among the same samples. Thioflavin T staining lacks
specificity versus amylin, and its fluorescence increases also upon binding to β-sheet-rich
peptides [69]. It also cannot be excluded that stress conditions in experimental samples
led to the formation of different amyloid structures that interact with ThT and increase the
fluorescence intensity.

Metabolic and molecular disorders, which are induced by risk factors of T2D, might
promote the accumulation of soluble IAPP-related molecules and toxic IAPP oligomers in β-
cells, impairing function and reducing the mass though disruption of cell membranes [25].
Human IAPP interacts with negatively charged membranes, and this interaction can
drastically accelerate misfolding, which is a prerequisite for hIAPP toxicity [70]. It has
been speculated that the α-helical structure might be important for hIAPP membrane
interactions, leading to high local concentrations and, in turn, promoting intermolecular
β-sheet formation and IAPP oligomers, in which toxic oligomers disrupt cell membranes in
β-cells. A recent study showed that fresh and oligomeric hIAPP, as well as mature amyloid,
enhanced membrane fluidity and reduced cell viability [71].

In order to investigate possible interactions with the cellular membrane of hIAPP
and its adducts with metformin and/or copper (II) ions, quantitative cell analysis (Supple-
mentary Material Figure S8) and qualitative SEM analyses were performed. Figure 5A–C
presents SEM imagining, where we observed the control 293T cell culture, which was con-
fluent with a homogeneous cell distribution. The cells adhered well and formed numerous
cytoplasmic expansions. Multiple microvilli structures were observed on the cell surface
(Figure 5C), some occasionally with an ‘ear-like’ shape (Figure 5C circle). In addition,
intracellular contacts could be observed with the junction points (Figure 5C asterisk).

In contrast, cells cultured with amylin (Figure 5D–F) did not grow to confluence and
had a ‘suffering’ appearance: the cells were unevenly distributed. Moreover, the cells
retained only residual intra-cellular junctions (Figure 5D), and elongated protrusions were
observed (Figure 5D). Furthermore, densification of the cytoplasm was observed, and the
nuclei were well evident. The microvilli had mostly an ear-like shape distributed evenly
on the surface of the cells. The amylin aggregates, which were previously observed in vitro
(Figure 3), were not observed in the cell culture. In recent studies, Tomasello et al. [72]
showed that hIAPP [1–37] exerted toxic effects on rat insulinoma cells after 62 h incubation
with 60 µM peptide, modifying cell morphology and leading to the formation of elongated
protrusions. Fluorescent labelling of hIAPP [1–37] showed peptide localization not only
on the cell membrane but also in mitochondria and the cytoplasm. Importantly, the same
results were observed with the hIAPP [17–29] fragment, which in vitro does not form
β-sheet structures and aggregates. In our studies, the 293T human kidney embryo cells
showed higher sensitivity to amylin toxicity with respect to rat insulinoma cells, and
the toxic effect could be observed already after 24 h with 4.74 µM peptide. Similarly to
Tomasello et al., we observed significant morphological changes of the cells growing in the
presence of amylin, and the formation of elongated protrusions, but we have not observed
amylin aggregates on the cell surface. As previously reported by Tomasello et al., amylin
could be localized inside the cell, where it exerts its toxic effect.

Cells cultured with amylin and copper ions (Figure 5G–I) showed greater distress than
cell cultures with amylin alone. Cellular expansions were not observed, and the nuclei were
no longer prominent. The cell membrane was altered, while the ‘ear-like’ microvilli were
unevenly distributed. Multilayer lamellar compact aggregates were observed (Figure 5H,I)
and could be associated with amylin aggregates. Furthermore, the backscatter images
showed the presence of copper ions only in the vicinity of amylin aggregates (Figure 5H,I).
It is important to note that the multi-layer formations of the aggregate are at different
stages of development. Some fibrillar structures could be observed (Figure 5I arrow) albeit
at lower frequencies and without copper ions.
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Cells grown in the presence of both amylin and metformin (Figure 5J–L) were more
severely affected than cells grown with amylin alone. The nuclei were not evident, and
it was not possible to recognize cellular organization. Amorphous aggregates (Figure 5K
circle) with a morphological structure different from amylin aggregates formed in the
presence of copper (Figure 5G–I) could be observed.
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Figure 5. Ultrastructural images of 293 T cells growing 24 h in (A–C) normal growing conditions, (*) intracellular contacts
with the junction points; (D–F) with 4.74 µM hIAPP; (G–I) with 4.74 µM hIAPP and 4.74 µM copper ions; (J–L) with 4.74 µM
hIAPP and 4.74 µM metformin; (M–O) with 4.74 µM hIAPP, 4.74 µM copper and 4.74 µM metformin.

Cells cultured with amylin, copper and metformin were evidently in distress (Figure 5M–O).
We observed cells overlapping, and, in some cells, the nuclei could be observed. Long cell
expansions were observed, but with few junctions. The copper ions were clearly visible
and strictly correlated with the presence of composed lamellar structures. The lamellar
structures were over dozens of micrometers long (Figure 6A) and formed multilayer
lamellar structures, which appeared on the cell surface. Figure 6B shows the formation of
multilamellar structures (arrow) at different stages. The position of the aggregate, which
perfectly fits to the cell membrane, is testimony to the contemporary growth of the amyloid
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with the cell. Figure 6C reveals that each layer (arrow) of the aggregate is accompanied by
the copper ions. The graphical summary of SEM investigations is presented in Scheme 2.
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Scheme 2. Graphical representation of the SEM investigation of hIAPP aggregates in human em-
bryonic kidney cells in the presence of copper and/or metformin. [Images produced by KAUST
scientific illustrators. This image is original and designed specifically for the targeted publication. It
should not be cropped, distorted or in any way edited without the expressed consent of Research
Publication Services. Because KAUST owns the copyright of the original image, you may cause a
copyright conflict between the journal and KAUST if you modify the illustration in any way before
submitting it to the journal. Any other use of the image apart from your paper (e.g., in a presentation,
poster, or website) should be accompanied by credits to the journal in which it is published and to
the illustrator as follows: Heno Hwang/KAUST].

The recent findings of amylin aggregation in the brain and possible correlation with
neurodegenerative pathologies [73] and metal ion homeostasis led to a thorough analysis
of the amylin aggregates at the molecular level [74]. Although metformin interactions
with metal ions are well ascertained, up to now there have been no studies on the possible
interactions of metformin with amylin and copper ions.
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4. Conclusions

Our studies show clearly that metformin forms adducts with amylin and, in vitro,
leads to the formation of aggregates with a morphology distinct from that of amylin fibrils.
The metformin/amylin adducts induce high toxicity in the cell culture, where amorphous
aggregates can be observed on the cell membrane.

Copper (II) ions form stable complexes with amylin and significantly change the
morphology of amylin aggregates in vitro. The well-known fibrillar aggregates of amylin
are transformed into composed lamellar structures in the presence of copper ions in cell
culture media. The copper/amylin aggregates grow on the cell membrane leading to
its disruption.

Toxic effects of copper (II)/amylin adducts on cells is enhanced by the presence
of metformin and the successive formation of a ternary copper (II)/amylin/metformin
complex. The contemporary presence of these molecules leads to the low cell number in the
culture, changes in cell morphology and the formation of numerous lamellar aggregates on
the cell membrane.

The cellular toxicity of copper (II)/amylin and copper (II)/amylin/metformin com-
plexes should be examined in vivo in order to exclude or confirm possible metformin side
effects in diabetic patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13060830/s1, Scheme S1. Chromatogram of hIAPP sample delivered by Gen-
Script. Figure S1. Effect of Cu (II) and Cu (II)/Metformin on hIAPP (in a 50 mM HEPES-buffered solu-
tion pH 7.4) fluorescence with ThT (20 µM) at 25 ◦C in different concentration conditions: (A) 50 µM;
(B) 40 µM; (C) 30 µM and (D) 20 µM. Figure S2. Effect of Cu (II) (100 µM) and Cu (II)/Metformin
(100 µM; 1:1 molar ratio) on hIAPP (100 µM; in a 50 mM HEPES-buffered solution pH 7.4) fluores-
cence with ThT (20 µM) at 25 ◦C. Figure S3. Effect of Cu (II) (100 µM) and Metformin (100 µM) on
ThT (20 µM) fluorescence at 25 ◦C. Figure S4. Full Scan Mass spectra acquired using the ESI-(+)-
Micro-TOF-MS instrument. (A) hlAPPI solution. Signals at 976.7343; 1301.9733 and 1952.4508 m/z are
assigned to hIAPP (M) at different protonation states: [M+4H]4+; [M+3H]3+; [M+2H]2+; respectively.
(B) hlAPPI/Cu(II) solution. Signals at 1322.6102 and 1983.4039 m/z are assigned to copper com-
plexes: [M+Cu(II)+H]3+ and [M+Cu(II)]2+, respectively. (C) Metformin/hIAPP solution. Signal at
1342.9244 m/z is assigned to metformin (Met) adduct: [M+Met-3H]3+. (D) Cu(II)/hIAPP/Metformin
solution. Signal 1322.6102 is assigned to copper complexes: [M+Cu(II)+H]3+. Insets: comparison
of experimental (up) and simulated (down) isotopic distributions. Figure S5. Live cell images of
293T cell cultures incubated 24 h with growing concentration of hIAPP. Figure S6. ThT live-cell
fluorescence staining of 293T cells growing (A) in normal conditions; (B) with hIAPP (4.74 µM);
(C) with hIAPP (4.74 µM) and copper ions (4.74 µM); (D) with hIAPP (4.74 µM) and metformin
(4.74 µM); (E) with hIAPP (4.74 µM), copper ions (4.74 µM) and metformin (4.74 µM) for 24 h. The
mean, min and max fluorescence intensity of each experimental sample (down) was calculated with
ImageJ software. Figure S7. The graphical representation of LunaFL Cell Counter results of cell
concentration (A), cell viability (B) and cell size (C).
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