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Abstract: There have been promising results regarding the capability of statistical and machine-
learning techniques to offer insight into unique metabolomic patterns observed in ASD. This work
re-examines a comparative study contrasting metabolomic and nutrient measurements of children
with ASD (n = 55) against their typically developing (TD) peers (n = 44) through a multivariate
statistical lens. Hypothesis testing, receiver characteristic curve assessment, and correlation analysis
were consistent with prior work and served to underscore prominent areas where metabolomic and
nutritional profiles between the groups diverged. Improved univariate analysis revealed 46 nutri-
tional/metabolic differences that were significantly different between ASD and TD groups, with
individual areas under the receiver operator curve (AUROC) scores of 0.6–0.9. Many of the sig-
nificant measurements had correlations with many others, forming two integrated networks of
interrelated metabolic differences in ASD. The TD group had 189 significant correlation pairs be-
tween metabolites, vs. only 106 for the ASD group, calling attention to underlying differences in
metabolic processes. Furthermore, multivariate techniques identified potential biomarker panels with
up to six metabolites that were able to attain a predictive accuracy of up to 98% for discriminating
between ASD and TD, following cross-validation. Assessing all optimized multivariate models
demonstrated concordance with prior physiological pathways identified in the literature, with some
of the most important metabolites for discriminating ASD and TD being sulfate, the transsulfuration
pathway, uridine (methylation biomarker), and beta-amino isobutyrate (regulator of carbohydrate
and lipid metabolism).

Keywords: multivariate statistics; ASD; machine learning; SVM; metabolomics; Fisher discrimi-
nant analysis

1. Introduction

Autism spectrum disorder is a neurodevelopmental condition that is estimated to
affect about 1 in 44 children in the United States [1]. This condition is defined by difficulty
in communication, social interaction, and restricted repetitive behaviors. Despite being
categorized and diagnosed by a set of behavioral criteria, ASD is known to be associated
with several co-occurring conditions that affect a multitude of physiological systems [2].
As ASD etiology is understood to be a consequence of environmental and genetic factors,
identifying distinctive metabolomics profiles of individuals with ASD has been a frequent
subject of investigation.

A number of metabolomic differences have been observed in individuals with ASD,
many of which have also been examined for their potential role in this condition’s clinical
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pathology. Differences in mitochondrial metabolism, the gastrointestinal system, and
redox regulation have been associated to varying degrees with ASD [3–6]. Divergences in
metabolite profiles between children with ASD and their typically developing cohorts have
been shown to exhibit significant differences up to the point where predictions about which
metabolic profiles belong to the ASD or TD group have been made [7–9]. Furthermore,
modulating metabolomic pathways holds significant promise as the basis to develop
therapies addressing ASD co-occurring conditions and symptoms [10–13].

Mitochondrial dysfunction has been shown to be prominently associated with ASD,
with 40% to 80% of children with ASD believed to have mitochondrial dysfunction as a
co-occurring condition [14–16]. It is also estimated that 5–7% of children with ASD have
mitochondrial disease [17]. In contrast, the prevalence of mitochondrial disease among
children not diagnosed with ASD is less than 1% [18]. Metabolites related to mitochondrial
function have been previously found to be significantly different between ASD and control
cohorts in several studies [19,20]. Children with ASD were observed to have unique plasma
acyl-carnitine profiles and elevations in both lactate and long-chain fatty acids [21,22].
Carnitine is important for transporting fatty acids in and out of the mitochondrial cell
membrane, and two randomized double-blind placebo-controlled studies have found that
carnitine therapy improves ASD symptoms in some children with ASD [23,24].

Other potential mechanisms underlying mitochondrial dysfunction in individuals
with ASD are unclear and several hypotheses exist [25]. For example, decreased activ-
ity of the electron transport chain has frequently been noted, as well as differences in
mitochondrial-related gene expression [26–29]. The most common treatment for mito-
chondrial dysfunction is high-dose vitamin/mineral supplementation, and one study of
a vitamin/mineral supplement found significant improvement in oxidative stress (often
associated with mitochondrial dysfunction), NAD (needed for mitochondrial function),
and plasma levels of ATP (primary energy product of mitochondria) [30].

The relationship between ASD and folate metabolism is one that has received con-
siderable attention in the literature. As an essential B vitamin, folate plays a key role
in metabolism, neural development, and epigenetic regulation. The prevalence of folate
receptor autoantibodies that reduce the capacity for folate transport across the blood–brain
barrier has been noted to be higher among children with ASD [31]. In one study, the
prevalence of such autoantibodies was estimated to be 75.3% in a cohort of 93 children with
ASD [32]. In comparison, the prevalence of such autoantibodies in typically developing
cohorts has been estimated to be 29% [31]. Furthermore, nutritional intervention via folinic
acid, which circumvents the need for intracellular folate transport, has been shown to
improve behavioral symptoms in a cohort of children with ASD in an open-label single
and double-blind placebo-controlled study [33].

Sulfur metabolism has also been investigated for its role in the emergence of diverging
metabolomic profiles. In two studies, it was observed that children with ASD have a
significantly lower ability to sulfate (detoxify) acetaminophen [34,35]. Lower concentrations
of sulfate in the blood of children with ASD have been consistently observed [36,37].
Additionally, higher amounts of sulfate in urine have been observed in children with ASD,
which suggests increased sulfate wasting [37]. Organic sulfate compounds have been
observed to be statistically significantly distinct between cohorts of ASD and TD children.
Notably, high concentrations of p-cresol sulfate and indoxyl sulfate were observed to
be present in plasma derived from children with ASD [38]. Supplementation with a
multivitamin including a source of sulfate (MSM) was found to greatly improve plasma
sulfate levels [30].

The role of the microbiota is closely tied to sulfur metabolism, and interactions involv-
ing the microbiota have been explored in the context of understanding ASD co-occurring
condition etiology [39,40]. The microbiome contributes to the transition of sulfates to
organic sulfur containing compounds via assimilatory sulfate reduction and plays a role
in biotin synthesis, which involves the transfer of sulfur from cysteine into cofactor pre-
cursors [41], and biotin was found to be significantly lower in children with ASD vs.
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controls [30]. In a comprehensive meta-analysis of GI issues in children with ASD, 15 of
18 studies reported an increased prevalence of GI issues relative to their TD peers [42].
Furthermore, the microbiota of individuals with ASD, both with and without GI issues,
have been observed to be distinct [43]. The use of probiotics, prebiotics, and microbiota
transfer therapy have shown promising results in ameliorating both the severity of GI
issues and core behavioral symptoms associated with ASD [10,12,44,45].

The interplay between the folate cycle, methionine cycle, and transsulfuration pathway
plays an important role in cellular proliferation, redox homeostasis, and methylation [46].
Perturbations of the folate-dependent one-carbon metabolism (FOCM) and transsulfuration
(TS) pathways have been well documented in individuals with ASD [7,47]. Metabolites
related to the FOCM/TS pathways have been shown to serve potentially as effective
biomarkers for predicting ASD diagnosis and have also been correlated with certain behav-
ioral symptom severities [7,48].

Leveraging metabolomic differences, several avenues have been investigated for
the development of biochemical tests to predict ASD diagnosis [9]. This approach has
significant promise to augment existing diagnosis procedures as it removes some degree of
subjectivity and could potentially lead to earlier diagnosis. This can in turn allow for earlier
implementation of interventions, including behavioral intervention techniques, which have
been shown to lead to better patient outcomes [49,50].

The use of blood and plasma-based metabolite measurements has been commonly
employed in the search for biomarker panels capable of predicting ASD diagnosis. For
example, using only plasma metabolites related to the FOCM/TS pathways, it was possible
to correctly classify 96% of TD children and 98% of ASD children [7]. Subsequent work
involving plasma metabolites related to these pathways has similarly yielded results
indicating consistency in their significance and robustness to co-occurring conditions [51].
Likewise, a 95% accuracy was obtained on a cohort of 131 children with ASD using
FOCM/TS metabolite derived panels [52].

Urine and fecal metabolites have also been explored as avenues for biomarker discov-
ery. When subjected to an analysis of the content of urinary elements between ASD and TD
children, it was possible to obtain sensitivity and specificity of 85% and 82%, respectively,
using an optimized multivariate model [53]. Similarly, urine organic acids have been shown
to have the capacity to also discern between children with and without ASD [54]. Fecal
metabolites provided the basis of a model that was able to achieve a sensitivity of 94% and
a specificity of 95% after cross-validation for a cohort of 18 children with ASD and GI issues
vs. 20 TD counterparts [55].

In this spirit, this work seeks to re-examine blood and urine measurements collected
from the study performed by Adams et al. (2011), which examined two cohorts of children
(ASD and TD) [30]. While the nutritional and dietary status of children with ASD has been
investigated in several other studies as well, the emphasis of this these works has largely
been focused on univariate differences for specific vitamins, minerals, or toxicants [56].
Many studies have also been restricted to measurements derived exclusively from blood,
urine, or feces [56–59]. Using a multivariate statistical approach, the aim of this reassess-
ment is to identify patterns and relationships that cannot be determined by examining
the differences in individual measurements alone. The goal of this work is thus to both
search for biomarkers with the goal of aiding diagnosis and also to better understand the
pathophysiology underlying ASD.

The study performed by Adams et al. (2011) is notable in that it contains an extensively
myriad breadth of biochemical and mineral measurements taken across amino acids, essen-
tial nutrients, toxicants, and vitamins [30]. As such, the relationships that can be explored
through statistical analysis are far more comprehensive than that of nutritional/metabolic
studies with narrower focuses. The efficacy of candidate biomarkers can be holistically
examined by comprehensively evaluating multiple measurement panels for their ability
to accurately predict diagnoses. The benefits of a biochemical approach supporting ASD
diagnoses are far-reaching and have considerable clinical significance. Furthermore, identi-
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fying relationships between metabolites and behavioral symptoms provides insight into
mechanisms of interest pertinent to better understanding ASD etiology.

2. Methods

In total, the dataset consisted of 155 different measurement quantities collected as
part of a nutritional and metabolic study involving 99 individuals, which was conducted
with the approval of the Human Subjects Institutional Review Board of Arizona State
University [30]. Amino acids, essential nutrients, and vitamins were reported in the study.
Of the 99 study participants, 55 had an ASD diagnosis while 44 were developing typically.
The participants’ ages ranged from 5 to 16 years, with an average age of 10.4 years. The
proportion of males (89%) to females (11%) was the same for both ASD and TD cohorts.
Participants were selected such that none had received vitamin/mineral supplements in the
last 2 months. Given the focus of this work, only the baseline data, before any interventions
were started, are used here.

Participants were recruited with the assistance of the Autism Society of Greater
Phoenix and the Arizona Division of Developmental Disabilities. One inclusion crite-
rion for the ASD group was that all participants had to have been previously diagnosed
with ASD by a psychiatrist or comparable clinical professional. The participants in the
typically developing group were required to be in good mental and physical health and to
have no evidence suggesting Attention Deficit Disorder, based on parent characterization.
Initial ASD symptom severity was measured via the Pervasive Development Disorder
Behavior Inventory (PDD-BI) modified Autism Composite, Severity of Autism Scale (SAS),
and Autism Treatment Evaluation Checklist (ATEC).

The outline of the study protocol and how most measurements were determined
can be found in Adams et al. (2011) [30]. Levels of several neurotransmitters in platelets
are reported here for the first time, using a method described previously [60]. Levels of
carnitine and acetyl-carnitine in plasma are also reported here for the first time. Morning
blood and urine samples were collected after an overnight fast for all children. Doctor’s
Data were responsible for performing the analysis of minerals and plasma amino acids
via liquid chromatography-tandem mass spectroscopy (LCT-MS) [30]. Vitamins and other
biomarkers were analyzed by Vitamin Diagnostics (now known as the Health Diagnostics
Research Institute) using spectrophotometry and microbiological assays essential minerals
were measured in RBC, serum, and whole blood, while amino acids were measured in
plasma [30]. All statistical analyses were performed using MATLAB 2021a, a proprietary
software developed by MathWorks (Natick, MA, USA). Adjacency network figures were
generated using Cytoscape (https://cytoscape.org/, accessed on 12 December 2021) [61].

2.1. Univariate Analysis

Initial univariate analysis was performed using both hypothesis testing and evaluating
the area under the receiver operator curve (AUROC) values. The receiver operator curve
(ROC) is produced by plotting the false positive rate (FPR) vs. the true positive rate (TPR)
when determining thresholds to classify between two groups. As the integral of the ROC,
the AUROC provides a measure of how well the characteristic or variable in question can
classify between two different groups. For the purposes of this analysis, the measurements
observed for each metabolite, element, or xenobiotic compound were treated as scores
to classify between the ASD and TD cohorts. Subsequently, all possible variables were
examined individually for their capability to have set thresholds to separate between the
two groups. Individuals with missing data were omitted from the analysis.

Hypothesis testing was performed by evaluating the type of distribution for each of
the cohorts’ measurements and then selecting the appropriate parametric or nonparametric
test. The normality and variance of each individual clinical measurement variable were
determined for both the ASD and TD groups separately. When the normality assumption
was determined to hold true for both groups, a parametric test was performed. Either an

https://cytoscape.org/
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equal variance t-test or Welch’s test (unequal variance t-test) was performed depending on
if the variance observed was significantly different between the groups (Figure 1).

Figure 1. Univariate hypothesis test selection paradigm. Each sample set was examined for both its
variance and distribution to select the appropriate parametric or nonparametric test.

A Mann–Whitney test was used if the two groups were observed to follow the same
nonparametric distribution. In cases where different distributions were observed, both
groups were adjusted by their means and then subjected to the Kolmogorov–Smirnov test.
If the same distribution was observed in both groups, the Mann–Whitney test was applied,
otherwise, Welch’s test was used.

To account for the multiple testing problem, the false discovery rate (FDR) for each
of the measurements was determined. FDR is defined as the expected proportion of
discoveries that can be defined as being falsely rejected. To determine the FDR for each
significant clinical measurement variable, the leave-one-out (L-1-O) approach was used.

2.2. Correlation Analysis

Metabolites, elements, and xenobiotics that had been determined to be significant via
univariate testing were further examined using correlation analysis. The Pearson correlation
coefficients between all significant variables were determined with pairs attaining a p-value
less than 0.05 subject to L-1-O FDR. Those relationship pairs that were able to achieve an
FDR less than 0.10 were deemed to be significant. The correlations between all identified
metabolites were determined for both the ASD and TD groups separately as well as
combined. Behavioral symptoms associated with ASD as measured by SAS and PDI-R were
examined in the context of their relationship to significant metabolite measurements taken.

2.3. Multivariate Analysis Preprocessing

In order to perform a thorough multivariate analysis, imputation had to be performed
so that it is possible to include even individuals lacking measurements for some fields. Com-
mon single imputation techniques such as hot deck and mean substitution will attenuate
having an accurate impression of the population a dataset is sampled from and will reduce
the significance of any of the correlations between variables measured to each other [62].
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To account for this problem, a multiple imputation approach was used in conjunction with
the multivariate Fisher discriminant analysis (FDA) and support vector machines (SVM).

The use of multiple imputation techniques is widespread in the domain of clinical
data and consists of three main steps. Samples are repeatedly drawn from a known
distribution, subjected to statistical analysis and subsequently, all findings are pooled across
runs [63]. For the purposes of this work, a probability density function was estimated
from existing data for both the ASD and TD groups. Values were then selected from this
distribution and used to impute the missing measurements. Subsequently, FDA and SVM
were performed using the complete dataset with the imputed values included. FDA was
repeated 100 times for each model that met certain AUROC fit threshold criteria, and
the results for classification as evaluated by AUROC were averaged. An optimized 5-
variable FDA model was also determined using only those variables that had no instances
of missing data.

2.4. Multivariate Analysis

FDA was used to develop models based on multiple variables for differentiating the
ASD and TD groups. FDA is defined as a dimensionality reduction technique that seeks
to separate classes by finding a projection where such differences are maximized, while
differences in the same group are minimized [64]. The objective function of FDA is:

J(W) =
WTSBW

WT SW W
(1)

where the between class scatter (SB) is maximized and within class scatter (SW) is minimized.

2.5. FDA Application

All possible 2, 3, and 4-biomarker panels were evaluated from among the 46 bio-
chemical and xenobiotic compounds that had been shown to be statistically significant via
univariate testing. For each run, the fitted AUROC and performance when subjected to
cross-validation was examined. The 1000 combinations with the highest AUROC values fol-
lowing leave-one-out cross-validation were retained for use in a greedy algorithm approach
toward uncovering variable panels with more constituents. The greedy algorithm is used
for combinations above 4 variables, to reduce computational cost. The top 1000 4-variable
models served as the basis for 5-biomarker panels by adding back variables from those
42 that were statistically significant yet not previously selected. This approach was repeated
to develop models containing 6 biomarkers as well. Additionally, statistics regarding the
top-1000 5-variable models and 6-variable models were also noted.

2.6. SVM Analysis

Support vector machines (SVM) is a machine-learning technique that was also used
to develop models to differentiate ASD and TD groups. Measurement variables that had
been deemed to be statistically significant were examined using an exhaustive classification
approach. All possible combinations of 5 variables were assessed and subject to leave-one-
out cross-validation if they could attain an accuracy greater than 0.90. The variables that
appeared frequently in panels that passed this benchmark were recorded.

3. Results
3.1. Univariate Analysis

Of the 155 initial measurements, univariate analysis revealed 50 variables that were
significantly different between the ASD and TD groups (p-value < 0.05). Among these 50,
46 were characterized as statistically significant when also considering multiple hypothesis
testing involving FDR (<0.1) (Figure 2). This is a higher number than in the original paper,
which simply chose a p-value of <0.001 as significant, without correction for multiple
hypothesis testing [30]. From those 46 measurements that had been deemed statistically
significant, 7 attained AUROC values greater than 0.80, indicating moderate capability
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to distinguish between the ASD and TD cohorts [65]. Specifically, free sulfate in serum,
nitrotyrosine, total sulfate in serum, serum uridine, glutathione, NADH, and acetylcholine
were identified as meeting this criterion (Table 1). Free sulfate in serum was able to achieve
the highest AUROC, with a value of 0.90.

Figure 2. Sankey diagram showing the biochemical and xenobiotic measurements that served as the
inputs to the hypothesis testing protocol. Measurements that had a p-value greater than 0.05 or a
false discovery rate greater than 0.10 were deemed to not be significantly different (n.s.) between
the ASD and TD groups. The measurements that were determined to be significant were used in the
development of the FDA and SVM models.

Table 1. Univariate and correlation analysis results ordered by AUROC. Univariate analysis was
performed by both determining the optimal statistical test to perform to compare the ASD and TD
groups as well as calculating the AUROC between them. FDR was determined using the leave-one-
out approach to determine the robustness of each of the findings.

Name Source Mean ASD Value vs.
Mean TD Value p-Value Test-Type ASD

Correlations
TD

Correlations AUROC

Free Sulfate Plasma ↓ 0 Welch’s test ***** 12 18 0.90
Nitrotyrosine Plasma ↑ 0 Welch’s test ***** 11 19 0.87
Total Sulfate Plasma ↓ 0 Welch’s test ***** 12 19 0.85

Uridine (UriP) Plasma ↑ 0 Welch’s test ***** 5 10 0.85
Glutathione (Glut) Plasma ↓ 0 Welch’s test ***** 11 16 0.85

Nicotinamide Adenine
Dinucleotide (NAD) +
hydrogen (H) (NADH)

RBC ↓ 0 Welch’s test ***** 12 16 0.84

Acetylcholine platelets ↓ 0 Welch’s test ***** 14 16 0.81
Nicotinamide adenine

dinucleotide
phosphate (NADP)

RBC ↓ 0 Welch’s test 11 19 0.79

ATP Plasma ↓ 0 Welch’s test ***** 5 14 0.77
S-adenosylmethionine (SAM) RBC ↓ 0 t-test 4 14 0.77

Norepinephrine platelets ↓ 0 Welch’s test ***** 0 16 0.76
Reduced glutathione:
oxidised glutathione
(GSSG/GSH ratio)

Plasma ↑ 0 Welch’s test ***** 10 18 0.75

Total Choline RBC ↑ 0 t-test 2 16 0.75
Serotonin platelets ↓ 0 Welch’s test ***** 0 13 0.75

Tryptophan Plasma ↓ 0 Welch’s test ***** 0 1 0.75
Thallium Urine ↑ 0 Welch’s test ***** 1 2 0.73

Free carnitine Plasma ↑ 0 t-test 3 5 0.71
Oxidized glutathione Plasma ↑ 0 Welch’s test ***** 6 9 0.7
Gamma-aminobutyric

acid (GABU) Urine ↓ 0 Welch’s test ***** 11 16 0.7

Total carnitine
(carnitine +

acetyl-carnitine)
Plasma ↑ 0 t-test 4 4 0.69

Beta-amino isobutyrate Plasma ↑ 0 Welch’s test ***** 0 3 0.69
Biotin Plasma ↓ 0 Welch’s test 0 7 0.68

Glutamate Plasma ↑ 0.01 Welch’s test ***** 1 3 0.68
Epinephrine Platelets ↓ 0 Mann–Whitney 9 15 0.67

Total carotenes Plasma ↓ 0.01 Welch’s test ***** 4 1 0.67
Cadmium WB ↓ 0 Welch’s test ***** 5 1 0.67

Iron RBC ↑ 0 Welch’s test ***** 7 7 0.67
Phosphorus RBC ↑ 0 Welch’s test ***** 7 3 0.66
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Table 1. Cont.

Name Source Mean ASD Value vs.
Mean TD Value p-Value Test-Type ASD

Correlations
TD

Correlations AUROC

Lithium WB ↓ 0.04 Welch’s test ***** 2 3 0.66
SAM/SAH Plasma ↓ 0.01 Welch’s test ***** 6 15 0.65
Potassium RBC ↑ 0.01 Welch’s test ***** 5 3 0.65

Tin Urine ↑ 0.01 Mann–Whitney 1 2 0.65
Taurine Plasma ↓ 0.01 Welch’s test ***** 5 7 0.65

Vitamin C Plasma ↑ 0.03 t-test 1 4 0.64
Copper WB ↑ 0.02 t-test 0 1 0.64

Formiminoglutamic
acid (FIGLU) Urine ↑ 0.03 t-test 1 3 0.63

Copper RBC ↑ 0.03 t-test 0 1 0.63
Magnesium Plasma ↓ 0.02 Mann–Whitney 0 3 0.63
Antimony Urine ↑ 0.03 Mann–Whitney 0 0 0.63

Lead Urine ↑ 0.02 Mann–Whitney 1 1 0.63
Serine Plasma ↑ 0.04 Welch’s test ***** 0 3 0.63

Adenosine Plasma ↑ 0.01 Welch’s test ***** 4 10 0.62
Calcium RBC ↓ 0.02 Welch’s test ***** 8 6 0.61

Vitamin B5 Plasma ↓ 0.02 Welch’s test 0 8 0.61
Cadmium Urine ↓ 0.01 Mann–Whitney 6 6 0.6

Homocysteine +
homocystine Plasma ↑ 0.02 Mann–Whitney 5 1 0.6

***** Indicates case where two different nonparametric distributions were observed. WB indicates in whole blood,
RBC indicates in red blood cells, ↓ indicates decreasing ASD group value, ↑ indicates increasing ASD group value.

3.2. Correlation Analysis

The relationship network for all significant variables was determined using correla-
tion analysis and L-1-O FDR for each group separately. In total, there were 148 shared
correlation pairs between the ASD and TD groups, when using FDR < 0.10 and a Pearson
correlation coefficient greater in magnitude than 0.35 (Figures 3 and 4). Notable differences
were observed between the ASD and TD correlation network for 294 relationships, which
corresponded to 230 unique interactions in the TD cohort and 64 unique ASD interactions.
The correlations between behavioral symptom severity and metabolites of significance
were also included as part of this analysis. ASD severity was quantified using the SAS and
PDD-BI, which were subsequently found to be significantly correlated with free sulfate in
plasma and iron in red blood cells (RBC-iron), respectively (r = 0.36, r= −0.38).

Figure 3. Correlation network between significant biochemical and xenobiotic compounds in the
TD cohort (strength of the correlation is visualized by the line thickness, positive correlations are in
blue and negative correlations are in red). In order for a relationship to be deemed significant, the
correlation coefficient had to be greater than 0.35, FDR less than 0.10, and the p-value less than 0.05.
In total, 378 significant correlations were observed that met these criteria. NADP and total sulfate
had the greatest number of relationships, with 19 significant relationships. Only those relationships
with r > 0.40 are presented (see Table A1 for details).
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Figure 4. Correlation network between significant biochemical and xenobiotic compounds in the
ASD cohort (strength of the correlation is visualized by the line thickness, positive correlations are in
blue and negative correlations are in red). In order for a relationship to be deemed significant, the
correlation coefficient had to be greater than 0.35, FDR less than 0.10, and the p-value less than 0.05.
In total, 212 significant correlations (106 pairs) were observed. Acetylcholine had the greatest number
of relationships, with 14 significant relationships (see Table A2 for details).

Generally, the TD group was observed to have a greater number of correlations
across the most significant metabolites and xenobiotics. However, there were exceptions
to this observation for homocysteine, cadmium, phosphorus, potassium, and calcium.
Nonetheless, there was a considerable degree of overlap between observed relationships
for the ASD cohort. About 70% of relationships present when examining the ASD cohort
were also present in the TD cohort as well. The magnitudes of the relationships were also
largely in concordance.

Both free sulfate in plasma and total sulfate in plasma (TSse) were among the metabo-
lites that demonstrated the highest AUROC, indicating strong utility for separating between
the ASD and TD cohorts. For this reason, the relationship between these metabolites to
others was looked at in more detail. The correlation between each of the 44 remaining
significant variables was individually assessed with regard to both free sulfate and TSse in
the ASD cohort. In both the case of free sulfate and TSse, there was a greater number of
significant correlations observed in the TD cohort, with most relationships overlapping.

3.3. FDA Models

FDA multivariate models were derived using the variables that had been deemed
statistically significant. Measurements for 20 of the 47 significant variables were incomplete
for all individuals, which necessitated the need for multiple imputations. However, the
extent of missing data was minimal, with fewer than 5 out of 99 participants missing data
points for any measurement. FDA models were also derived from only the participants
with complete sample sets using the same model discovery protocol as was used for the
complete dataset. FDA models with two, three, four, and five metabolites achieved very
high cross-validated AUROC scores of 0.93, 0.96, 0.97, and 0.98 (see Table 2). The model
composition and performance were largely the same between both the full dataset and the
subset of 20 variables without missing measurements (Table 2).
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Table 2. FDA and SVM models that achieved the highest AUROC following cross-validation (CV)
for each number of potential biomarkers. CV AUROC was calculated by using leave-one-out cross-
validation and performing multiple imputations when needed (except in the *** model). Sensitivity
and specificity are provided for the optimal operating point of the CV ROC curve.

Number of
Markers Method Model Constituents Fitted

AUROC CV AUROC Sensitivity
(TPR)

Specificity
(TNR)

2 FDA Free sulfate (plasma)
Uridine (plasma) 0.92 0.94 0.94 0.86

3 FDA
Free sulfate (plasma)

Uridine (plasma)
Beta-amino isobutyrate

0.95 0.96 0.92 0.89

4 FDA

Free sulfate (plasma)
Uridine (plasma)

Homo cystine
Beta-amino isobutyrate

0.96 0.97 0.93 0.91

5 FDA

Free sulfate (plasma)
Uridine (plasma)

Initial homo cystine
Beta-amino isobutyrate

Serum magnesium

0.96 0.98 0.95 0.95

5 *** FDA

Free sulfate (plasma)
Uridine (plasma)

Beta-amino isobutyrate
Tryptophan (plasma)

Homo cystine (plasma)

0.96 0.97 0.93 0.89

5 ‡ FDA

Glutathione (plasma)
Uridine (plasma)
Thallium (urine)

Glutamate (plasma)
Homo cystine (plasma)

0.94 0.95 0.98 0.75

5 SVM

Free sulfate (plasma)
Magnesium (Serum)

Homo cystine (plasma)
Uridine (plasma)

Beta-amino isobutyrate

1.00 0.92 0.91 0.92

6 FDA

Free sulfate (plasma)
Uridine (plasma)

Homo cystine (plasma)
Beta-amino isobutyrate

Serum magnesium
RBC copper

0.97 0.98 0.95 0.95

*** Represents cases in which only 27 metabolites without missing data were utilized. ‡ Represents cases in which
sulfate metabolites were excluded.

The majority of the top-1000 performing FDA models tended to share the same markers
of interest. All three of the markers observed to constitute the optimized three-variable
model (free sulfate, uridine, and beta-amino isobutyrate) were also found in all other
optimized models as well (Figure 5). Given the relatively high AUROC ascribed to free
sulfate in plasma and total sulfate in plasma, FDA assessments that included these two
metabolites as part of the model discovery process tended to skew toward the inclusion of
these metabolites in biomarker panels.
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Figure 5. Marker prevalence among the top-1000 FDA 5-marker models as judged by their perfor-
mance on the test set. Among the most prominent potential biomarkers are free sulfate, uridine, and
beta-amino isobutyrate (highlighted in red). Each of these was present in more than 75% of the top
models. Free sulfate in particular was present in every single top model.

In order to carry out a more thorough assessment of the remaining significant metabo-
lites, the two sulfate measures were excluded to examine the efficacy of panels consisting
of other potential biomarkers. An exhaustive analysis of all possible remaining four-
variable model panels, with leave-one-out cross-validation was performed to determine
the biomarkers which occurred most frequently in the top-1000 models. (Figure 6). These
models were subsequently utilized to derive a five-variable model that maximized per-
formance after cross-validation (Table 2). The optimized five-variable model was able to
perform comparably to some sulfate-containing models albeit with lower CV AUROC (0.95
vs. 0.98).

Despite a relatively high AUROC, total sulfate did not appear prominently in the FDA
model panels developed because of its high degree of correlation with free sulfate. When
omitting sulfate metabolites from the FDA model discovery protocol, relevant models
consisting of sulfate-correlated metabolites were more common. Uridine was still often
selected, appearing in over 74.7% of the top 1000 models. In the sulfur-excluding models,
plasma glutathione appeared in 47.1% of all models while plasma homocystine was present
in 32.1% and plasma nitro-tyrosine in 21.8% of models.

3.4. SVM Models

Using an exhaustive classification approach, SVM was used to determine biomarker
panels that were best able to distinguish between ASD and TD cohorts. All possible four-
variable panels were determined. This analysis demonstrated the prominence of a few key
measured quantities that demonstrated consistent utilization in top-performing predictive
models. Specifically, free sulfate, glutathione, beta-amino isobutyrate, and uridine appeared
in more than 20% of all top-1000 performing SVM panels ranked by their cross-validated
accuracy (Figure 7), similar to the results for the FDA models.
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Figure 6. Marker prevalence among the top 1000 4-marker FDA models as judged by their perfor-
mance on the test set, with both total and free sulfate excluded. Due to the predominance of sulfate
in model panels, models with other constituents were explored by conducting the FDA analysis
with these two metabolites excluded. The metabolites observed to be most prevalent in the resulting
models were highlighted in red and include (A) glutathione present in 43.3% (B) uridine present in
74.7%, and (C) homocystine + homocysteine present in 32.1% of models.

Figure 7. Marker prevalence among the top-1000 5-marker SVM models as judged by their perfor-
mance on the test set. Among the most prominent potential biomarkers are (A) free sulfate in serum,
(B) uridine, (C) tryptophan, (D) beta-amino isobutyrate, and (E) copper in whole blood.

3.5. Metabolite Clusters

Table 3 shows the metabolites that were correlated with the top five metabolites. Free
sulfate was correlated with 11 other metabolites, homocysteine + homocysteine was corre-
lated with 3, uridine was correlated with 2, but beta-amino isobutyrate and magnesium
were not correlated with any others. This suggests that the network of significant metabo-
lites correlated with free sulfate represents a major area of metabolic differences between
ASD and TD, generally consistent with Figure 4, which shows most metabolites networked
to the sulfate cluster.



J. Pers. Med. 2022, 12, 923 13 of 27

Table 3. Correlations of top-5 FDA optimized variables (bold) with other measurements, for the ASD
group. For all relationships that met the inclusion criteria below see Table A1.

Metabolite Pair Pearson Correlation Coefficient

Free sulfate (plasma)
Total sulfate (plasma) 0.63

GABA 0.57
SamR 0.57

Glutathione 0.56
Acetylcholine 0.53

NADH 0.47
Lithium 0.45

SAM/SAH 0.42
Thallium (urine) 0.41

Epinephrine 0.40
Oxidized glutathione/glutathione −0.43

Uridine (plasma)
FIGLU 0.46

Total sulfate (plasma) −0.48

Homocysteine + homocystine
Iron 0.46

Cadmium (whole blood) −0.45
Taurine −0.55

Beta-amino isobutyrate
****

Magnesium
****

Only element pairs with a coefficient greater than 0.4 or less than −0.4 are shown. **** indicates no significant
correlations among top-ranked metabolites.

4. Discussion

This work builds upon the original 2011 study that sought to identify nutritional and
metabolic differences between children with ASD vs. their typically developing peers [30].
Rather than focusing on specific individual measurements that may vary between groups,
this work seeks to derive clinically relevant patterns. The use of multivariate techniques
to assess differences in metabolites has previously shown significant promise for charac-
terizing children with ASD [9]. Furthermore, investigating the nature of interactions and
relationships among metabolites that significantly differ between ASD and TD cohorts
provides insight into how cellular processes and environmental factors may have different
influences between such groups. Subsequently, intervention strategies that target these
perturbations can be better understood and deployed.

4.1. Univariate Findings

The identification of significant metabolites, minerals, and vitamins was largely in
concordance with the original assessment performed, despite the differences in a univariate
testing protocol (the original Adams et al. (2011) study relied on simple t-tests) [30]. The use
of FDR to account for multiple hypothesis testing revealed 46 variables that were statistically
significant, many more than were found in the original study, which used a criterion
of p < 0.001 as statistically significant. Many of the metabolites that were statistically
significant have shown to be prominent in processes related to oxidative stress, methylation,
sulfation, and mitochondrial metabolism. Overall, five metabolites were primary amino
acids, eight were related to oxidative stress, eleven were nutrients/vitamins, and five
were neurotransmitters. While most identified compounds were related to biological
systems and metabolism, four toxicants were also identified as having significantly different
levels between the ASD and TD groups of children. Nonetheless, as the concentration of
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xenobiotics was derived from urinary measurements, this does not necessarily reflect a
higher total body prevalence.

Metabolites associated with the FOCM/TS pathways were found to be both statistically
significant and have high AUROC values, which ranged from 0.65 to 0.85. Glutathione,
SAM/SAH ratio, and oxidized glutathione were all found to be significantly distinct
between both cohorts, and all are related to impaired methylation. These findings are
consistent with the literature, and with the development of prior plasma-based biomarker
panels that have been identified [7,48]. The metabolic cofactors ATP, NADP, and NADH
in plasma were identified as having higher AUROC values relative to most other metabo-
lites examined. All three were observed to have an AUROC greater than 0.70 and to be
significantly lower in the ASD cohort. Other studies examining the nature of metabolites
in ASD and TD cohorts have also observed similar findings for these three compounds in
plasma [66].

Total and free sulfates were identified as being especially prominent metabolites in
terms of their statistical significance between the ASD and TD cohorts (Figure A1). A signif-
icant body of work has shown that significant differences in sulfation capacity and sulfur-
related metabolites have been commonly observed between ASD and TD cohorts [36,37].
Urinary elemental sulfur concentrations were found to be significantly lower in children
with ASD and were a prominent contributor to FDA models for distinguishing between
ASD and TD groups [55]. Sulfate metabolism is closely connected to interactions of the gut
microbiome, and the presence of certain organic sulfate compounds has been statistically
higher in the feces of children with ASD [20].

Four neurotransmitters (serotonin, norepinephrine, epinephrine, and acetylcholine)
were measured in platelets and found be to significantly lower in the ASD group. Platelet
serotonin receptor binding among children with ASD has commonly been reported as
being lower when compared to typically developing controls [67]. These abnormalities are
likely contributing to some of the neurological and behavioral symptoms of ASD [68,69]. In
contrast, glutamate (measured in plasma) was found to be significantly higher in the ASD
group, and GABA (in urine) was found to be significantly lower. Glutamate is the primary
excitatory neurotransmitter, and GABA is the primary inhibitory neurotransmitter, so the
increased glutamate:GABA ratio likely contributes to certain autism symptoms including
seizures, repetitive behaviors, and difficulty regulating emotions [70].

Levels of l-carnitine, acetyl-l-carnitine, and their sum (total carnitine) were found to
be significantly higher in the ASD group. The main function of carnitine is to bind to
long-chain fatty acids to transport them into (and out of) mitochondria for subsequent β-
oxidation. Another study found that mothers of children with ASD had significantly lower
levels of many carnitine-conjugated metabolites, but approximately normal dietary intake
of carnitine, suggesting a decreased ability to conjugate carnitine [71]. So, this suggests
that children with ASD may also have a decreased ability to conjugate carnitine, consistent
with this study finding higher levels of l-carnitine and acetyl-l-carnitine. Furthermore,
two randomized, double-blind, placebo-controlled studies found that carnitine supple-
mentation was beneficial to children with ASD, as additional carnitine would increase
the rate of carnitine conjugation [23,24]. This is also consistent with reports of abnormal
mitochondrial function in children with autism [14]. Although one study reported lower
carnitine in children with ASD [72], that study relied on a laboratory reference range for
adults from a different laboratory, and not on a comparison with age-matched typically
developing children.

Beta-amino isobutyrate is a non-protein amino acid that is important for the regulation
of carbohydrate and lipid metabolism for energy production. It is produced in the skeletal
muscle and is converted by a mitochondrial enzyme, alanine-glyoxylate amino transferase 2,
to propionol CoA in the mitochondria, which is then eventually converted to propionic
acid [73]. The d-form comes from thymine, and the l-form comes from valine. The data
reported here are for the total of the d and l forms combined. The mitochondria in the kidney
and liver are the most active in producing both forms of beta-amino isobuthyrate [73]. The
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increased level of beta-amino isobutyrate in ASD suggests that the enzyme is underactive.
The enzymatic cofactor is P5P, so either the enzyme is defective in children with ASD and/or
P5P levels could be low. In the Adams 2011b study, it was noted that a vitamin/mineral
supplement containing approximately 40 mg per 60 lb bodyweight resulted in only a 5%
(n.s.) decrease in beta-amino isobutyrate, so higher doses or other treatments may be
needed [30].

4.2. Correlation Analyses

Correlation analysis was performed to provide insight into the relationships between
the significant measurement variables. The ASD group had many fewer correlation pairs
than the TD group (106 vs. 189), suggesting disruption of many metabolic processes
(Figures 3 and 4). Differences in metabolomic relationships may indicate areas of divergence
of underlying processes, and metabolic pathway differences have been a frequent subject
of research regarding ASD etiology [74,75].

Free total sulfate had the greatest number of significant correlations, with 11 rela-
tionship pairs among other significant metabolites for the ASD group and 18 for the TD
group (Table 1). As a product of the transsulfuration pathway, several FOCM/TS-related
metabolites such as SAM/SAH, glutathione, and total sulfate were significantly correlated
as well. Uridine was found to be correlated with FIGLU which is known to be an indicator
of methylation insufficiency [30]. Given the nature of FDA, relationships using orthogonal
variables work best for distinguishing groups. Subsequently, two metabolites with limited
correlations to others were utilized for multivariate classification analysis (beta-amino
isobutyrate and magnesium) and may represent other areas of metabolic differences.

Metabolites associated with neurotransmitters were found to have a much higher
number of correlations in the TD group than in the ASD group. The neurotransmitter
serotonin also contrasted prominently between cohorts. The TD group was observed to
have nine metabolites correlated with serotonin, but only magnesium was significantly
correlated with serotonin in the ASD cohort (Figures 3 and 4). Notably, for the ASD cohort,
no significant correlation was observed between serotonin and its amino acid precursor
tryptophan. Serotonin has long been examined for its relationship to ASD. Hyperserotone-
mia is known to be more prevalent in children with ASD, which has been demonstrated
in a number of studies [76,77], but in this study, only two children had hyperserotonemia,
possibly because this was a milder cohort including both autism and ASD. Recent work
has shown serotonin availability is lower in the brains of adults with ASD [78,79]. Sero-
tonin plays an integral role in the gut-brain axis, which has been hypothesized to have a
meaningful relationship with ASD and co-occurring conditions [39,75]. It is known that
~90% of the body’s serotonin is produced by gut bacteria which may underscore a potential
connection between hyperserotonemia and ASD [80].

The relationships for a number of B vitamins were found to be distinct between the
ASD and TD cohorts. Pantothenic acid (vitamin B5) was observed to have three significant
correlations in the TD cohor, but was not found to have any such relationships in the
ASD group (Figures 3 and 4). This nutrient has been shown in the literature to have a
lower prevalence in the plasma of ASD [81]. Tryptophan was observed to be significantly
correlated with pantothenic acid for the TD cohort but was not found to have any such
relationship for the ASD group (Figures 3 and 4). Abnormalities in tryptophan metabolism
have long been hypothesized and examined in individuals with ASD [82–85].

The relationship between ASD symptom severity and metabolomics has been an area
of considerable investigation. The initial findings from this study demonstrated that there
were several metabolites correlated with ASD behavioral symptom severity [30]. Glu-
tathione and SAM have previously been shown to be correlated with ASD severity in blood
plasma [20]. Prior case-control urinary analysis has also shown that specific metabolites
such as adipic acid, palmitic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropanoic were
correlated with symptom severity [86]. Nonetheless, despite the highly integrated nature
of the prominent amino acids and minerals, the relationship between measurements and
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behavioral severity was somewhat muted. Free sulfate in plasma was the only metabolite
found to be significantly correlated (negatively) with the SAS score (r = −0.38). However,
free sulfate was in turn highly correlated with eight other significant metabolites in the
ASD group. It was also observed that iron found in red blood cells was the sole metabo-
lite significantly correlated with behavioral symptoms as surmised by the PDD-BI score
(r = 0.36). In contrast, multivariate regression analysis in the original study revealed
strong associations of sets of vitamins, minerals, and amino acids with the severity of
ASD. This suggests that ASD severity is associated with a wide number of metabolic and
nutritional differences.

4.3. Multivariate Analysis for Classifying ASD

Using the comprehensive data collected on biochemical compounds examined in this
work, ASD characterization leveraging these metabolomic data was explored. The search
for biochemical markers for predicting ASD diagnoses has significant clinical implications
and has in recent years been a focus of intense exploration [48,52,86–88]. As ASD is only
formally diagnosed through psychometric evaluation, the development of a biochemical
test has significant promise for supporting the diagnosis process and potentially providing
an avenue for earlier diagnosis. While the average age of ASD diagnosis in the United
States is 51 months, stable diagnosis has been ascertained as early as 14 months [89–91].
Applied behavioral analysis has been shown to be most effective when administered at an
earlier age [49], and the same may be true for some other interventions. Additionally, more
readily available access to diagnosis can promote accessibility to special needs resources
for children with ASD [92]. Thus, a biochemical test supporting a diagnosis may lead to
earlier intervention and treatment.

Multivariate analysis using significant measured variables outperformed all individ-
ual univariate assessments for classification between the ASD and TD groups. Using both
the entire dataset as well as only those with complete sets of measurements, it was possible
to attain models with a cross-validation accuracy greater than 0.96 (Figure A2). The compo-
sition of the models with three or more components that were able to achieve the highest
accuracy was consistently composed of free sulfate, uridine, and beta-amino isobutyrate.

Beta-amino isobutyrate had a high AUROC value (0.69) and was identified promi-
nently in all top performing FDA models with the inclusion of sulfate-based metabolites.
While it was found to be significantly correlated with total sulfate, serotonin, and nore-
pinephrine in the TD group, these relationships were not observed among children with
ASD. A product of thymine catabolism, the circulating levels of this metabolite are con-
trolled by alanine:glyoxylate aminotransferase 2, which is a mitochondrial enzyme [73].
However, another study found that it was lower, not higher, in ASD [93]. Mitochondrial
metabolism has frequently been identified as being distinct in individuals with ASD. Many
other mitochondrial products have also been identified as being abnormal in ASD such as
unique acyl-carnitine concentrations [22]. Further research is needed to determine if levels
of beta-amino isobutyrate are significantly different in other ASD cohorts, and to better
understand its significance.

As a prominent antioxidant, glutathione plays a crucial role in several cellular pro-
cesses. It is responsible for cellular signaling, detoxification, and responding to oxidative
stress [94]. Differences in glutathione regulation and metabolism are well documented
when comparing metabolites of cohorts involving children with and without ASD. In a
meta-analysis across 14 studies with 583 ASD and 624 control children, blood levels of
reduced glutathione were deemed to be significantly lower in children with ASD [95].
A number of multivariate biochemical biomarker panels predicted an ASD diagnosis
with high accuracy (>0.90) by utilizing the plasma concentration of this metabolite as a
constituent [7,96].

In this study, while the cross-validated accuracy using SVM models was slightly
lower compared to the results of the top FDA models (0.92 vs. 0.98), the constituents
of the model panels that achieved the highest cross-validated accuracy were largely in
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concordance (Table 2). Free sulfate in plasma was the top reported metabolite prevalent in
models, appearing in 74.6% of the top-1000 models. Similarly, both glutathione, beta-amino
isobutyrate, and uridine appeared in more than 20% of the top models. The accuracy of
characterization observed from the SVM analysis was largely consistent if not better than
prior attempts to utilize this algorithm for distinguishing between ASD and TD groups
using biochemical measurements [97,98].

4.4. Limitations

Since there were a moderate number of participants, the generalizability, and ro-
bustness of these findings would benefit substantially from a larger study with more
participants. Subsequent validation of multivariate biochemical panels identified in this
work could thus be better assessed for their diagnostic and potential clinical relevance.
There were several unique environmental characteristics particular to the ASD cohort that
may have modulated the presence of several metabolites and xenobiotic compounds of
interest. In total, 16% of the ASD cohort was on some form of special diet and 47% were on
at least one medication. As ASD and TD cohorts were recruited only from Arizona, some
environmental factors related to geography and population were likely confounded.

5. Conclusions

This work reassessed the data collected by Adams et al. (2011) using an improved
univariate analysis and several multivariate methods [30]. By expanding upon the analy-
sis to include machine-learning classification techniques, the identification of promising
biomarker candidates for autism diagnosis was also explored. The interrelationship be-
tween biochemical measurements in both autism and typically developing cohorts was
investigated by contrasting adjacency networks to pinpoint areas of notable metabolomic
differences that would otherwise not be reflected using single variable hypothesis test-
ing alone.

The significant metabolites identified using hypothesis testing were largely in con-
cordance with the original study, but many more were found to be significantly different
between the ASD group and the TD group in this work. The results of neurotransmitter data
are also presented in this work as an expansion of the original paper, and several (serotonin,
epinephrine, and norepinephrine) were determined to be significantly distinct between
cohorts. The prominence of metabolites related to sulfuration, mitochondrial metabolism,
and redox/methylation is consistent with a number of other studies in the literature.

Overall, the results using FDA and SVM classification techniques for ASD diagnosis
prediction resulted in a cross-validated performance for sensitivity and specificity that
is similar if not higher than to prior panels investigated in the literature. The nearly
identical performance between both SVM and FDA methods was notable as it demonstrated
the independence of the analysis method used. Nonetheless, further studies should be
performed to examine the robustness and repeatability of these findings in larger cohorts.

Models consisting of free sulfate in plasma, plasma uridine, and beta-amino isobu-
tyrate achieved the highest AUROC after applying leave-one-out cross-validation using
the full dataset of 99 individuals with both SVM and FDA techniques. Models consisting
of these metabolites achieved a fitted AUROC of 0.98 for FDA and 0.92 for SVM. The
highest univariate AUROC value was observed for free sulfate in plasma, which was a
biomarker in all optimized top-5+ marker panels. The prominence of these measurements
underscores their potential in the search for reliable biochemical biomarkers toward the
goal of augmenting approaches in ASD diagnosis.

Although the correlations between behavioral symptoms and individual metabolites
were looked at in Adams et al., this work went a step further and examined the degree of
interconnectivity of statistically significant variables among themselves contrasted between
the ASD and TD groups. In general, the ASD cohort had a much lower number of correla-
tions between metabolites, suggesting a difference across a number of metabolic processes.
Supplementation with vitamins/minerals/micronutrients has been demonstrated to nor-
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malize many metabolic pathways and improve some ASD-related symptoms, so further
research into understanding and treating metabolic abnormalities in ASD is warranted.
Examining the effect of supplementation on changes observed in the correlation network
between the ASD and TD groups may provide some perspective on the mechanisms behind
remediation that they bring about.
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Appendix A

Figure A1. Univariate distribution for free sulfate in plasma, which was the metabolite that had the
highest AUROC (0.90).
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Figure A2. Boxplots of the FDA scores for both the 5-marker and 6-marker optimized model based
upon cross-validated AUROC value. Each box represents scores that fall between the 25th and 75th
percentile for that respective set of scores.

Table A1. Correlations of top metabolites, xenobiotics, and elements for the ASD group with a
Pearson correlation coefficient greater in magnitude than 0.40.

Measurement 1 Measurement 2 Pearson Correlation
Coefficient

Cadmium Calcium 0.49
Iron (whole blood) Calcium −0.89

Taurine Calcium 0.45
Cadmium (whole Blood) Calcium 0.47

Cadmium Iron (whole blood) −0.50
Taurine Iron (whole blood) −0.56

Homocysteine + homocystine Iron (whole blood) 0.46
Cadmium Phosphorus −0.44
Calcium Phosphorus −0.74

Iron (whole blood) Phosphorus 0.71
Taurine Phosphorus −0.51

Cadmium (whole blood) Phosphorus −0.50
Homocysteine + homocystine Taurine −0.55

Adenosine (Plasma) Acetylcholine −0.51
Free sulfate (plasma) Acetylcholine 0.53

GABU Acetylcholine 0.60
GSSG/GSH ratio Acetylcholine −0.47

NADP Acetylcholine 0.44
Nitrotyrosine Acetylcholine −0.54

SamR Acetylcholine 0.43
SAM/SAH Adenosine (plasma) −0.45
Glutathione ATP 0.44

NADH ATP 0.67
NADP ATP 0.61

Total sulfate (plasma) ATP 0.44
Cadmium Cadmium (whole blood) 0.40
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Table A1. Cont.

Measurement 1 Measurement 2 Pearson Correlation
Coefficient

Iron (whole blood) Cadmium (whole blood) −0.55
Taurine Cadmium (whole blood) 0.40

Homocysteine + homocystine Cadmium (whole blood) −0.45
Total carotenoids Cadmium (whole blood) −0.46

Copper (RBC) Copper (whole blood) 0.46
GSSG/GSH ratio Epinephrine −0.44
Uridine (plasma) FIGLU 0.46

Total Carnitine (carnitine +
acetyl-carnitine) Free carnitine 0.94

Lithium Free sulfate (plasma) 0.45
Thallium Free sulfate (plasma) 0.41

Epinephrine Free sulfate (plasma) 0.40
GABU Free sulfate (plasma) 0.57

GSSG/GSH ratio Free sulfate (plasma) −0.43
SAM/SAH Free sulfate (plasma) 0.42

SamR Free sulfate (plasma) 0.57
Epinephrine GABU 0.45

SamR GABU 0.47
Acetylcholine Glutathione 0.52
Epinephrine Glutathione 0.48

Free sulfate (plasma) Glutathione 0.56
GABU Glutathione 0.52

GSSG/GSH ratio Glutathione −0.63
NADH Glutathione 0.67
NADP Glutathione 0.47
SamR Glutathione 0.50

Total Sulfate (plasma) Glutathione 0.60
Acetylcholine NADH 0.52
Epinephrine NADH 0.56

Free sulfate (plasma) NADH 0.47
GABU NADH 0.41

GSSG/GSH ratio NADH −0.52
NADP NADH 0.66

Nitrotyrosine NADH −0.51
Total Sulfate (plasma) NADH 0.42

Choline (total) NADP −0.50
GSSG/GSH ratio NADP −0.46

Nitrotyrosine NADP −0.45
SamR NADP 0.48

GSSG/GSH ratio Nitrotyrosine 0.46
SamR Nitrotyrosine −0.44

GSSG/GSH ratio Oxidized glutathione 0.93
Nitrotyrosine Oxidized glutathione 0.43

Calcium Potassium −0.63
Iron (whole blood) Potassium 0.55

Phosphorus Potassium 0.77
Acetylcholine Total sulfate (plasma) 0.57

Free sulfate (plasma) Total sulfate (plasma) 0.64
GABU Total sulfate (plasma) 0.56

GSSG/GSH ratio Total sulfate (plasma) −0.42
NADP Total sulfate (plasma) 0.52
SamR Total sulfate (plasma) 0.59

Uridine (plasma) Total sulfate (plasma) −0.48
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Table A2. Correlations of top metabolites, xenobiotics and elements for the TD group with a Pearson
correlation coefficient greater in magnitude than 0.40.

Measurement 1 Measurement 2 Pearson Correlation
Coefficient

Glutathione NADH 0.48
Glutathione NADP 0.49
Glutathione Epinephrine 0.41
Glutathione Norepinephrine 0.51
Glutathione Serotonin 0.45
Glutathione Acetylcholine 0.45
Glutathione Sulfate (total) 0.55
Glutathione GABU 0.49
Glutathione SAM/SAH 0.45

ATP GSSG/GSH ratio −0.42
ATP NADH 0.50
ATP NADP 0.67
ATP Sulfate (free) 0.58
ATP AdeP −0.42
ATP Uridine −0.47
ATP SAM/SAH 0.46
ATP Cadmium −0.53
Figl NADH −0.44
Figl NADP −0.50
Figl Norepinephrine −0.43

Nitrotyrosine Oxidized glutathione 0.56
Nitrotyrosine GSSG/GSH ratio 0.75
Nitrotyrosine NADP −0.51
Nitrotyrosine Choline (total) 0.66
Nitrotyrosine Epinephrine −0.46
Nitrotyrosine Norepinephrine −0.47
Nitrotyrosine Serotonin −0.43
Nitrotyrosine Acetylcholine −0.72
Nitrotyrosine Sulfate (total) −0.64
Nitrotyrosine Sulfate (free) −0.51
Nitrotyrosine AdeP 0.60
Nitrotyrosine Uridine 0.46
Nitrotyrosine GABU −0.59
Nitrotyrosine SamR −0.54
Nitrotyrosine SAM/SAH −0.61

Oxidized glutathione GSSG/GSH ratio 0.89
Oxidized glutathione Choline (total) 0.46
Oxidized glutathione Epinephrine −0.47
Oxidized glutathione Acetylcholine −0.51

GSSG/GSH ratio NADH −0.41

GSSG/GSH ratio NADP −0.50
GSSG/GSH ratio Choline (total) 0.57
GSSG/GSH ratio Epinephrine −0.57
GSSG/GSH ratio Norepinephrine −0.42
GSSG/GSH ratio Serotonin −0.48
GSSG/GSH ratio Acetylcholine −0.65
GSSG/GSH ratio Sulfate (total) −0.58
GSSG/GSH ratio Sulfate (free) −0.46
GSSG/GSH ratio Uridine 0.43
GSSG/GSH ratio GABU −0.56
GSSG/GSH ratio SAM/SAH −0.51

NADH NADP 0.81
NADH Choline (total) −0.45
NADH Norepinephrine 0.57
NADH Serotonin 0.41
NADH Acetylcholine 0.50
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Table A2. Cont.

Measurement 1 Measurement 2 Pearson Correlation
Coefficient

NADH Sulfate (total) 0.59
NADH Sulfate (free) 0.66
NADH GABU 0.50
NADH SAM/SAH 0.42
NADP Choline (total) −0.47
NADP Epinephrine 0.46
NADP Norepinephrine 0.61
NADP Serotonin 0.55
NADP Acetylcholine 0.46
NADP Sulfate (total) 0.62
NADP Sulfate (free) 0.66
NADP AdeP −0.41
NADP Uridine −0.48
NADP GABU 0.60
NADP SamR 0.53
NADP SAM/SAH 0.50

Choline (total) Norepinephrine −0.49
Choline (total) Acetylcholine −0.64
Choline (total) Sulfate (total) −0.52
Choline (total) Sulfate (free) −0.41
Choline (total) AdeP 0.49
Choline (total) SamR −0.49
Choline (total) Taurine −0.53

Free carnitine
Total carnitine

(carnitine +
acetyl-carnitine)

0.97

Total carnitine
(carnitine + acetyl-carnitine) Vitamin B5 −0.42

Total Carnitine
(carnitine + acetyl-carnitine) Serine 0.48

Epinephrine Norepinephrine 0.57
Epinephrine Serotonin 0.59
Epinephrine Acetylcholine 0.53
Epinephrine Sulfate (total) 0.71
Epinephrine Sulfate (free) 0.44

Epinephrine GABU 0.66
Norepinephrine Serotonin 0.59
Norepinephrine Acetylcholine 0.49
Norepinephrine Sulfate (total) 0.70
Norepinephrine GABU 0.74
Norepinephrine SamR 0.46

Serotonin Acetylcholine 0.43
Serotonin Sulfate (total) 0.75
Serotonin Sulfate (free) 0.51
Serotonin GABU 0.62

Acetylcholine Sulfate (total) 0.69
Acetylcholine Sulfate (free) 0.54
Acetylcholine Adenosine −0.54
Acetylcholine GABU 0.61
Acetylcholine SamR 0.59
Acetylcholine SAM/SAH 0.50
Sulfate (total) Sulfate (free) 0.65
Sulfate (total) GABU 0.70
Sulfate (total) SamR 0.49
Sulfate (total) SAM/SAH 0.53
Sulfate (total) Lithium 0.45
Sulfate (free) Adenosine −0.41
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Table A2. Cont.

Measurement 1 Measurement 2 Pearson Correlation
Coefficient

Sulfate (free) GABU 0.51
Sulfate (free) SAM/SAH 0.49

VDC Tin 0.40

Biotin Cadmium
(whole blood) 0.58

Biotin Calcium 0.52
Biotin Iron (RBC) −0.46
Biotin Thallium −0.46
Biotin Taurine 0.46
Biotin Glutamate 0.45
Biotin Vitamin B5 0.66

Adenosine SamR −0.53
Uridine SAM/SAH −0.58
GABU SamR 0.44
SamR SAM/SAH 0.71

Copper (WB) Copper (RBC) 0.70
Cadmium (whole blood) Calcium 0.64
Cadmium (whole blood) Iron (RBC) −0.56

Calcium Potassium −0.47
Calcium Phosphorus −0.59
Calcium Iron (RBC) −0.76

Potassium Phosphorus 0.71
Potassium Iron (RBC) 0.50
Potassium Taurine −0.40

Phosphorus Iron (RBC) 0.65
Iron (RBC) Taurine −0.48
Iron (RBC) Taurine −0.48

Magnesium Glutamate −0.42

Taurine Homocysteine +
homocystine −0.41

Tryptophan Vitamin B5 0.43
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Reduction in Intestinal Bacteria. Cells 2020, 9, 698. [CrossRef] [PubMed]

42. Lefter, R.; Ciobica, A.; Timofte, D.; Stanciu, C.; Trifan, A. A Descriptive Review on the Prevalence of Gastrointestinal Disturbances
and Their Multiple Associations in Autism Spectrum Disorder. Medicina 2019, 56, 11. [CrossRef] [PubMed]

43. Hughes, H.K.; Rose, D.; Ashwood, P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr. Neurol. Neurosci.
Rep. 2018, 18, 81. [CrossRef] [PubMed]

44. Kang, D.-W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-
Means, S.; et al. Microbiota Transfer Therapy Alters Gut Ecosystem and Improves Gastrointestinal and Autism Symptoms: An
Open-Label Study. Microbiome 2017, 5, 10. [CrossRef]

45. Santocchi, E.; Guiducci, L.; Prosperi, M.; Calderoni, S.; Gaggini, M.; Apicella, F.; Tancredi, R.; Billeci, L.; Mastromarino, P.;
Grossi, E.; et al. Effects of Probiotic Supplementation on Gastrointestinal, Sensory and Core Symptoms in Autism Spectrum
Disorders: A Randomized Controlled Trial. Front. Psychiatry 2020, 11, 550593. [CrossRef]

46. Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12 Folate, and the Methionine Remethylation Cycle—Biochemistry,
Pathways, and Regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [CrossRef]

47. James, S.J. Autism and Folate-Dependent One-Carbon Metabolism: Serendipity and Critical Branch-Point Decisions in Science.
Glob. Adv. Health Med. 2013, 2, 48–51. [CrossRef]

48. Howsmon, D.P.; Vargason, T.; Rubin, R.A.; Delhey, L.; Tippett, M.; Rose, S.; Bennuri, S.C.; Slattery, J.C.; Melnyk, S.; James, S.J.; et al.
Multivariate Techniques Enable a Biochemical Classification of Children with Autism Spectrum Disorder versus Typically-
Developing Peers: A Comparison and Validation Study. Bioeng. Transl. Med. 2018, 3, 156–165. [CrossRef]

49. Ryberg, K.H. Evidence for the Implementation of the Early Start Denver Model for Young Children with Autism Spectrum
Disorder. J. Am. Psychiatr. Nurses Assoc. 2015, 21, 327–337. [CrossRef]

50. Schreibman, L.; Dawson, G.; Stahmer, A.C.; Landa, R.; Rogers, S.J.; McGee, G.G.; Kasari, C.; Ingersoll, B.; Kaiser, A.P.;
Bruinsma, Y.; et al. Naturalistic Developmental Behavioral Interventions: Empirically Validated Treatments for Autism Spectrum
Disorder. J. Autism Dev. Disord. 2015, 45, 2411–2428. [CrossRef]

51. Guo, B.Q.; Ding, S.B.; Li, H.B. Blood biomarker levels of methylation capacity in autism spectrum disorder: A systematic review
and meta-analysis. Acta Psychiatr. Scand. 2020, 141, 492–509. [CrossRef] [PubMed]

52. Vargason, T.; Roth, E.; Grivas, G.; Ferina, J.; Frye, R.E.; Hahn, J. Classification of Autism Spectrum Disorder from Blood
Metabolites: Robustness to the Presence of Co-Occurring Conditions. Res. Autism Spectr. Disord. 2020, 77, 101644. [CrossRef]

53. Adams, J.; Howsmon, D.P.; Kruger, U.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.; Mitchell, J.; Ingram, J.; Hellmers, R.; et al.
Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross
Validation. PLoS ONE 2017, 12, e0169526. [CrossRef] [PubMed]

54. Li, N.; Yang, J.; Zhang, J.; Liang, C.; Wang, Y.; Chen, B.; Zhao, C.; Wang, J.; Zhang, G.; Zhao, D.; et al. Correlation of Gut
Microbiome Between ASD Children and Mothers and Potential Biomarkers for Risk Assessment. Genom. Proteom. Bioinform. 2019,
17, 26–38. [CrossRef]

55. Qureshi, F.; Adams, J.; Coleman, D.; Quig, D.; Hahn, J. Urinary Essential Elements of Young Children with Autism Spectrum
Disorder and Their Mothers. Res. Autism Spectr. Disord. 2020, 72, 101518. [CrossRef]

56. Ranjan, S.; Nasser, J.A. Nutritional status of individuals with autism spectrum disorders: Do we know enough? Adv. Nutr. 2015,
6, 397–407. [CrossRef]

57. De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.;
Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder
not otherwise specified. PLoS ONE 2013, 8, e76993. [CrossRef]

58. Russo, A.J.; Bazin, A.P.; Bigega, R.; Carlson, R.S.; Cole, M.G.; Contreras, D.C.; Galvin, M.B.; Gaydorus, S.S.; Holik, S.D.;
Jenkins, G.P.; et al. Plasma copper and zinc concentration in individuals with autism correlate with selected symptom severity.
Nutr. Metab. Insights 2012, 5, 41–47. [CrossRef]

59. Noto, A.; Fanos, V.; Barberini, L.; Grapov, D.; Fattuoni, C.; Zaffanello, M.; Casanova, A.; Fenu, G.; De Giacomo, A.;
De Angelis, M.; et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings.
J. Matern. Fetal Neonatal Med. 2014, 27 (Suppl. S2), 46–52. [CrossRef]

60. Audhya, T.; Adams, J.B.; Johansen, L. Correlation of Serotonin Levels in CSF, Platelets, Plasma, and Urine. Biochim. Biophys. Acta
Gen. Subj. 2012, 1820, 1496–1501. [CrossRef]

http://doi.org/10.1007/s10528-012-9550-0
http://doi.org/10.1021/acs.jproteome.5b00699
http://doi.org/10.1016/j.neuroscience.2016.03.013
http://doi.org/10.3390/nu11030521
http://doi.org/10.3390/cells9030698
http://www.ncbi.nlm.nih.gov/pubmed/32178484
http://doi.org/10.3390/medicina56010011
http://www.ncbi.nlm.nih.gov/pubmed/31892195
http://doi.org/10.1007/s11910-018-0887-6
http://www.ncbi.nlm.nih.gov/pubmed/30251184
http://doi.org/10.1186/s40168-016-0225-7
http://doi.org/10.3389/fpsyt.2020.550593
http://doi.org/10.1002/jimd.12009
http://doi.org/10.7453/gahmj.2013.088
http://doi.org/10.1002/btm2.10095
http://doi.org/10.1177/1078390315608165
http://doi.org/10.1007/s10803-015-2407-8
http://doi.org/10.1111/acps.13170
http://www.ncbi.nlm.nih.gov/pubmed/32173856
http://doi.org/10.1016/j.rasd.2020.101644
http://doi.org/10.1371/journal.pone.0169526
http://www.ncbi.nlm.nih.gov/pubmed/28068407
http://doi.org/10.1016/j.gpb.2019.01.002
http://doi.org/10.1016/j.rasd.2020.101518
http://doi.org/10.3945/an.114.007914
http://doi.org/10.1371/journal.pone.0076993
http://doi.org/10.4137/NMI.S8761
http://doi.org/10.3109/14767058.2014.954784
http://doi.org/10.1016/j.bbagen.2012.05.012


J. Pers. Med. 2022, 12, 923 26 of 27

61. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

62. Salgado, C.M.; Azevedo, C.; Proença, H.; Vieira, S.M. Missing Data. In Secondary Analysis of Electronic Health Records; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 143–162. [CrossRef]

63. Kontopantelis, E.; White, I.R.; Sperrin, M.; Buchan, I. Outcome-Sensitive Multiple Imputation: A Simulation Study. BMC Med.
Res. Methodol. 2017, 17, 2. [CrossRef] [PubMed]

64. Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
65. Janssens, A.C.J.W.; Aulchenko, Y.S.; Elefante, S.; Borsboom, G.J.J.M.; Steyerberg, E.W.; van Duijn, C.M. Predictive Testing for

Complex Diseases Using Multiple Genes: Fact or Fiction? Genet. Med. 2006, 8, 395–400. [CrossRef]
66. Essa, M.M.; Braidy, N.; Waly, M.I.; Al-Farsi, Y.M.; Al-Sharbati, M.; Subash, S.; Amanat, A.; Al-Shaffaee, M.A.; Guillemin, G.J.

Impaired Antioxidant Status and Reduced Energy Metabolism in Autistic Children. Res. Autism Spectr. Disord. 2013, 7, 557–565.
[CrossRef]

67. Aaron, E.; Montgomery, A.; Ren, X.; Guter, S.; Anderson, G.; Carneiro, A.M.D.; Jacob, S.; Mosconi, M.; Pandey, G.N.; Cook, E.; et al.
Whole Blood Serotonin Levels and Platelet 5-HT2A Binding in Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 49,
2417–2425. [CrossRef]

68. Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The Serotonin System in Autism Spectrum Disorder: From Biomarker to
Animal Models. Neuroscience 2016, 321, 24–41. [CrossRef]

69. Deutsch, S.I.; Urbano, M.R.; Neumann, S.A.; Burket, J.A.; Katz, E. Cholinergic Abnormalities in Autism. Clin. Neuropharmacol.
2010, 33, 114–120. [CrossRef]

70. Horder, J.; Petrinovic, M.M.; Mendez, M.A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G.J.; Künnecke, B.; Murphy, D.G.
Glutamate and GABA in Autism Spectrum Disorder—A Translational Magnetic Resonance Spectroscopy Study in Man and
Rodent Models. Transl. Psychiatry 2018, 8, 106. [CrossRef]

71. Hollowood-Jones, K.; Adams, J.B.; Coleman, D.M.; Ramamoorthy, S.; Melnyk, S.; James, S.J.; Woodruff, B.K.; Pollard, E.L.;
Snozek, C.L.; Kruger, U.; et al. Altered Metabolism of Mothers of Young Children with Autism Spectrum Disorder: A Case
Control Study. BMC Pediatr. 2020, 20, 557. [CrossRef]

72. Filipek, P.A.; Juranek, J.; Nguyen, M.T.; Cummings, C.; Gargus, J.J. Relative Carnitine Deficiency in Autism. J. Autism Dev. Disord.
2004, 34, 615–623. [CrossRef] [PubMed]

73. Tanianskii, D.; Jarzebska, N.; Birkenfeld, A.; O’Sullivan, J.; Rodionov, R. Beta-Aminoisobutyric Acid as a Novel Regulator of
Carbohydrate and Lipid Metabolism. Nutrients 2019, 11, 524. [CrossRef]

74. Cheng, N.; Rho, J.M.; Masino, S.A. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment
Approaches. Front. Mol. Neurosci. 2017, 10, 34. [CrossRef] [PubMed]

75. Rosato, A.; Tenori, L.; Cascante, M.; De Atauri Carulla, P.R.; dos Santos, V.A.P.M.; Saccenti, E. From Correlation to Causation:
Analysis of Metabolomics Data Using Systems Biology Approaches. Metabolomics 2018, 14, 37. [CrossRef] [PubMed]

76. Hanley, H.G. Hyperserotonemia and Amine Metabolites in Autistic and Retarded Children. Arch. Gen. Psychiatry 1977, 34, 521.
[CrossRef]

77. Anderson, G.M.; Horne, W.C.; Chatterjee, D.; Cohen, D.J. The Hyperserotonemia of Autism. Ann. N. Y. Acad. Sci. 1990, 600,
331–340. [CrossRef]

78. Marler, S.; Ferguson, B.J.; Lee, E.B.; Peters, B.; Williams, K.C.; McDonnell, E.; Macklin, E.A.; Levitt, P.; Gillespie, C.H.;
Anderson, G.M.; et al. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder.
J. Autism Dev. Disord. 2016, 46, 1124–1130. [CrossRef]

79. Andersson, M.; Tangen, Ä.; Farde, L.; Bölte, S.; Halldin, C.; Borg, J.; Lundberg, J. Serotonin Transporter Availability in Adults with
Autism—A Positron Emission Tomography Study. Mol. Psychiatry 2021, 26, 1647–1658. [CrossRef]

80. Israelyan, N.; Margolis, K.G. Reprint of: Serotonin as a Link between the Gut-Brain-Microbiome Axis in Autism Spectrum
Disorders. Pharmacol. Res. 2019, 140, 115–120. [CrossRef]

81. Tsujiguchi, H.; Miyagi, S.; Nguyen, T.T.T.; Hara, A.; Ono, Y.; Kambayashi, Y.; Shimizu, Y.; Nakamura, H.; Suzuki, K.;
Suzuki, F.; et al. Relationship between Autistic Traits and Nutrient Intake among Japanese Children and Adolescents.
Nutrients 2020, 12, 2258. [CrossRef]

82. Higazi, A.M.; Kamel, H.M.; Abdel-Naeem, E.A.; Abdullah, N.M.; Mahrous, D.M.; Osman, A.M. Expression Analysis of Selected
Genes Involved in Tryptophan Metabolic Pathways in Egyptian Children with Autism Spectrum Disorder and Learning
Disabilities. Sci. Rep. 2021, 11, 6931. [CrossRef] [PubMed]

83. Gevi, F.; Zolla, L.; Gabriele, S.; Persico, A.M. Urinary Metabolomics of Young Italian Autistic Children Supports Abnormal
Tryptophan and Purine Metabolism. Mol. Autism 2016, 7, 47. [CrossRef] [PubMed]

84. Anderson, G.; Maes, M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-Inflammation,
Autoimmunity and the Amygdala. Curr. Neuropharmacol. 2014, 12, 148–167. [CrossRef] [PubMed]

85. Boccuto, L.; Chen, C.-F.; Pittman, A.R.; Skinner, C.D.; McCartney, H.J.; Jones, K.; Bochner, B.R.; Stevenson, R.E.; Schwartz, C.E.
Decreased Tryptophan Metabolism in Patients with Autism Spectrum Disorders. Mol. Autism 2013, 4, 16. [CrossRef]

http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1007/978-3-319-43742-2_13
http://doi.org/10.1186/s12874-016-0281-5
http://www.ncbi.nlm.nih.gov/pubmed/28068910
http://doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://doi.org/10.1097/01.gim.0000229689.18263.f4
http://doi.org/10.1016/j.rasd.2012.12.006
http://doi.org/10.1007/s10803-019-03989-z
http://doi.org/10.1016/j.neuroscience.2015.11.010
http://doi.org/10.1097/WNF.0b013e3181d6f7ad
http://doi.org/10.1038/s41398-018-0155-1
http://doi.org/10.1186/s12887-020-02437-7
http://doi.org/10.1007/s10803-004-5283-1
http://www.ncbi.nlm.nih.gov/pubmed/15679182
http://doi.org/10.3390/nu11030524
http://doi.org/10.3389/fnmol.2017.00034
http://www.ncbi.nlm.nih.gov/pubmed/28270747
http://doi.org/10.1007/s11306-018-1335-y
http://www.ncbi.nlm.nih.gov/pubmed/29503602
http://doi.org/10.1001/archpsyc.1977.01770170031002
http://doi.org/10.1111/j.1749-6632.1990.tb16893.x
http://doi.org/10.1007/s10803-015-2646-8
http://doi.org/10.1038/s41380-020-00868-3
http://doi.org/10.1016/j.phrs.2018.12.023
http://doi.org/10.3390/nu12082258
http://doi.org/10.1038/s41598-021-86162-w
http://www.ncbi.nlm.nih.gov/pubmed/33767242
http://doi.org/10.1186/s13229-016-0109-5
http://www.ncbi.nlm.nih.gov/pubmed/27904735
http://doi.org/10.2174/1570159X11666131120223757
http://www.ncbi.nlm.nih.gov/pubmed/24669209
http://doi.org/10.1186/2040-2392-4-16


J. Pers. Med. 2022, 12, 923 27 of 27

86. Mussap, M.; Siracusano, M.; Noto, A.; Fattuoni, C.; Riccioni, A.; Rajula, H.S.R.; Fanos, V.; Curatolo, P.; Barberini, L.; Mazzone, L.
The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity. Metabolites 2020, 10, 476.
[CrossRef] [PubMed]

87. Khemakhem, A.M.; Frye, R.E.; El-Ansary, A.; Al-Ayadhi, L.; Bacha, A. Ben. Novel Biomarkers of Metabolic Dysfunction Is Autism
Spectrum Disorder: Potential for Biological Diagnostic Markers. Metab. Brain Dis. 2017, 32, 1983–1997. [CrossRef]

88. Yang, T.; Zhu, J.; Li, Q.; Chen, L.; Wu, L.-J.; Jia, F.-Y.; Hao, Y.; Ke, X.-Y.; Yi, M.-J.; Jin, C.-H.; et al. China Multi-Center Preschool
Autism Project (CMPAP): Design and Methodologies to Identify Clinical Symptom Features and Biomarkers of Autism Spectrum
Disorders. Front. Psychiatry 2021, 11, 613519. [CrossRef]

89. Bridgemohan, C.; Cochran, D.M.; Howe, Y.J.; Pawlowski, K.; Zimmerman, A.W.; Anderson, G.M.; Choueiri, R.; Sices, L.;
Miller, K.J.; Ultmann, M.; et al. Investigating Potential Biomarkers in Autism Spectrum Disorder. Front. Integr. Neurosci. 2019,
13, 31. [CrossRef]

90. Pierce, K.; Gazestani, V.H.; Bacon, E.; Barnes, C.C.; Cha, D.; Nalabolu, S.; Lopez, L.; Moore, A.; Pence-Stophaeros, S.; Courchesne,
E. Evaluation of the Diagnostic Stability of the Early Autism Spectrum Disorder Phenotype in the General Population Starting at
12 Months. JAMA Pediatr. 2019, 173, 578. [CrossRef]

91. McCarty, P.; Frye, R.E. Early Detection and Diagnosis of Autism Spectrum Disorder: Why Is It So Difficult? Semin. Pediatr. Neurol.
2020, 35, 100831. [CrossRef]

92. Ning, M.; Daniels, J.; Schwartz, J.; Dunlap, K.; Washington, P.; Kalantarian, H.; Du, M.; Wall, D.P. Identification and Quantification
of Gaps in Access to Autism Resources in the United States: An Infodemiological Study. J. Med. Internet Res. 2019, 21, e13094.
[CrossRef] [PubMed]

93. Delaye, J.-B.; Patin, F.; Lagrue, E.; Le Tilly, O.; Bruno, C.; Vuillaume, M.-L.; Raynaud, M.; Benz-De Bretagne, I.; Laumonnier, F.;
Vourc’h, P.; et al. Post Hoc Analysis of Plasma Amino Acid Profiles: Towards a Specific Pattern in Autism Spectrum Disorder and
Intellectual Disability. Ann. Clin. Biochem. Int. J. Lab. Med. 2018, 55, 543–552. [CrossRef]

94. Main, P.A.; Angley, M.T.; O’Doherty, C.E.; Thomas, P.; Fenech, M. The Potential Role of the Antioxidant and Detoxification
Properties of Glutathione in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Nutr. Metab. 2012, 9, 35.
[CrossRef] [PubMed]

95. Chen, L.; Shi, X.-J.; Liu, H.; Mao, X.; Gui, L.-N.; Wang, H.; Cheng, Y. Oxidative Stress Marker Aberrations in Children with Autism
Spectrum Disorder: A Systematic Review and Meta-Analysis of 87 Studies (N = 9109). Transl. Psychiatry 2021, 11, 15. [CrossRef]
[PubMed]

96. El-Ansary, A.; Hassan, W.M.; Daghestani, M.; Al-Ayadhi, L.; Ben Bacha, A. Preliminary Evaluation of a Novel Nine-Biomarker
Profile for the Prediction of Autism Spectrum Disorder. PLoS ONE 2020, 15, e0227626. [CrossRef]
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