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Near wall Prandtl number effects 
on velocity gradient invariants 
and flow topologies in turbulent 
Rayleigh–Bénard convection
Sahin Yigit1*, Josef Hasslberger1, Markus Klein1 & Nilanjan Chakraborty2

The statistical behaviours of the invariants of the velocity gradient tensor and flow topologies for 
Rayleigh–Bénard convection of Newtonian fluids in cubic enclosures have been analysed using Direct 
Numerical Simulations (DNS) for a range of different values of Rayleigh (i.e. Ra = 10

7

− 10
9 ) and 

Prandtl (i.e. Pr = 1 and 320) numbers. The behaviours of second and third invariants of the velocity 
gradient tensor suggest that the bulk region of the flow at the core of the domain is vorticity-
dominated whereas the regions in the vicinity of cold and hot walls, in particular in the boundary 
layers, are found to be strain rate-dominated and this behaviour has been found to be independent 
of the choice of Ra and Pr values within the range considered here. Accordingly, it has been found 
that the focal topologies S1 and S4 remain predominant in the bulk region of the flow and the volume 
fraction of nodal topologies increases in the vicinity of the active hot and cold walls for all cases 
considered here. However, remarkable differences in the behaviours of the joint probability density 
functions (PDFs) between second and third invariants of the velocity gradient tensor (i.e. Q and R) 
have been found in response to the variations of Pr. The classical teardrop shape of the joint PDF 
between Q and R has been observed away from active walls for all values of Pr, but this behavior 
changes close to the heated and cooled walls for high values of Pr (e.g. Pr = 320 ) where the joint 
PDF exhibits a shape mirrored at the vertical Q-axis. It has been demonstrated that the junctions at 
the edges of convection cells are responsible for this behaviour for Pr = 320 , which also increases 
the probability of finding S3 topologies with large negative magnitudes of Q and R. By contrast, this 
behaviour is not observed in the Pr = 1 case and these differences between flow topology distributions 
in Rayleigh–Bénard convection in response to Pr suggest that the modelling strategy for turbulent 
natural convection of gaseous fluids may not be equally well suited for simulations of turbulent natural 
convection of liquids with high values of Pr.

Rayleigh–Bénard configuration is one of the most well-known natural convection problems in enclosed spaces 
where buoyancy-driven fluid motion takes place between differentially heated horizontal walls with the heated 
bottom wall. This configuration has been widely analysed because of its conceptual simplicity and relevance to 
several applications ranging from astrophysics, geophysics and meteorology to process industries. Interested 
readers can be referred to Bodenschatz et al.1 for an extensive review in Rayleigh–Bénard convection. Recently, 
immense heat transport enhancement (e.g. 500 %) was reported for Rayleigh–Bénard convection applications, 
by using water-heavy liquid (hydrofluoroether)  mixture2 and vibration-induced boundary-layer  destabilization3.

The flow becomes turbulent for high values of Rayleigh number Ra = ρ2cpgβ�TL3/µk where ρ, cp,β ,µ 
and k are density, specific heat, volume expansion coefficient, viscosity and thermal conductivity, respectively 
and g, �T and L are the acceleration due to gravity, temperature difference between hot and cold walls and the 
enclosure height, respectively in the Rayleigh–Bénard convection. In the aforementioned applications, turbulent 
Rayleigh–Bénard convection is obtained for fluids with different Prandtl numbers Pr = µ cp/ k (e.g. Pr ≈ 1 is 
relevant to weather predictions, whereas Pr ≫ 1 is relevant to geophysics and process industries).
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The relative thicknesses of hydrodynamic and thermal boundary layers is dependent on Pr, which is known 
to affect the scalar spectrum and it is possible to obtain roll-off of the scalar spectrum in the inertial range and an 
inertial-diffusive range is obtained for Pr < 14. By contrast, the roll-off of the scalar spectrum is obtained for the 
length scales smaller than the Kolmogorov length scale and a viscous-diffusive range is observed for the scalar 
spectrum for Pr ≫ 14. As the temperature distribution in turbulent flows is affected by Pr, it can be expected 
that the velocity distribution in natural convection will also be affected by Pr because the flow is induced by the 
temperature difference.

The Prandtl number has indeed been shown to affect the turbulent kinetic energy spectrum in a recent 
analysis by the present  authors5. However, the Prandtl number of the fluid does not only affect the distribution 
of turbulent kinetic energy in Rayleigh–Bénard convection but also has the potential to alter the distribution of 
flow topologies, as they can be categorised in terms of the invariants of the velocity gradient ∂ui/∂xj tensor (i.e. 
P, Q and R) where ui is the ith component of the velocity  vector6,7. Depending on the values of the invariants of 
the velocity gradient ∂ ui/∂ xj tensor, 8 different topologies (i.e. S1–S8 topologies) can be identified in the three-
dimensional P, Q, R phase space. The velocity-gradient tensor can be split into symmetric and skew-symmetric 
parts: Aij = ∂ui/∂xj = Sij +Wij , where Sij = 0.5(Aij + Aji) and Wij = 0.5

(

Aij − Aji

)

 are the symmetric and 
skew-symmetric components, which are referred to as strain and rotation rates, respectively. Three eigenvalues, 
�1 , �2 and �3 , of Aij can be obtained from solutions of the characteristic equation �3 + P�2 + Q�+ R = 0 where 
P, Q, R are the invariants of Aij

6,7:

The discriminant, D =
[

27R2 +
(

4P3 − 18PQ
)

R + 4Q3 − P2Q2
]

/108 , of the characteristic equation divides 
the P − Q − R phase-space into two regions depending on the sign of the discriminant. For D > 0 (D < 0) , 
a focal (nodal) topology is  obtained6,7 and the velocity gradient tensor exhibits one real eigenvalue and 
two complex conjugate eigenvalues for focal topologies, whereas three real eigenvalues are obtained 
for nodal topologies. The solutions of D = 0 are given by two surfaces in  the P − Q − R phase  space6,7: 
r1a = P

(

Q − 2P2/9
)

/3− 2
(

−3Q + P2
)3/2

/27 and r1b = P
(

Q − 2P2/9
)

/3+ 2
(

−3Q + P2
)3/2

/27 . For a posi-
tive discriminant (i.e. D > 0 ), the Aij tensor has purely imaginary eigenvalues on the surface r2 , which is given 
by R = PQ . The surfaces r1a , r1b and r2 , divide the P − Q − R phase space into eight flow topologies. The first 
invariant P = −∂ui/∂xi of the velocity gradient tensor vanishes for incompressible fluids, and therefore only 
topologies S1–S4 are observed for P = 0 , as shown in Fig. 1. Therefore, in Rayleigh–Bénard convection of 
incompressible fluids the flow topologies are determined by the behaviours of the second and third invariants 
(i.e. Q and R) of the velocity gradient  tensor6,7 and only S1–S4 topologies can be seen.

The flow structures associated with S1–S4 topologies are schematically shown in Fig. 1c. One aspect of this 
work focuses on flow topologies close to the active walls and therefore only the upper part (above the horizontal 
plane crossing the origin of the coordinate system) of the velocity field is shown in Fig. 1, representative of a situ-
ation close to the lower wall, but in principle it can be mirrored at the horizontal plane (see e.g. Ref.8). It has been 
demonstrated by Perry and  Chong6 and Soria et al.9 that S4 topologies are obtained predominantly for positive 
values of Q, whereas Blackburn et al.10 demonstrated that the topologies S2 and S4 are predominantly obtained 
in the regions away from the wall in boundary layer flows. The ‘teardrop’ structure in the joint probability den-
sity function (PDF) between Q and R has been demonstrated by Chong et al.7 and Chacin and  Cantwell11. The 
analysis by Ooi et al.12 and experimental  evidences11,13 suggested that the same qualitative behaviour is observed 
in a range of different incompressible turbulent flows indicating some degree of universality in the joint PDFs 
between Q and R. The theoretical justifications of the ‘teardrop’ shape of the Q − R joint PDF for incompressible 
flows have been provided by Elsinga and  Marusic14 and the loss of ‘teardrop’ structure was shown to be a mark 
of intermittency in some previous  analyses15.  Tsinober16 postulated that the enstrophy production is large in S4 
topology whereas the strain rate production is concentrated in regions of S1 topology. The flow topology distribu-
tions in Rayleigh–Bénard convection, where temperature and velocity fields are intrinsically coupled, are yet to 
be analysed in  detail17–20 in comparison to the vast body of literature (e.g. Refs.5–16) on other wall-bounded flows.

The analyses by Dabbagh et al.17–19 revealed the existence of the teardrop shape in the bulk region away from 
the walls in Rayleigh–Bénard convection but the small scale structures in the vicinity of the hot and cold walls 
have not been discussed there in terms of Q and R. Xi et al.20 reported a transition of flow topologies from a 
quadruple structure to a dipole structure based on Rayleigh number in turbulent Rayleigh–Bénard convection, 
which has implications on the Nusselt number (or heat transfer rate). A recent analysis revealed that large-scale 
circulation in Rayleigh–Bénard convection is affected by Prandtl  number21. However, the effects of Prandtl num-
ber on the flow topology are yet to be analysed and the present work addresses this gap in the existing literature. 
In this respect, the main objectives of the present analysis are: (a) to demonstrate and explain the effects of Prandtl 
number on the statistical behaviours of Q and R and their joint PDFs and (b) to indicate the implications of the 
above findings on flow topology distribution for Rayleigh–Bénard convection of Newtonian fluids. According 
to Buckingham’s pi  theorem22, the Nusselt number Nu = h L/k , where h represents the convective heat transfer 
coefficient, can be taken to be a function of Ra and Pr (i.e. Nu = f (Ra, Pr) ) for Rayleigh–Bénard convection 
in a cubic enclosure. Therefore, three-dimensional Direct Numerical Simulations (DNS) of Rayleigh–Bénard 
convection in a cubic enclosure for different values of Ra (i.e. Ra = 107 − 109 ) and Prandtl number ( Pr = 1 
and 320) have been carried out in order to meet these objectives. It is worth noting that Pr = 320 corresponds 
for example to silicone oil at 20oC which exhibits Newtonian rheological  behaviour23.

The conservation equations for mass, momentum and energy for incompressible Newtonian fluids under 
transient conditions take the following form:

(1)
P = −(�1 + �2 + �3); Q = 0.5

(

(P2 − SijSij)+ (WijWij)
)

= Qs + Qw; R = (−P3 + 3PQ − SijSjkSki − 3WijWjkSki)/3
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The last term on the right-hand side of Eq. (3) originates due to Boussinesq’s approximation and the temperature 
difference between horizontal walls is considered to be small enough so that this approximation remains valid. 
Also, in Eq. (3), ν is the kinematic viscosity and the Kronecker delta ( δi2 ) indicates that buoyancy forces affect 
the flow only in the vertical direction (i.e. x2 direction). The reference temperature ( Tref  ) is taken to be the cold 
wall temperature (i.e. Tref = TC). In Eq. (4), α=k/(ρ cp) is the thermal diffusivity of the fluid.

Equations (2–4) are solved in a coupled manner in conjunction with the following boundary conditions. The 
simulation configuration is schematically shown in Fig. 1a which demonstrates that the differentially heated hori-
zontal walls are subjected to constant wall temperature boundary conditions (i.e. T = TH at x2 = 0 and T = TC 
at x2 = L where TH > TC ). All the other walls are considered to be adiabatic (i.e. ∂T/∂x1,3 = 0 at x1,3 = 0, L ). 
Finally, no-slip and impermeability conditions are specified for all walls (i.e. u1,2,3 = 0 at x1,2,3 = 0, L).

(2)∂ui/∂xi = 0;

(3)[∂ui/∂t + uj (∂ui/∂xj)] = −1/ρ (∂P/∂xi)+ ν [∂2ui/(∂xj ∂xj)] + g[β(T − Tref )] δi2;

(4)[∂T/∂t + uj (∂T/∂xj)] = α [∂2T/(∂xj ∂xj)].

Figure 1.  (a) Schematic diagram of the simulation domain. (b) Classification of topologies S1–S4. (c) Graphical 
representation of topologies S1–S4. Symbols correspond to UF unstable focus; UN unstable node; SN stable 
node; SF stable focus; C compressing; S saddle; ST stretching. The blue circles indicate the origin of the blue 
streamlines.
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Results
The instantaneous distributions of non-dimensional temperature θ = (T − TC)/(TH − TC) , non-dimensional 
horizontal velocity component U = u1L/α and non-dimensional vertical velocity component V = u2L/α in the 
x1 − x2 midplane are exemplarily shown in Fig. 2 for Ra = 108 in the case of Pr = 1 and 320. It can be seen from 
Fig. 2 that strong thermal gradients exist only within the thermal boundary layer close to the active walls and the 
temperature within the interior of the enclosure remains mostly uniform and close to θ = 0.5 . This behaviour is 
indicative of strong turbulent heat transfer in the bulk region of the domain and contrasts with a stratification 
with isotherms parallel to horizontal walls in the case of pure conduction (not shown here). Moreover, thermal 
plumes from the active hot and cold walls can be discerned in the Pr = 320 case, whereas this tendency is less 
prevalent for the Pr = 1 case where a large-scale circulation is evident. The strong convective transport within 
the cavity can be substantiated from the distributions of U and V in Fig. 2, which reveal that the lighter hot 
fluid in the vicinity of the hot bottom wall rises in the vertical direction and moves in the horizontal direction 
while transferring the heat to the cold wall and eventually sinks in the downward direction because of its higher 
density in comparison to the fluid underneath in the vicinity of the hot wall. Furthermore, Fig. 2 shows that for 
Pr = 320 the flow is mushroom-shaped plume-dominated with large scale vertical velocity structures, whereas 
more mixed (i.e. stronger turbulent) fluid flow prevails with a superimposed large scale circulation in the dis-
tributions of U and V for Pr = 1 . The turbulent flow strengthens with decreasing value of Pr for given value of 
Ra in the Rayleigh–Bénard  convection24. This actually can be explained by the increasing Grashof number (Gr, 
dimensionless number which indicates the ratio of buoyancy to viscous forces acting on a fluid) with decreasing 
Pr values for a given value of Ra (i.e. Gr = Ra/Pr ). Thus, higher values of Gr signify the relative augmentation 
of the buoyancy forces in the fluid domain.

The distributions of temperature and fluid velocities remain qualitatively similar for different values of Ra 
for a given value of Pr. However, the magnitude of fluid velocity increases with increasing Ra. Figure 2 indicates 
that distributions of temperature are affected by Pr, which is also reflected in a moderate influence of Pr on the 
mean Nusselt number (i.e. Nu ), which can be substantiated from Table 1.

Table 1.  Summary of the mean Nusselt number (i.e. Nu ) for different values of Ra and Pr of Rayleigh–Bénard 
convection of Newtonian fluids in a cubic enclosure.

Pr/Ra 10
7

10
8

10
9

1 16.39 31.61 62.56

320 17.43 32.80 64.33

Figure 2.  Instantaneous distributions of non-dimensional temperature θ (left column), non-dimensional 
horizontal velocity component U (middle column) and non-dimensional vertical velocity component V (right 
column) in a x1 − x2 plane for (a) Pr = 1 (top row), (b) Pr = 320 (bottom row) at Ra = 10

8.
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The mean Nusselt number is defined as a dimensionless heat flux averaged over horizontal walls and over 
time as follows:

where subscripts ‘wf ’ refers to the condition of the fluid in contact with the wall, Twall is the wall temperature 
and Tref  is the appropriate reference temperature, which can be taken to be the temperature of the other wall. 
In Eq. (5), the mean value of the Nusselt number on the walls (i.e. Nu ) is obtained by averaging convective heat 
transfer coefficients ( 〈h〉(A,t) ) over horizontal active walls and over time here.

The distributions of Q and R normalised by their standard deviations Q+ = Q/σ(Q) and R+ = R/σ(R) in 
the central x1 − x2 plane for Ra = 107 and 109 are shown for both Pr = 1 and 320 in Fig. 3. For incompressible 
fluids Q is given by: 0.5

(

−SijSij +WijWij

)

 and thus a positive (negative) value of Q is indicative of the vorticity-
dominated (strain rate-dominated) regions. It can be seen from Fig. 3 (top row) that the vorticity-dominated 
regions (i.e. Q+ > 0 ) are predominantly obtained in the central core of the enclosure away from the wall. By 
contrast, the strain rate dominated (i.e. Q+ < 0 ) regions are predominantly concentrated in the vicinity of the 
wall within the boundary layer.

The differences in the Q+ distributions between the near-wall region and away from the wall regions can be 
explained by the large scale or plume dominated mean flow as it is shown in Fig. 2. The flow in the bulk region 
is driven by the buoyant force, whereas large velocity gradients can be found predominantly in the boundary 
layer region (i.e. strain rate-dominated areas). Therefore, this difference between bulk and boundary layer region 
changes depending on the dominant physical mechanisms. The dissipation rate of kinetic energy E = 2νSijSij can 
be expressed as: E = ν(−4QS) with QS = −SijSij/2 which suggests that QS = 0.25(−E)/ν assumes large nega-
tive values in the regions where the dissipation rate of kinetic energy remains large within the boundary  layer25. 
The dissipation rate of kinetic energy weakens with increasing wall normal distance, and thus the magnitude 
of negative QS values decreases with increasing wall normal distance, which in turn increases the propensity of 
the positive semi-definite values of QW = WijWij/2 (i.e. QW ≥ 0 ) to overcome negative values of QS to yield 
positive values of Q = QS + QW away from the wall (i.e. in the bulk flow region in the middle of the enclosure).

For P = 0 , the third invariant R takes the form: R = (−SijSjkSki − 3WijWjkSki)/3 = (−SijSjkSki)/3− ωiωjSij/4 
where ωi is the ith component of vorticity. It is important to note that ( −SijSjkSki ) contributes to dissipation rate 
E = (2µ/ρ)SijSij = τij(∂ui/∂xj)/ρ generation (with τij being the component of the viscous stress tensor), whereas 
( ωiωjSij) contributes to the production rate of enstrophy (i.e. � = ωiωi/2 ). Therefore, the sign of the R indicates 
the competition and relative strengths of the enstrophy production rate and the dissipation rate  generation16. A 
comparison between Q+ and R+ fields in Fig. 3 reveals that in particular large negative values of Q+ are mostly 
associated with large positive values of R+ in the bulk region of the enclosure for both Pr = 1 and 320 and this is 
particularly prominent for Pr = 1 . However, the near-wall behaviour is different for different Prandtl numbers. 
In order to demonstrate this behaviour, the contours of joint probability density functions of Q+ and R+ in 
the bulk region (defined as Vbulk = {(x1, x2, x3)| 0.1 ≤ x1/L ≤ 0.9 & 0.1 ≤ x2/L ≤ 0.9 & 0.1 ≤ x3/L ≤ 0.9} ) 
and at the heated and cooled boundaries (i.e. in the volumes Vboundary = {(x1, x2, x3) | 0.1 ≤ x1/L
≤ 0.9 & 0.1 ≤ x3/L ≤ 0.9 & (x2/L ≤ 0.1 or x2/L ≥ 0.9)} ) are exemplarily shown for Ra = 108 in Fig. 4 in the 
case of both Pr = 1 and 320. Although Fig. 4 shows the expected and well-known teardrop shape suggesting 
predominance of S4 and S2 (and to some extent S1) topologies both in the bulk region away from the walls and 
at the hot and cold boundaries for Pr = 1 , the conventional teardrop shape is obtained only in the bulk region 
for Pr = 320 and the lower tail of the joint PDF flips from an unstable node-saddle-saddle S2 topology towards 

(5)h = |−k (∂T/∂x2)wf / (Twall − Tref )| ,Nu = (�h�(A,t) L)/ k,

Figure 3.  Instantaneous distributions of Q+ and R+ for different Pr values at (a) Ra = 10
7 and (b) Ra = 10

9 in 
the central x1 − x2 plane.
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a stable node-saddle-saddle topology S3 at the hot and cold walls. These differences in joint PDFs between Q and 
R are expected to have implications on the distribution of the flow topologies within the enclosure.

The variations of the volume fraction VF of flow topologies averaged in x1 − x3 planes in the vertical direc-
tion (i.e. x2-direction) are shown in Fig. 5 for Ra = 107 and 109 in the case of both Pr = 1 and 320. It can be seen 
from Fig. 5 that Pr = 320 (and to a lesser extent for Pr = 1 ), the volume fraction of S1 and S4 topologies is about 
40% in the bulk region, whereas the volume fraction of S2 and S3 is about 10% each within the bulk region of 
the domain regardless of Ra values. However, it is worth mentioning that the sum of both unstable and both 
stable topologies always seems to be very close to 50% for all values of Pr and Ra. This behaviour is consistent 
with the theoretical estimates by Hasslberger et al.26 assuming a symmetric population in Q − R space. Close to 
the boundaries the volume fractions of nodal topologies (S2, S3) increase, whereas the volume fractions of focal 
topologies (S1,S4) decrease.

Although results are shown only for Ra = 108 in Fig. 4, the distributions of Q − R joint PDFs are qualitatively 
similar for the range of Rayleigh numbers considered in this study ( 107 ≤ Ra ≤ 109 ). This can be substantiated 
from the distributions of flow topologies in the central x1 − x2 plane for Ra = 107 and 109 at Pr = 1 and 320, 
which are shown in Fig. 6. It can be seen from Fig. 6 that the focal topologies S1 and S4 are predominantly 
obtained in the bulk region at the interior of the domain, whereas the nodal topologies S2 and S3 are dominant 
in the vicinity of the hot and cold walls. This behaviour does not change with the variation in Rayleigh number 
within the Ra = 107 − 109 range considered here. However, the topology distribution in Fig. 6 suggests that the 
small-scale structures become more frequent for larger values of Rayleigh number and smaller values of Prandtl 
number which implies an increasing Grashof number.

In order to analyse the origin of the flipping of the tail of the joint PDF between Q and R towards the S3 
quadrant, the region close to the bottom heated wall at x2 = 0 is investigated further. The iso-surfaces of non-
dimensional temperature θ = 0.65 (for better visibility of the structures θ = 0.65 is used in Fig. 7a) coloured by 
non-dimensional vertical velocity V for Ra = 107, 108 and Pr = 1, 320 are shown in Fig. 7 (first row) together 
with the corresponding distributions of  Q+ and R+ and flow topologies on the θ = 0.85 isosurface (second to 
fourth row). The ridge like structures for Pr = 320 correspond to plume regions with large wall normal velocities 
directed away from the wall. The peaks where two ridges meet each other will subsequently be called junction 
points and a comparison with the flow topologies reveals that the junctions can be associated with topology S3. 
However, it can be seen that the S3 topology can also be observed in the valleys in between the ridges. In order to 
identify the origin of the reverse tail of the joint PDF between Q+ and R+ it is instructive to identify the regions 
with large negative values of Q+ and R+ and these quantities are mapped onto the iso-surfaces of non-dimensional 

Figure 4.  Contours of joint probability density functions of Q+ and R+ on a logarithmic scale in the bulk region 
(1st column) and at the heated and cooled boundaries (2nd column) for Ra = 10

8 in the case of (a) Pr = 1 , (b) 
Pr = 320.
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Figure 5.  Variations of the volume fraction VF of flow topologies averaged in x1 − x3 planes in the vertical 
direction (i.e. x2-direction) are shown for Ra = 10

7 (1st column) and 109 (2nd column) in the case of (a) Pr = 1 
and (b) 320.

Figure 6.  Instantaneous distrubitions of flow topologies in the central x1 − x2 plane for Ra = 10
7 and 109 at (a) 

Pr = 1 and (b) 320.
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temperature θ = 0.85 as well in Fig. 7. It becomes obvious from Fig. 7 that for Pr = 320 there is a one-to-one 
relation between the junctions and the locations responsible for exhibiting S3 topology which is observed for 
the lower-left tail of the joint PDF between Q+ and R+ (i.e. for large negative Q+ and R+).

Figure 2 reveals that isolated plumes drive the convection process in the Pr = 320 case, whereas frequent roll 
ups in the Pr = 1 case are indicative of a large-scale circulation. This is further illustrated in Fig. 8 showing the 
variation of non-dimensional temperature iso-surfaces θ = 0.4 and  θ = 0.6 together with path lines coloured 
by non-dimensional vertical velocity magnitude for different Pr, exemplarily at Ra = 107 . This behaviour is 
consistent with previous findings by van der Poel et al.21 and Verzicco and  Camussi27. Figure 7 further reveals 
that it is rare to obtain simultaneous occurrences of large negative values of Q+ and R+ in the near wall region for 

Figure 7.  (a) Iso-surface of non-dimensional temperature θ = 0.65 coloured by non-dimensional vertical 
velocity V for Ra = 10

8 in the case of Pr = 1 (1st column) and Pr = 320 (2nd column). Distributions of (b) Q+ 
(second row), (c) R+ (third row) and (d) flow topologies (fourth row), on the θ = 0.85 iso-surface for Ra = 10

8 
in the case of Pr = 1 (1st column) and Pr = 320 (2nd column).
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Pr = 1 , and accordingly the S3 topology is rare (and S2 is dominant, cf. VF profiles in Fig. 5) in the vicinity of the 
wall in particular in connection with large negative values of Q+ and R+ . An extraction of local flow structures 
with large negative values of Q+ and R+ (not shown here) reveals that that the local flow structures responsible 
for the S3 tail of the joint PDF can indeed only be found in the vicinity to the active walls for Pr = 320 and such 
structures are entirely absent for Pr = 1 . A comparison between the schematic flow diagram in Figs. 1 and 7 
reveals that the plumes in the Pr = 320 case are representative of the S3 topology and thus the occurrence of S3 
with large negative values of Q+ and R+ are more likely in this value of Pr, which is also reflected in the flipping 
of the tail of the joint PDF between Q+ and R+ to the quadrant of S3 topology. As the convection is driven by 
large-scale circulation in the Pr = 1 case, the occurrences of S3 topology with large negative values of Q+ and 
R+ are either rare or absent.      

Summary
The statistical behaviours of the invariants of the velocity gradient tensor and flow topologies in turbulent Ray-
leigh–Bénard convection of Newtonian fluids in cubic enclosures have been investigated using three-dimensional 
Direct Numerical Simulations (DNS) for a range of different Rayleigh (i.e. Ra = 107 − 109 ) and Prandtl numbers 
(i.e. Pr = 1 and 320). It has been found that the convection in the case of large values of Pr is plume-dominated, 
whereas a large-scale circulation in the enclosure has been found for Pr = 1 . The focal topologies S1 and S4 
have been found to be the two dominant topologies in the bulk region, whereas the probabilities of obtaining 
nodal topologies S2 and S3 increase in the vicinity of the active hot and cold walls. The proportion of different 
flow topologies in the bulk region has been found to be consistent with a previous analytical  study27 assum-
ing a symmetric population in the two-dimensional phase space based on second and third invariants of the 
velocity gradient tensor (i.e. Q and R). The classical teardrop shape of the joint PDF between Q and R has been 
observed away from active walls, but this behavior changes close to the heated and cooled walls where the joint 
PDF depicts a shape mirrored at the vertical Q-axis for large values of Prandtl number (e.g. Pr = 320 ). It has 
been demonstrated that junctions, at the edges of convection cells arising from plume-dominated convection, 
are responsible for this behavior for Pr = 320 . This behaviour is not present in the Pr = 1 case due to the convec-
tion driven by a large-scale circulation. The differences between flow topology distributions in Rayleigh–Bénard 
convection in response to Pr suggest that turbulence modelling of natural convection possibly should explicitly 
account for Prandtl number effects. Therefore, the modelling methodologies for simulations of turbulent natural 
convection of gaseous fluids may not be equally well-suited for natural convection of liquids with large values 
of Prandtl number.

Figure 8.  (a) Non-dimensional temperature iso-surfaces θ = 0.4 , θ = 0.6 shown with blue and yellow colour, 
respectively. (b) Path lines coloured by non-dimensional vertical velocity magnitude (i.e. V = u2L/α ) for 
different Pr at Ra = 10

7.
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Methods
The governing equations of mass, momentum and energy conservation equations have been solved in a finite-
volume framework using an open-source CFD package OpenFOAM. For these computations pressure–velocity 
coupling has been addressed by the use of the PIMPLE algorithm. The convective and diffusive fluxes are evalu-
ated using second-order central difference schemes. The temporal advancement has been carried out using the 
second-order Crank-Nicolson scheme in conjunction with adaptive time-stepping for the sake of computational 
economy. It has been ensured that the Courant number is always below unity so that the simulations have 
enough temporal resolution. Ideally, the grid size �x for DNS of Rayleigh–Bénard convection should satisfy 
�x < min(〈ηK 〉, 〈ηB〉) where 〈ηK 〉 is the Kolmogorov length scale and 〈ηB〉 is the Batchelor length scale. These 
length scales are defined as:

where �ǫ� = �2ν S′ij S′ij� is the mean kinetic energy dissipation rate with the angled bracket indicating a vol-
ume–time averaging technique. Here, S′ij is the strain rate component based on the fluctuating velocity field and 
ν is the kinematic viscosity. The mean Kolmogorov scale 〈ηK 〉 is the smallest length scale of turbulence when 
ν ≤ α (i.e. Pr ≤ 1 ). In case of ν > α (i.e. Pr > 1 ), the smallest length scale is determined by the dissipation rate 
�ǫT � = �α (∇T ′)2� of scalar variance, and is represented by the Batchelor scale 〈ηB〉4. Criteria proposed by Grötz-
bach28 and Shishkina et al.29 have been used for determining the initial non-dimensional mesh size ( �x/L ), along 
with the corresponding Nu correlations suggested by Refs.23,30.

Additionally, Grötzbach28 suggested that at least three grid points should be placed in the viscous boundary 
layers to estimate the realistic Nusselt number. Verzicco and  Camussi31 and Stevens et al.32 found that the num-
ber of nodes that should be placed in the thermal and hydrodynamic boundary layers increases with increas-
ing Gr. Based on this, the Pr = 1 cases are more critical in terms of grid resolution than the Pr = 320 cases, 
because the values of Gr are much higher for Pr = 1 cases than the one in the Pr = 320 cases for the same 
set of Ra (i.e. Gr = Ra/Pr ). Lam et al.33 proposed a correlation for the normalised viscous layer thickness as 
δ/L = 0.65 Gr−0.16Pr0.08 = 0.65Ra−0.16Pr0.24 based on experimental analysis of turbulent Rayleigh–Bènard 
convection of Newtonian fluids in a single convection cell of unity aspect ratio for 106 ≤ Ra ≤ 1011 and 
6 ≤ Pr ≤ 103 . Using this normalised viscous layer thickness  correlation33 more than 15 grid points have been 
placed in the Pr = 1 cases for all the values of Ra ( 107 − 109 ) considered in the current analyses.

Finally, it has been ensured a-posteriori that the chosen grid resolution is sufficient by ensuring y+ and y+
√
Pr 

(where y+ = ρuτ y/µ with uτ =
√
τw/ρ , τw and y being the friction velocity, wall shear stress magnitude and 

wall normal distance of the wall adjacent grid point, respectively) remains smaller than unity. For the present 
analysis, Cartesian grids of 2503, 4603 and 7003 ( 1503, 2303 and 4903 ) have been used for Pr = 1 ( Pr = 320 ) 
simulations of Ra = 107 , Ra = 108 and Ra = 109 , respectively.
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